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Abstract 
     This paper has introduced Bayesian analysis and its application to estimate the 

parameter of the Markov model. To use Markov model, comparison between Bayesian approach 

and method of maximum likelihood have been done. Bayesian approach gives better result than 

classical approach. Jeffery’s non-informative prior and squared error loss function have been 

used in Bayesian inference. Tierney-Kadnae (T.K.) algorithm has been used to solve the Bayesian 

integral. 
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1. Introduction 
     In follow-up studies Markov chain based logistic models are used. A logistic 

regression model to analyze the transitional probabilities from one state to another was 

applied by Muenz-Rubinstein (1985). Azzalini (1994) examined the influence of time 

dependent covariate on the marginal distribution of the binary outcome variables in 

serially correlated data. Raftery and Tavare (1994) suggested a Markov chain model of 

higher order than one that involves only one parameter for each extra lag variable. 

Islam and Chowdhury (2006) reviewed the first order model of Muenz-Rubinstein 

(1985) and developed a general procedure based on the Chapman-Kolmogorov 

equation for transition. Cook and Ng (1997) applied a logistic bivariate normal mixture 

model for a two state Markov chain. Recently, Islam at el. (2012) have used 

classical approach for the estimation of parameters for analyzing polytomous outcome 

data using logistic link function. Noorian and Ganjali (2012) applied Bayesian analysis 

of transitional model for longitudinal ordinal response data. However, in their study 

they applied Markov Chain Monte Carlo (MCMC) algorithm. Although MCMC is 

easiest and widely used but there is no clear idea about estimating procedure of the 

model to use Markov Chain Monte Carlo integration for solving Bayesian integral. This 

is a programming based operation. Mahanta et al. (2015) applied Bayesian approach for 

estimating the parameters of Muenz-Rubinstein model. This paper has analyzed 

Azzalini’s two state Markov model and the theoretical idea about the estimator of the 

parameter of Azzalini’s model to estimate the parameters by Bayesian approach as well 

as method of maximum likelihood.  

 

      For estimating the parameter of model using pregnancy complication data, 

the data were collected from Bangladesh Institute of Research for Promotion of 
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Essential and Reproductive Health and Technologies (BIRPERHT) survey during the 

period from November 1992 to December 1993 on maternal morbidity in the rural areas 

of Bangladesh. 

 

2. Model 

     Let ( )t21 y,...,y,y  be the binary response data observed on n objects at time 

T,....,2,1t =  whose values are 0 or 1. )x,....,x,x( t21  are associated covariates 

recorded for each subject at each occasion. Our aim is to obtain estimates for the 

regression of ty  on tx   using binary Markov chain of first order. In practice, we often 

concern with the non-stationary case, in which )Y/YPr()Y(E 1itittt −==θ  varies with t 

via some link function such as, 
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assumes that the current response variable is dependent on the history only through the 

immediate preceding response, 

 

i.e.,  )Y/YPr()tj;Y/YPr( 1ititijit −=>  

the transition probabilities 

)0Y/1YPr(pp 1itit0,it0 ==== −  

and  )0Y/0YPr(p1 1itit0 ===− −  

)1Y/1YPr(pp 1itit1,it1 ==== −  

and  )1Y/0YPr(p1 1itit1 ===− −  

define the Markov  process but do not directly parameterize the marginal mean. 

Azzalini (1994) parameterize the transition probabilities through two assumptions. 

First, a marginal mean regression model is adopted that constrains the transition 

probabilities to satisfy 

)1(pp 1it0,it1it1,itit −− −+= θθθ .                       (2.2) 

Second, the transition probabilities are structured through assumptions on the pair wise 

odds ratio. 

( )
( )0,it0,it

1,it1,it
it
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=ψ .                             (2.3) 

This quantifies the strength of serial correlation. The simplest dependence model 

assumes a time homogeneous association, 0it ψψ = . However, models that allow itψ to 

depend on covariates or to depend on time are possible. 

Solving (2.2) and (2.3) for 0p  and 1p  for any 1t >  and by mathematical induction for 

any 1t > , we can finally represent the transition probabilities jp  as, 
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where,  ( ) ( ) ( ) ( ){ }1tt
2

1tt
2

1tt
2 211 −−− ++−−−−+= θθθθψθθψδ . 

It can be shown that the s'p j  always lie in ( )1,0  and λψλψ e,orlog == . 

 

The above relationships generate a process having the desired properties. On taking 

1t )1YPr( θ== and then generating t21 y,...,y,y via a non-homogeneous Markov chain 

with transition probabilities jp  we obtain a sequence such that tt )Y(E θ= for 

T,....,2,1t = and the odds ratios for )y,y( t1t−  are equal toψ .  

Define 
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and )X,....,X,X(X it2i1iit =  be the covariate matrix itθ be denoted by the excepted 

value of itY and βθ tit X)(itlog ′= . 

For the binary random variable tY with covariate tX the marginal distribution is given by 
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3. Prior and Posterior Distribution 
     Selection of a prior distribution is an important part in Bayesian approach. 

When proper information is not available, use of non-informative has an extensive 

tradition in statistics. Mahanta et al. (2015) used non-informative prior along with the 

uniform prior and defined as ( ) I,g =λβ .  

Where, ( )λβ ,g  is the joint prior density of parameter β  and λ . That is 

( ) ( ) ( )λβλβ gg,g = , since β & λ are independent and I represent identity vector. 

Then the posterior density of  β  and λ for the given observation is 
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4. Bayes Estimators 
     Loss function is the important ingredient for Bayesian approach. Squared 

error loss function of parameter β  is defined as 
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    Bayes estimators (Podder & Roy, 2003) are the mean of the posterior density 

under squared error loss function  
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    The Bayesian integral of Markov model cannot be solved to have a closed 

form. Tierney-Kadane (1986) approximation is the approximation that solves this type 

of integral.  

 

If the form of the Bayes integral is 
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where, ( )XI  represent the form of the integral, tl  is the log-likelihood, ( )βp  is the log 

of prior and ( )βu is the functional form of the parameter β  that is expected with respect 

to posterior density. 

 

Then according to Tierney-Kadane (1986), the integral can be approximately be 

evaluated as 
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where, and 
∧
β  and 

*∧
β are the maximum likelihood estimators of  parameter β  and *β  

respectively. 

 

      For estimating the parameter β  by Bayesian approach using chain rule of 

differentiation, and considering the tht  term of the log-likelihood function, Azzalini 

(1994) applied its derivatives computed via Chain rule of differentiation  
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Following the first order differentiation of Azzalini (1994), the second order 

differentiation is 
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Taking log on both sides in equation (2.5),  the log-likelihood function is 
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again, successive differentiation of equation (2.4) with respect to tθ gives 
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Again, from equation (2.1) we have, 
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Now applying partially and successively differentiating 2δ  with respect to tθ and 1t−θ  
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Moreover differentiating successively with respect to ψ  
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Again, differentiating equation (2.4) with respect to 1t−θ  
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We know, })1y2(y1){1( 2 = A 1t1t1t −−− −+−− θψ  

now differentiation both sides with respect to 1t−θ  
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From equation (4.5), 
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    Now we use equations (4.6), (4.7) and (4.11), (4.12) to estimate the maximum 

likelihood estimator of parameter β  and *β  respectively. 

Then according to Tierney-Kadnae, the integral can be approximately be evaluated as 
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Therefore, The Bayes estimator of β under squared error loss function is   
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maximum likelihood (Azzalini, 1994) estimators of β  & *β  respectively. λ can be 

estimated similarly. 

 

5. Bayesian Credible Interval 

      If ( )X/f β is the posterior distribution given the sample, we may be 

interested in finding an interval such that  
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1
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Mahanta et al. (2015) used ( α−1 ) 100% Bayesian credible interval of β . 
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     In Bayesian analysis, credible interval becomes the counterpart of the 

classical confidence interval, also credible interval may be unique for all models. The 

Bayesian credible interval, on the other hand, has a direct probability 

interpretation ( )( ) αβββ −≥∈ 1x/,P 21  and is completely determined from the current 

observed data x and the prior distribution. 

 

     To estimate the parameter of Azzalini model by pregnancy complication 

data, three covariates have been utilized in this study because of complexity to fit the 

model. Three highly significant covariates viz. any miscarriage, socio economic status 

and age at marriage are used. Maximum likelihood approach and Bayesian approach 

have been applied for estimating the parameters of the model. 

 

6. Numerical Result 
      In this paper, we have used pregnancy complication data collected from 

Bangladesh Institute of Research for Promotion of Essential & Reproductive Health 

and Technologies (BIRPERHT) for the period November 1992 to December 1993. The 

data were collected using both cross-sectional and prospective study designs. A total of 

1059 pregnant women were interviewed in the follow-up component of the study. 

 

      Confidence intervals for maximum likelihood estimators and credible 

intervals of Bayesian estimators under squared error have been used to calculate the 

parameter of Azzalini model and have been presented in table 1 and table 2 

respectively. 

 

 

Covariates 
Point 

Estimate 

Odds 

ratio 

Interval Estimate (95%) 

Lower Upper Length 

Constant 0.0994 - 0.0869 0.1119 0.0250 

Any miscarriage 0.1001 1.1053 0.0973 0.1030 0.0058 

Economic Status 0.1003 1.1055 0.0919 0.1087 0.0168 

Age at Marriage 0.1000 1.1052 0.0973 0.1027 0.0054 

λ  0.1000 1.1052 0.0996 0.1004 0.0008 

 

Table 1: Confidence interval for Maximum Likelihood Estimate 

 

 

Covariates 
Point 

Estimate 

Odds 

ratio 

Credible Interval (95%) 

Lower Upper Length 

Constant 0.0993 - 0.0981 0.1006 0.0025 

Any miscarriage 0.1000 1.1052 0.0988 0.1012 0.0025 

Economic Status 0.1001 1.1053 0.0989 0.1013 0.0025 

Age at Marriage 0.0999 1.1050 0.0987 0.1011 0.0025 

λ  0.0999 1.1050 0.0986 0.1011 0.0025 

 

Table 2: Credible interval for Bayesian estimate under squared error loss function 
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      All covariates that are positively associated with pregnancy complication 

have been presented in Table 1 and Table 2. Lengths of all Baysian credible intervals 

are found to be smaller than the corresponding lengths of maximum likelihood 

confidence intervals. Therefore, Bayes estimator under squared error loss function is 

more preferable than method of maximum likelihood estimator to use estimate the 

parameters of Azzalini model. All the calculations were performed by using R-Software 

(Version-2.10.0). 

 

1. Conclusions 
      Longitudinal data are widely used in various sectors such as medical science, 

social science, biological science etc. For this data, Markov model such as Azzalini 

model has been applied. Two approaches of estimation method viz.  Bayesian approach 

and method of maximum likelihood have been employed for estimating the parameters 

of Azzalini model. Comparisons between Bayesian approach and maximum likelihood 

method have been made and the results show that the length of Bayesian credible 

interval is smaller than the corresponding length of confidence interval. According to 

decision rule, estimate having smaller length of interval is preferable. Thus, Bayesian 

approach under squared error loss function gives better estimate. Estimation is 

important part for decision-making. If Markov model is applied in follow-up data of 

medical science, social science, biological science, it is better to use Bayesian approach 

to estimate the parameters to get more accurate predictions.  
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