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Abstract 
In this paper, mathematical investigation has been made to study the effect of double 

exponentially weighted moving average (DEWMA) model on economic design of X control 

chart. Formulae are derived for calculating the value of n and h when the characteristics of an 

item possess DEWMA model. A numerical example is derived to verify the performance of 

DEWMA model in presence of normality. The DEWMA charts working together with normality 

affects the control chart scheme when small to moderate shifts in the mean of the controlled 

parameter are expected. It is found that when shifts are uncertain the optimal design for DEWMA 

chart should be more conservative. 
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1. Introduction 
A popular control chart used to detect and identify small shifts in a process 

mean is the EWMA (Roberts, 1959). The attempt to increase the sensitivity of EWMA 

control chart to detect small shifts and drift in a process, a double EWMA (DEWMA) 

control chart was developed by Shamma and Shamma (1992). Zhang (2002) has 

conducted extensive studies on DEWMA control charts for the mean. Like most 

commonly used control charts, the traditional EWMA and DEWMA control charts for 

monitoring process means were developed under the assumption of normality. 

Simulation studies on the robustness of an EWMA control chart for process mean 

monitoring have been conducted by Borror, et al. (1999).As quality has become a 

crucial factor in global market competition, statistical process control (SPC) techniques 

are becoming significant in both manufacturing and service industries that aim at 6σ 

excellence. With modern measurement and inspection technologies, It is common to 

collect large volumes of data from individual units usually on very short time intervals. 

Such nearly continuous measurement unavoidably results in data that tend to be non-

normally distributed. However, most existing SPC techniques were not designed for 

such environments. It is known that conventional SPC techniques are affected by 

skewed data. Specifically, false alarm rates are so high that true alarms are often 

ignored. Since the primary purpose of SPC is to detect quickly unusual sources of 

variability so that their root cause can be properly addressed, data skewness has severe 

adverse impacts on the economic benefits of implementing SPC. If the time series 

model adequately represents the process behaviour the residuals will be uncorrelated. 

Thus, conventional SPC methods, such as Shewhart charts and exponentially weighted 

average (EWMA) charts, which were developed for uncorrelated data, and can be 
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applied directly to the residuals. For detecting process changes, Early applications on 

EWMA appear in economics, inventory control and forecasting (See, Cox (1961) , 

Hunter (1986), Mac Gregor (1988), most special attention from the semiconductor 

fabrication process (See, Ingolfsson and Sachs (1993), Del Castilo and Hurwitz (1997).  

Economic design of control charts is used to determine various design parameters that 

minimize total economic costs. The effect of production lot size on the quality of the 

product may also be significant. If the production process shifts to an out-of- control 

state at the beginning of the production run, the entire lot will contain more defective 

items. Hence it is better to reduce the production cycle to decrease the fraction of 

defective items and, thus improve output quality. On the other hand, reduction of the 

production cycle may result in an increase in cost due to frequent setups. A balance 

must be maintained so that the total cost is minimized. The operating condition of the 

machine tools; however, the performance of machine tools depends up on the 

maintenance policy. It is assumed that that the cost of maintaining the equipment 

increases with the age; therefore, an age replacement strategy is needed to minimize the 

total cost of the system, which will simultaneously improve quality control and 

maintenance policy. The behavior of the DEWMA control chart performance for non-

normal populations has been investigated.Singh et al. (2013) Studies the problem on 

Variables sampling plan for correlated data, Khanday and Singh (2015) study the effect 

of Markof’s model on Economic design of X control charts under independent 

observations. Zhang (2002) has conducted extensive studies on DEWMA control charts 

for the mean. Recently, many researchers have contributed to a wide variety of control 

charts to improve process monitoring, such as Saghaeiet al. (2014), Amiriet al. (2015) 

and Lee et al. (2014). 

 

2. Duncan’s model for the cost function  
 Duncan (1956) obtained an approximate function for the average net income 

per hour of using the control chart for mean of normal variables as: 
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 Duncan’s cost model indicates 

(i) the cost of an out-of –control conditions, 

(ii) the cost of false alarms, 

(iii) the cost of finding an assignable cause and 

(iv) the cost of sampling inspection, evolution, and plotting. 

Notations  

=0V the average per hour when process is in control and process average is µ , 
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=h Sampling interval in hours 

=Cn the time required to take and inspect a sample of size n . 

=D average time taken to find the assignable cause after a point plotted on the chart 

falls outside the control limits, 

=P  Probability of detecting an assignable cause when it exists, 
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Where )( µ′xg  is the density function of x when the true mean µ  and )(xΦ is the 

normal probability 

=α probability of wrongly indicating the presence of assignable cause. 
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=T The cost per occasions of looking for an assignable cause when no assignable 

cause exists, 

=W the average cost per occasion of finding the assignable cause when it exist, 

=b per sample cost of sampling and plotting, that is independent of sample size, 

c= the cost per unit of measuring an item in a sample. 

The average cost per hour involved for maintaining the control chart is
h

cnb )( +
. The 

average net income per hour of the process under the surveillance of the control chart 

for mean can be rewritten as, LVI −= 0  

Where  
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L  Can now be treated as the per hour cost due to the surveillance of the 

process under the control chart.  

 

3. Derivation for optimum value of sample size n and sampling interval h 
 One can determine the optimum value of sample size n and sampling interval h  

either by maximizing the gain function I or by minimizing the cost function L  with 

respect to n  and h ,  and we get, 
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The solutions of the equations (2.1) and (2.2) for n and h yield the required optimum 

values. The equations (2.1) and (2.2) can be rewritten as follows: 
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By assuming η to be small and noting that the optimum h is roughly of order of
η

1
, 

we neglect terms with  Bη  containing Wcη , 
h

Tα ′
 and the terms equating higher 

powers of   η . The equations (3.5) and (3.6) are simplified and put in the following 

form 
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From the equation (3.8) we get   
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By eliminating h from the equation (2.7), we get, 
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The values of n for which the equation (3.10) satisfy yield us the required optimum 

value of sample size n. Substituting this value of n in equation (3.9), we find the 

optimum value of the sampling interval h. 

 

4. Derivation of the optimum values of sample size n and sampling interval 

h under DEWMA 
 Suppose that

tX , (t=1, 2, 3, ...) is a sequence of random variables taken from a 

normal distribution with mean 
0µ and variance 2σ . Note that 

tY  is the usual EWMA 
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control statistic, and the DEWMA control statistics 
tZ  is defined as the system of 

equations (4.1) and (4.2) 

,)1( 1−−+= ttt YXY ψψ                      (4.1) 

1)1( −−+= ttt ZYZ ψψ   ,                       (4.2) 

such that 10 <<ψ (smoothing parameter) and ,000 µ== ZY repeated substitutions 

are applied to equations (4.1) and (4.2) and rewritten as: 
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Using values of (4.3) in equation (4.4) we get:  
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Replacing l with j in equation (4.5) we get 
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It is assumed, without loss of generality, that
000 µ== ZY . 

Here we mentioned some quantities below for evaluating mean and variance, then, for 
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On taking the expectation of equation (4.6), we will have: 
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Now using equation (4.7) in the first term with  )1( ψ−=a  and tn = we get 

 

 

( )
[ ]

,)1()1(

)1(1

)1(

)1(1

)1(1)1(

1

00

0

1

2

2

µψµψψ

µ
ψ

ψ
ψ

ψψ
ψ

ψ
µ

tt

tt

tZ

t

t

−+−+










−−
−

−
−−

−−−
−

=
+

 

,)1()1(
)1()1(1

0002

2 µψµψψµ
ψ
ψ

ψ
ψ

ψ tt
tt

t
t

−+−+






 −
−

−−
=  

  ( ) ,)1()1()1()1(1 0µψψψψψ tttt t −+−+−−−−=  

.)( 0µµ == ttZ ZE          (4.9) 

Now, taking variance of equation (4.6), we will have: 
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The control limits for DEWMA control chart are: 
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where L′ is the distance between the control limits and the central line (CL) 

measured in σ  units. For large values of t the control limit becomes For large values of 
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Assuming that tX is drawn independently from a normal distribution with variance 2σ
so that‘t’ is sufficiently large. One of the disturbing thing here is that ψ is quite 

arbitrary and lies between 0 and 1. Suppose that a machine whose performance can be 

effectively represented by a single unknown quality µ is inspected regularly to see 

whether the quality of performance is deteriorated. The successive performance level
1µ

,
2µ ,  3µ ,…, tµ are tracked by the observations x1, x2, x3,…., xt . The operation continues 

until a decision is made to overhaul it in which case the level is set to zero 

instantaneously and the whole sequence begins again. This resetting after overhaul may 

be subject to error and so it is assumed that 0µ is ),0(
2

n
N

σ
and each subsequent state of 

repair is drawn independently from this distribution. Thus we get, 
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So for the DEWMA model, the probability density function for independent case is 

represented by  

)(1'

eeP ξΦ−=
 

Nee αα ='
, where 

g

nk
e

)( δ
ξ

−
=                     (4.14) 

 






 −
Φ=

g

k
Ne 2α

 
 

For DEWMA model, the equation (3.1) and (3.2) will reduce in following form 
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By solving the equation (4.15) and (4.16) we get  
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The values of n for which the equation (4.19) is satisfied,  yield us the required 

optimum value of sample size n. Substituting this value n in equation (4.18), we find 

the optimum value of the sampling interval hoe under DEWMA model for X chart.  

 

 

 ѱ 
  k = 3 k = 2.5 k = 2 k = 1.5 k = 1 

δ n h n h n h n h n h 

  1 23 2.3371 20 2.4134 19 3.0258 35 4.6216 29 6.2076 

1 1.5 11 1.8026 9 1.9963 9 2.7064 16 4.1978 14 5.9551 

  2 6 1.5648 6 1.8157 6 2.574 9 4.0314 8 5.8593 

  1 18 2.0317 13 1.8385 10 1.7802 9 2.3943 16 4.3788 

0.8 1.5 8 1.5707 6 1.4686 5 1.508 5 2.2144 8 4.1802 

  2 5 1.367 4 1.3065 3 1.3901 3 2.1396 4 4.1032 

  1 15 1.8999 11 1.7054 8 1.526 6 1.4797 5 2.5773 

0.6 1.5 7 1.4896 5 1.3818 4 1.2868 3 1.3229 3 2.4855 

  2 4 1.3104 3 1.2419 2 1.1837 2 1.2552 2 2.4483 

  1 11 1.7286 8 1.5475 6 1.382 4 1.2379 2 1.1242 

0.2 1.5 5 1.3842 4 1.2856 3 1.1984 2 1.1248 1 1.0683 

  2 3 1.2377 2 1.176 2 1.1223 1 1.0776 1 1.0438 

 

Table 1: Optimum sample size n and sampling interval h under DEWMA 

for X control chart. 
 

 

5. Numerical illustration 
In order to illustrate the results, we take k= 1, 1.5, 2.0, 2.5, 3.0, δ=1.0, 1.5, 2.0,   

λ =0.01, M=100, W=25, T=50, C=0.05, D=2, b=0.5, c=0.1 and ψ =1, 0.8, 0.6 and 0.2 
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to determine the optimum values of sample size and sampling interval. The values of n 

and h are presented in the above Table, which  shows, as would be expected, that small 

values of ψ are better for detecting small shifts and large values of ψ are better for 

detecting large shifts as the value of ψ increases,  the values of n and h increase. From 

the Table it is seen that for a given k and δ the value of n and h increase with increase in 

the value of ψ . This shows the degree of robustness for economic design of X  control 

chart for DEWMA model to smaller values of smoothing parameter. The DEWMA for 

economic design of X control chart working together with normality affects the control 

chart scheme when small moderate shifts in the mean of the controlled parameter are 

expected. It is found that when shifts are uncertain the optimal design for DEWMA 

economic design for X  control chart should be more conservative, i.e., the optimal 

design for random shifts are comparable to traditional designs for smaller deterministic 

shifts. For naive practitioners, the DEWMA chart design for ψ =1, and independence 

case is suggested a very good control chart to start with. 

 

6. Conclusion  
 It may be inferred that when the rate of occurrence of assignable cause is 

fixed, the value of sample size and sampling interval are different for different value of 

ψ . The effect of non-normality is more serious for DEWMA model for different 

parameters. Since the variability in n and h of DEWMA generally smaller, therefore, 

due to these properties, we should motivate the use of DEWMA in industrial process. 

We also find that the DEWMA chart performs better only when shifts are more certain 

and large. From economic point of view, under some contaminated normal distribution, 

the DEWMA X control chart out performs the other control chart available in the 

literature. Therefore, we recommend the economic design of X  control chart for 

DEWMA model be employed when there is concern about the non-normality 

assumption. 
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