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Abstract

One parameter inverse size biased p-dimensional Rayleigh distribution (ISBRD) is
introduced for modeling lifetimes. Its distributional properties including moments are studied.
Hazard function is studied under different parametric settings. Parameter estimation is done using
maximum likelihood method and Bayesian approach. The risks of Bayes estimators have been
obtained under different loss structures and a comparative risk analysis has been conducted
empirically. Findings of simulation study are presented.
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1. Introduction

The Rayleigh distribution (Rayleigh, 1919) is frequently used as a model for
the analysis of data resulting from investigation involving wind velocity, wave
propagation, radiation and target error by physicists and engineers. The p-dimensional
Rayleigh distribution was introduced by Cohen and Whitten (1988). In the present
article, we propose inverse size-biased p-dimensional Rayleigh distribution. Earliest
mention of the notion of weighted distributions is found in Fisher (1934). Length or
size biased sampling introduced by Cox (1962) is an example of weighted distribution.
Multiple illustrations on the concept of size biased distributions are found in Patil
(2002). These ideas have found wide applicability in disease mapping, survival and
determination intermediate (latency) period, the size bias implies that a unit with a large
value of the variable has a greater chance of being selected. For instance, let us consider
two variables (for investigation of spread of a specific disease)-area of a region (say,
village) and the number of infected individuals under each area. Then the arithmetic
mean of the represent proportion of regions with i infected people. This represents
average from the region's viewpoint. However, proportion of infected people in the i
person region represents average from the viewpoint of the infected person. The latter
describes size biased average category size. Thus, size biased sampling and modeling is
useful for a human population exposed to a contagious microorganism such as Zika or
HINI. Such length biased sampling and modeling mechanism can also be applied to the
cases of children reported with dyslexia where the disorder exists in different degrees
among the affected children and could be corrected through effective and timely
intervention.



54 Journal of Reliability and Statistical Studies, December 2016, Vol. 9(2)

The probability density function of one parameter inverse size biased p-
dimensional Rayleigh distribution (ISBRD) is obtained as
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Figure 1: Probability Density function of ISBRD

The probability that an individual survives longer than time t, is called survival
function. As t ranges from 0 to oo, the monotone survival curve goes to 0. The survival
function is a lower incomplete Gamma function.

L (8 Y N PR (12)
F(p-i—lj 2 ot?
2

The hazard function represents the conditional failure time. It exhibits higher
probability of meeting mortality in the beginning of lifetime for the proposed ISBRD
and takes the following form
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The Graphs of survival and hazard rate functions under different parametric
settings of a is shown in figure 2 and figure 3.
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Figure 2: Survival function of ISBRD  Figure 3: Survival function of ISBRD
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The survival function is a monotonic decreasing function while the hazard
function increases initially during infancy or early lifetime then declines at a decreasing
pace. This reveals that an ISB p-dim Rayleigh distribution is suitable to model lifetimes
of the items which have a higher chance of failing during early lifetime, but after
survival to a specific development level, the probability of failure decreases as time
increases.

The present paper considers Bayesian estimation of the scale parameter o
under four types of loss functions. The first is squared error loss (quadratic loss)
function (SELF), which is classified as a symmetric function and associates equal
importance to the losses due to overestimation and underestimation of equal magnitude
and is measured as

L(a, &) =(a—-a) (1.4)
However, symmetrical loss functions are not appropriate when overestimation
and underestimation are not equally serious. The convex loss function known as linear

exponential loss function (LINEX) which is an asymmetric loss function for a
parameter a, was introduced by Varian (1975) as

L) =" —k5-1) ; k=0 (1.5)

Where, § = % _| This asymmetric loss function has been found to be appropriate in the
a

situations where either overestimation is more serious than underestimation and vice-
versa. The positive value of &k is used when overestimation is more serious than
underestimation and for negative value of k, reverse is true. For & close to zero, this loss
function is approximately squared error loss and therefore symmetric. These loss
functions have been studied by several authors, among them Canfield (1970), Zellner
(1986), Rojo (1987), Basu and Ebrahimi (1991), Pandey and Rai (1992) and Soliman
(2000).

By using non-symmetric loss functions one is able to deal with the cases where
it is more damaging to miss the target on one side than the other. The General Entropy
loss function (GELF) was developed by Calabria and Pulcini (1994) as

L) = (54 ~dlog,(6)-1); 6 =% and d =1 (1.6)
o

Introduced by Norstrom (1996), precautionary loss function is asymmetric in

nature, which has the quadratic loss-function as a special case. These loss functions

approach infinity near the origin to prevent underestimates and thus give conservative

estimates, especially when, for example, low failure rates are being estimated. The

conservative estimates make these loss functions useful when the consequences are

major and under-estimation is serious. When dealing with disastrous consequences such

as disease modeling, it can be worse to underestimate the potentiality of an event than
to overestimate it. It has the following form

A 2
L(a,a) =(a_—fx) (1.7)
a

The rest of the paper is organized as follows. Some statistical characteristics
for ISB p-dim Rayleigh distribution are derived under section two. Parameter
estimation under classical and Bayesian approaches and posterior risk analysis under
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different loss functions, for the complete sample case, is undertaken in section three.
Empirical investigation of various risk estimators is carried out in section four. Section
five summarizes the contribution of the present paper.

2. Distributional Properties
The ' order raw moment is given by
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The r™ order Central moments is given by
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Quartile Deviation is 0.D = 4
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Coefficient of Variation is given by

Harmonic mean is written as H =

Geometric mean is derived as log G =
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The above distribution properties are empirically evaluated for p=2 band
varying sample size to study the pattern of changes with changing a, which is the scale

parameter.

A | Mean | Var Med. | Mode | S.D. | M.D. | Q.D. C.V. HM. | GM.

1 1.128 | 0.726 | 1.085 | 0.707 | 0.961 | 0.769 | 0.641 | 75.551 | 0.886 | 23.623
1.510.921 | 0.484 | 0.886 | 0.577 | 0.785 | 0.628 | 0.523 | 75.551 | 0.723 | 22.905
2 0.797 | 0.363 | 0.767 | 0.5 0.680 | 0.544 | 0.453 | 75.551 | 0.626 | 13.663
2.510.713 | 0.290 | 0.686 | 0.447 | 0.608 | 0.486 | 0.405 | 75.551 | 0.560 | 11.237
3 0.651 | 0.242 | 0.626 | 0.408 | 0.555 | 0.444 | 0.370 | 75.551 | 0.511 | 10.271
3.510.603 | 0.207 | 0.580 | 0.377 | 0.514 | 0.411 | 0.342 | 75.551 | 0.473 | 9.841

4 0.564 | 0.181 | 0.542 | 0.353 | 0.480 | 0.384 | 0.320 | 75.551 | 0.443 | 9.661

451 0.531 | 0.161 | 0.511 | 0.333 | 0.453 | 0.362 | 0.302 | 75.551 | 0.417 | 9.618

5 0.504 | 0.145 | 0.485 | 0.316 | 0.430 | 0.344 | 0.286 | 75.551 | 0.396 | 9.654

5.510.481 ] 0.132 | 0.462 | 0.301 | 0.410 | 0.328 | 0.273 | 75.551 | 0.377 | 9.742

Table 1: Some statistical features of ISBRD for p=2.

Var—Variance, Med—Median, S.D.—Standard Deviation, M.D.—Mean Deviation,

Q.D.—Quartile Deviation, C.V.—Covariance Variation, H.M.—Harmonic Mean,

G.M.—Geometric Mean

3. Parameter Estimation
If n items are put to test, then the joint likelihood function for complete sample

is given by




58 Journal of Reliability and Statistical Studies, December 2016, Vol. 9(2)
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The maximum likelihood estimate (MLE) of the scale parameter is a =

for

n(p+1)
n
1 . . L . .
A :Z(;J Assuming no information is available, as may happen with a new

contagion like Zika, asymptotically invariant prior, proposed by Hartigan (1964) which

. 1 . . . S

is of the form g(a)=—,a >0 is adopted for the posterior analysis. In conjunction
a

with the likelihood (3.1) it yields the following posterior density function of ISB p-dim.
Rayleigh distribution
4

1 1 -—
l—[(a ): A(n(p+1)+8)/26 a 32
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2

The following posterior analysis is carried out assuming that p is known:

Theorem 1: For a positive integer p and a > 0, under SELF, Bayes estimator of o is the
posterior mean

AT n(p+1)+6
n 2 24

aBS = =

r n(p+1)+8 n(p+1)+6
2

The posterior risk function of & 45 , under SELF is

Ry (dys )= 20 (n(p+1)+8)(n(p+1)+10) ((n(p+1)+12) —lj“
(n(p+D)(n(p+1)+6) (n(p+1)+6)

(3.3)
Theorem 2: For a positive integer p and k > 0, under LINEX loss function, Bayes
estimator of a is

4 —él—ex 2k
BTk Pap+1+10

The posterior risk function of & 5, , under SELF is

RBS(&BL):0!2|:a2(n(p+1)+8)(n(p+1)+1()I:l—ex‘f 2% jl{(n(pﬂ)ﬂz){l—exf % H}—z}ll
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Theorem 3: For a positive integer p and o > 0, under GELF, Bayes estimator of a is
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The posterior risk function of & g , under SELF is
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Theorem 4: For a positive integer p and a > 0, under Precautionary loss, Bayes
estimator of a is

A[F( n(p+1)+ 4)}1/2
" 2 2A
- _ (3.6)
“ [r(n(p+l)+8ﬂl/2 [(p+ D+ H(n(p+ D+ 6)]
2

The posterior risk function of & 55 , under SELF is

Rys(ape)=? 2a% (n(p+1)+8)(n(p +1)+10) (n(p+1)+12)
BSXTBP n(p+1) (n(p+1)+4)(n(p+1)+6)

1
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Posterior risk is found to be a function of the sample data and of the prior parameters.

4. Risk Analysis

Comparison in terms of risks identifies the decision rule with the lowest risk.
A decision rule is admissible (with respect to the loss function) if and only if no other
rule dominates it, otherwise it is inadmissible. A comparison of this type maybe needed
to check whether an estimator is inadmissible under some loss function. If it is so, then
the estimator would not be used for the losses specified by that loss function. For this
purpose risk of the estimators relative to squared error loss have been estimated. It is
evident from the expressions of the risks of the estimators that an analytical comparison
of these risks is not possible. Therefore, an empirical comparison is made. Random
samples of size n=6 have been generated from (1) for 0=0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55. We compute and report the corresponding risks, for complete
sample case, so as to observe and compare the behavior of the following risk functions
for the proposed lifetime distribution:

RBS (dBS )’ RBS (&BL )’ RBS (&BE )7 RBS (&BP )
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a RS RL RE RP
0.1 0.0101 0.0108 0.0100 0.0103
0.15 | 0.0229 0.0265 0.0227 0.0245

0.2 0.0413 0.0527 0.0407 0.0462
0.25 0.0657 0.0937 0.0644 0.0775

0.3 0.0968 0.1547 0.0938 0.1212
0.35 0.1351 0.2425 0.1296 0.1802

0.4 0.1815 0.3647 0.1723 0.2584
045 | 0.2371 0.5305 0.2221 0.3602
0.5 0.3026 0.7499 0.2799 0.4903
0.55 | 0.3796 1.0345 0.3463 0.6543
0.6 0.4692 1.3967 0.4220 0.8583
0.65 | 0.5729 1.8504 0.5079 1.1089
0.7 0.6923 2.4106 0.6049 1.4133
0.75 | 0.8291 3.0934 0.7139 1.7792
0.8 0.9851 3.9164 0.8360 2.2151
0.85 1.1623 4.8981 0.9723 2.7298
0.9 1.3628 6.0582 1.1240 3.3329
0.95 1.5887 7.4178 1.2923 4.0346

1 1.8425 8.9992 1.4786 4.8454

Table 2: Posterior risk functions at p=2 and n=6

RS—risk function of SELF, RL—risk function of LINEX loss function,
RE—risk function of general entropy, RP—risk function of precautionary.

The following is the graph of posterior risk functions under the SELF, LINEX,

general entropy and precautionary loss functions on p=2 and n=6.

10

posterior risk function

Figure 4: Posterior risk function of ISBRD
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5. Conclusion

A new lifetime distribution is proposed to alternatively model lifetime of units
which age rapidly or wherein the infection spreads rapidly initially and is quickly
arrested under treatment but to different degrees, sometimes resulting in no recovery at
all. The theoretical properties of the introduced distribution are derived. Risk analysis is
discussed within a Bayes framework. In risk analysis, both the potentiality of an
undesired event and its consequences are investigated in terms of the performance of
estimators assessed on the basis of their relative posterior risk which is found to be the
least under GELF (Table 2). Therefore, the corresponding Bayes estimator is regarded
as the most preferred. It is also observed that the Bayes estimators dominate when the
asymmetric loss functions are used and therefore are deemed more appropriate, instead
of the quadratic loss function for proposed life time distribution.
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Appendix A
1. The proof of probability density function:
The probability density function of the p-dimensional Rayleigh distribution is

—(p-2)/2 p-1 2
f(x;o-):%(éj exp[—%(é) ], x>0,0>0 (i)
(4]

Putting the value of & = 252 in equation (i), then we will get
g q g

2

Where, a is a scale parameter.
The mean of p-dimensional Rayleigh distribution is

r(ﬁ“)
E(x) = g2 2 )

13)

Then the probability density function of size biased p-dimensional Rayleigh distribution
is

p-1 2
fla)= Lp%exp(—%],x >0,0 >0 (ii)
5)°

xf(x;a
glria) = LED
E(x)
2
S(xa) Z;x” exp X ,x>0,a>0
a(p+1)/2r(p+1j a
2
And now the Inverse size biased p-dimensional Rayleigh distribution is given by
1
fia)= 2 1 plﬂ exp(—_z}y>0,a>0
a(p+1)/21—~(p+ ) y ay
2
Where, y=1/x.

2. The proof of Survival function:

F) = [ f(ra)dy

- 7 2 1 1
F(t)= exp(——de
’ a(pﬂ)/zr(p;lj yp+2 ayz

1

— L 1
F(t)= o Iz((p+l)/2)_le_zdz , where z=—
T % 0 ay



A new lifetime distribution for modeling ... 63

= 1 +1 1

F(t) = 77[[)7,—2j

F( p j ot
2

This is the lower incomplete function.

3. The proof of Hazard rate function:

We have,
h(t) = S if; a)
F()
2
a(erl)/Zl—\[erl\J yr+? ay?
h(t) = ] 2
_ U fp+l 1
r p+l }/( 2 ’atzj
2
-1
21 1 p+l 1
h(6) = o (P2 P42 exp(—?][ﬂ{—z ’at_ZD
Appendix B

The proof of distribution properties
The r™ order raw moment is given by

1 1
Iy 5 exXpl —— |dy
o (p+1>/21~(P+1j ay

2

, 1

i)
RES

u =E()-
a”zl“(pﬂj
2

J.k(” "D27kdk , Where, k = — >

ay

Central moments:
=E(y-E(x))

t = [ =E@) f(r,)dy
0
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Mean Deviation:

EM.D:ES.D
6 3

ot HOEHAE))

Quartile Deviation:

0D = %M.D

oot (Y]

Coefficient of Variation:
S.D.

e

Harmonic Mean:

CV =

x100 , where, S.D=standard deviation
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Geometric Mean:

i 2 1 1
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2
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Appendix C
The proof of posterior density function:
The likelihood function is given by

2" - 1 (1
an(p+l)/2(l—~(p+lj) i=1 \ Vi -1 \ i

2

The posterior density function is
l .
H(a‘y)zw(wﬂ, where g(a) =L3, a>0
- a

[10:ag(@a
0

A

1 1 42, Ty
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2
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And F(nd) = 11/2 1 (n(p+1)a] exp(_n(p+l)aj
o"P+h F(n(p+1)+2j 2 2a

mlefy)-

2
24
n(p+1)

where, the maximum likelihood function (MLE) is & =

Proof of theorem 1: The square error loss function (SELF)

0 A
1 1 -
L (n(p+1)+8)/2
Upg _Iaa(n(p+l)+6)/2 [n(p+1)+8] e “da
’ s
ur n(p+1)+6
P 2 24
BS F(n(p+l)+8) n(p+1)+6
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The posterior risk function of & 5 , under SELF is
B 52 5 2
Rys(éps) = E, (aBS )_ 20, (G5 )+
4( n(p+ l)j(n(p+l)+12)/2

2 .[a'*(n(p+l)+12)/2 exp[_ n(p+1a jdd
a(n(p+1)+6)/2(n(p+l)+6)2r(n(p+21)+8] : 20

Ea &?RS):
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2( n(p+ 1)](n(p+1)+10)/2

. 2 T n(oiDrs n(p+Dé), .
E (ags)= G P02 o p[——]da
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£ (dys)= o’ (n(p+1)+10)(n(p +1) +8)
arm (n(p+D)(n(p+1)+6)
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Proof of theorem 2:
The Linear Exponential loss function (LINEX),

1f5 =% 1, then the LINEX loss function Z(5)
a

L) =" —ks-1) ; k20

e 2o (2|

The Bayes estimation & of o under the Linex loss function is the solution of

Writing & as a5, we have,

it 8] of )
dag, a a a

That & g; is the solution to the following equation

a ) M 2 é
BL a _ k BL

(24 (24

The integrating on both sides with respect to a, we get
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The posterior risk function of & 5, , under SELF is
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Proof of theorem 3:
For a positive integer p and a > 0, under GELF, Bayes estimator of a is
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Proof of theorem 4:
For a positive integer p and a > 0, under Precautionary loss, Bayes estimator of a is
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The posterior risk function of & 5 , under SELF is
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