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Abstract  
 This article deals with the problem of Bayes and Maximum Likelihood Estimation 

(MLE) of generalized augmented strength reliability of the equipment under Augmentation 

Strategy Plan (ASP), where ASP is suggested for enhancing the strength of weaker / early failed 

equipment under three possible cases. It is assumed that the Inverse Gaussian stress (Y) is 

subjected to equipment having Inverse Gaussian strength (X) and are independent to each other. 

Assuming informative (gamma and inverted gamma) types of priors, the Bayes estimates of 

augmented strength reliability have been computed and compared with that of MLE on the basis 

of mean square errors (mse) and absolute biases. The posterior means under Squared Error Loss 

Function (SELF) as well as Linex Loss Function (LLF) are approximated by using Markov Chain 

Monte Carlo (MCMC). The mse and absolute biases are calculated with 1000 replications of the 

whole simulation process.   
 

Key Words: Stress-Strength Reliability, Inverse Gaussian Distribution, MLE, Bayes 

Estimation, Gamma and Inverted Gamma Priors, MCMC Simulation, Metropolis-Hastings 

Algorithm. 

 

1. Introduction 
The Inverse Gaussian distribution (IGD) is a positively skewed and most 

commonly used life time distribution for time to event analysis and particularly 

considered where the initial failure rate is high. It is also considered as an alternative to 

the Weibull, Lognormal and similar distributions. Cox and Miller (1968) defined the 

Inverse Gaussian as a model in context of the first passage time in Brownian motion. 

Tweedie (1957a, 1957b) and Chhikara and Folks (1974, 1975, 1976, 1977) presented 

various real life applications of IG distribution and also Padgett (1981) described about 

its sampling inferences. According to Johnson et al. (1994), the IG distribution has 

many useful real life applications in various fields e.g. reliability and lifetime data 

analysis, theoretical physics to meteorology, sequential analysis and industrial quality 

control, business applications and so on. The IGD has an attractive property known as 

reproductive property which relates to the application of augmentation strategy plan 

(ASP). The probability density function of two-parameter IGD is given by  
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which, is represented by ( )λµ,IG with mean µ  and variance λµ 3
.  

 

 A number of researchers have  proposed IGD as a life time distribution for life 

time data analysis for reliability and life testing as well as for survival analysis. 

Banerjee and Bhattacharyya (1979), Padgett and Wei (1979), Sherif and Smith (1980) 

and Sinha (1986) have  attempted Bayesian estimation of parameters and reliability 

function of two-parameters IGD for different types of prior distributions.  Padgett 

(1981) attempted the Bayesian estimation of reliability of two-parameter IGD by 

assuming Jeffrey prior and remarked that the choice of Jeffrey prior leads to an 

intractable posterior to estimate the reliability function. Latter on Howlader (1985) 

extended the result of Padgett (1981) and gave an approximate Bayes estimate of 

reliability function of two-parameter IGD using Jeffrey's non informative prior. Ahmad 

and Jaheen (1995) and Pandey and Bandyopadhyay (2013) have approximated the 

Bayes estimate of parameters and reliability function of two-parameter IGD with the 

choice of conjugate informative priors through Lindley and Gibbs sampler methods.  

 

 The problems of stress-strength reliability have been focused by many 

researchers over the last five to six decades for different choices of lifetime 

distributions. One may refer to some of latest literature works on system reliability like 

Sharma et al. (2015) and Sarhan et al. (2015) and references therein. Moreover, the 

two-parameter IGD have also been considered for assessment of stress-strength 

reliability for stochastic systems. Basu and Ebrahimi (1983) introduced a dynamic 

approach to model the time varying system reliability in the presence of stress 

process )(tX , which is faced by the system at time t and the strength process )(tY . In the 

similar fashion Ebrahimi and Ramallingam (1993) and Basu and Lingham (2003) have 

also attempted the problem of modeling system reliability in the presence of stress and 

strength process with Brownian stress-strength model.      

 

 In general, the main focus of statistical reliability theory is to analyze the 

failure time data for reliability prediction and to aware its failure rate and also about 

some unknown characteristics. For any system, there exists two obvious characteristics 

i.e. either the system is reliable or unreliable. For obtaining the sufficient failure data of 

reliable system, the well developed accelerated life testing (see. Nelson 1982) is 

frequently used but so far there is no such strategy or methods available in the existing 

literatures on reliability theory for assessing the unreliable system. It is seen that many 

newly manufactured products or systems being failed at very early stage of its use and 

frequent failures occurs in used one due to poor quality of materials used. Since cost, 

time and manpower are involved in manufacturing the system, hence such products can 

not be wasted and can be reused by considering ASP. Thus, ASP (Chandra and Sen, 

2014) is useful in enhancing the strength reliability and may be protected from 

unwanted early failure; hence enhanced strength of system may sustain to survive its 

usual life. Therefore such equipments may become in a reliable state in a hope to 

survive its usual life. 

 The idea of augmenting strength reliability of equipment under three possible 

cases was proposed by Alam and Roohi (2002) with assumption that the both stress and 
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strength follow exponential life time distribution. Later on after one decade, Chandra 

and Sen (2014)   attempted the augmentation problem for gamma distribution and 

named all the three cases as Augmentation Strategy Plans (ASP). Recently, Chandra 

and Rathaur (2015a) derived the augmented system strength reliability models by 

assuming that the stress and strength are independently and identically distributed as 

inverse Gaussian life distribution and they discovered that the ASP performs effetely in 

order to enhance the system reliability. Chandra and Rathaur (2015b, 2015c) tried the 

augmentation problem for coherent systems when the components are connected in 

series and parallel set up of connections for exponential and gamma lifetime 

distributions respectively. 

 

 In this paper we assume that the stress (Y) and the strength (X) are 

independent and identically distributed random variables which follow two parameter 

Inverse Gaussian (IG) distributions with probability density functions (pdf) of X (or Y) 

given in equation (1). The present work deals with the Bayesian estimation of the 

augmented strength reliability under generalized case of ASP for gamma and inverted 

gamma priors along with its classical counterpart MLE. Two different choices of loss 

functions i.e. symmetric (SELF) and asymmetric (LLF) have been considered for the 

Bayesian estimation and the comparison between both the methods of estimation (i.e. 

Bayes and ML) have been carried out on the basis of mean square errors (mse) and 

absolute biases through Markov Chain Monte Carlo methods of simulation.  

 

 The remaining part of article is organized as follows. In section 2, a 

generalized form of augmented strength reliability models under ASP is presented. In 

section 3, the ML estimators of generalized augmented strength reliability parameters 

under ASP are derived. In section 4, Bayes estimates of generalized augmented strength 

reliability parameters for both the loss functions are derived. In section 5, simulation 

study and discussions have been made on the basis of MCMC samples. Finally in 

section 6, the concluding remarks are given.  

 

2. Augmented Strength Reliability for Generalized case of ASP 
In this section, we introduce the augmented strength reliability model for the 

generalized case of ASP. Under the generalized case of ASP, the system strength is 

increased by adding ‘n’ identical components each having strength ( )iX , which is ‘m’ 

times of the initial random common stress imposed on the equipment, is set to face the 

common stress ( )Y which follows ( )λµ,IG . Thus the increased strength of the 

equipment 
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where, ‘m’ is positive real number and ‘n’ is positive integer. From equation (2), the 

probability density functions of two special cases (case-I, II) of ASP can be obtained by 

substituting 1,1 == nk  and 1,2 == mk  respectively. 

The augmented strength reliability ( )k kR P Z Y= >  for the generalized case of ASP 

is defined as  
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where, (.)erfc is complementary error function and it can also be defined in terms of 

error function. The error function equals the twice of the integral of a normalized 

Gaussian function between 20 σxand , which is defined by  

2

0

2
( ) .

x

terf x e dt
π

−= ∫              (4) 

Thus the complementary error function is given as  

( ) ( )1 .erfc x erf x= −              (5) 

Equation (3) is the more generalized form (i.e. case-III) of augmented strength 

reliability model under ASP.  The expressions for augmented strength reliability of 

other two special cases (case-I and II) can also be obtained by substituting 

1,1 == nk and 1,2 == mk  respectively in equation (3).  

 

3. Maximum Likelihood Estimation of Generalized Augmented Strength 

    Reliability 
This section deals with the maximum likelihood estimation of parameters of 

generalized augmented strength ( )YZPR kk >= , where, 
kZ ; 1,2,3k = stands for 

case-I, II, III respectively, is the augmented random strength and Y  being the common 

random stress imposed on the equipment are independent and identically distributed as 

Inverse Gaussian life time distribution with parameters λµ and . Suppose 

{ }
1

,...,, 21 nkkkk ZZZZ = and { }
2

...,,, 21 nYYYY =  being the two independent 

random samples of sizes 21 and nn  are drawn from the augmented inverse Gaussian 

strength and inverse Gaussian stress distributions respectively. Then likelihood function 

based on the observed random samples is defined as follows 
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The log likelihood equations with respect to µ and λ are given by 
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The maximum likelihood estimators of λµ and  are obtained as 
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Thus the maximum likelihood estimate of generalized augmented strength reliability 

can be obtained by substituting µ̂ and λ̂  in place of λµ and  in the expression of 

.kR  

Remark: The MLE of augmented strength reliability ( )kR  for Cases-I, II and III under 

ASP can be obtained directly by substituting ;1== nk ;1,2 == mk  and 3=k  

respectively in the expression of ˆ
kR .  

 

4. Bayesian Estimation of Generalized Augmenting Strength Reliability 

    Models 
In this section, we consider Bayes estimation of generalized augmenting 

strength reliability ( )3,2,1=kRk  of ASP. In Bayesian paradigm, the model 

parameters are considered as random variables and a distribution is associated with 

them, called as prior distribution. There is no hard and fast rule available in the 

literature for making a choice of prior distributions and thus it is also a tedious task. 

The general ideology behind the choice of such prior is subjective matter, depends on 

personal belief and based on past experiences or the available data from the past 

experiments for same type of situation in the real life. As per our literature study, no 

researcher have reported any real life example behind the choice of priors(s). Berger 

(1985) suggested that if the proper prior information is available, it is better to use the 

informative prior(s) than the non-informative prior(s), which are combined to the 



118 Journal of Reliability and Statistical Studies, December 2016, Vol. 9(2) 118

current information to update the belief regarding a particular characteristic of the data. 

In this study, we consider λµ and  are independent random variables having 

informative (gamma and inverted gamma priors) types of priors. The intension behind 

choosing two informative priors is just to know which of the prior distribution is a 

better choice with greater impacts for Bayesian analysis. 

 

4.1 Assuming Gamma prior distribution 

In this study, considering λµ and  as independent random variables having 

gamma informative type of priors i.e., ( ) ( )1 1 1 1~ , and ~ ,G a b G c dµ λ the joint prior 

probability density function of λµ and  is given by 

( ){ }1 11 1

1 1 1 1 1 1 1( , ) exp ; , 0 ; , , , 0a cg b d a b c dµ λ µ λ µ λ µ λ− −∝ − + > >      (10) 

 

 The hyper-parameters 
1111 and,, dcba of prior density function are assumed 

to be known and are chosen in such a way to reflect the prior belief about the unknown 

parameters. Thus the joint posterior probability distribution of random variables 

λµ and  for generalized case of ASP is obtained by combining both the likelihood 

function ( )λµ ,/dataLk  and the joint prior probability density ),(1 λµg . The joint 

posterior probability distribution under gamma prior is given as  
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The Bayes estimator of generalized augmented strength reliability under squared error 

loss function is given as  
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where, 
kR is the augmented strength reliability model for generalized case of ASP, 

given in equation (3). Under Linex loss function, the Bayes estimate of augmented 

strength reliability ( )3,2,1=kRk for generalized case of ASP is given as  
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The above expressions of Bayes estimators of augmented strength reliability under 

SELF and LLF obtained in (13) and (15) are not in explicit forms and therefore cannot 

be evaluated manually. As an alternatively, numerical approximations through Markov-

Chain Monte-Carlo (MCMC) have been done to evaluate these expressions. 

 

4.2 Assuming Inverted Gamma prior distribution 
We assume that the model parameters λµ and are independent random 

variables which follow inverted gamma prior distribution with hyper-parameters 

( ) ( )2222 ,and, dcba  
respectively. Thus the joint prior probability density function of 

λµ and  is defined as follows  
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Thus the joint posterior distribution of λµ and  can be defined as  
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Thus the Bayes estimate of generalized augmented strength reliability under ASP for 

square error loss function is defined by 
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Under Linex Loss function, the Bayes estimator (
llf

kR̂ ) of generalized augmented 

strength reliability of ASP is given as   
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 Here it is observed that in each of the selected prior cases, the joint posterior 

densities are not in any known distributional form and therefore finding the posterior 

expectations of generalized augmented strength reliability )( kR  is also complicated. 

Thus the analytical evaluation is impossible. In this situation, the Markov Chain Monte 

Carlo (MCMC) sampling method can be used to approximate these integrals (see; 

Brook, 1998). In order to approximate the above integrals for finding the Bayes 

estimates; we have used the Metropolis-Hastings (MH) algorithm to sample from the 

marginal posterior distributions. The following are the methodology for carrying out the 

approximations of posterior mean of generalized augmented strength reliability through 

the M-H algorithm.    

Hence, the Bayes estimator under SELF (
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kR̂ ) of kR under this sampling procedure 
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where, )3,2,1( =kRk  is the generalized augmented strength reliability model for general 

case of ASP and )...,,2,1(and Niii =λµ  are the random samples drawn from the 

marginal posterior distributions of λµ and  respectively through M-H algorithm.  

 

5. Simulation Study and Discussion 
In this section, the validation and comparison of the different methods of 

estimators (ML and Bayes) has been done through simulation study for different 

combinations of sample sizes and stress-strength reliability parameters with 1000 

replications. The Bayes estimators of generalized augmented strength reliability for two 

different loss functions (i.e. SELF and LLF) under gamma and inverted gamma priors 

have been compared with that of ML estimators through their mean square errors and 

absolute biases.  It may be noticed that the expressions of posterior expectations for 

both the priors are not in closed form, thus to find out numerical evaluation, MCMC 

technique viz. Metropolis-Hastings algorithm (Hasting, 1970) has been used for 

drawing the sample from the arbitrary posterior distribution.  For generating a random 

sample of size N (say) from a density function (.)f  
through Metropolis-Hastings 

algorithm, the following steps are given:     

Step 1: set j=1 and establish starting value for the parameter 
)0(θ such that ( ) 0)0( >θf . 
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Step 2: Draw a ‘candidate’ parameter 
cθ from a proposal density say (.)α . 

Step 3: Compute the ratio  
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Step 4: Generate ‘U’ uniform variate on range 0 and 1 i.e. )1,0(~Uu  . 

Step 5: If ),1min( Ru ≤ , accept the candidate point with probability ),1min( R , 

otherwise set  
1−= jj θθ  . 

Step 6: Repeat steps 2-5 for all Nj ...,,2,1= and obtained
)()2()1( ...,,, Nθθθ . 

 

 To evaluate the Bayes estimate of augmented strength reliability model five 

thousand random samples have been drawn by following the above steps of Metropolis-

Hastings algorithm by considering asymptotic normal distribution as proposal 

distribution. 

 The following given tables 1, 2, 3 and 4 contain the average estimates, MSE 

and absolute biases for MLE and Bayes estimates for gamma as well as inverted 

gamma prior under each of SELF and LLF of generalized augmented strength 

reliability under ASP for different values of stress-strength reliability 

parameters mn and,,λµ  and the sample sizes ( )21 , nn  by fixing the hyper-parameters 

1 2 0.50;a a= =  
1 2 0.25;b b= = 1 2 1 20.35; 0.75c c d d= = = = . The following 

observations are made based on the given tables. 

∗ In Table 1, the effect of variation of )5.6,5.4,5.2(µ  
have been presented for 

the fixed value of other model parameters 2.5; 2m nλ = = = . It is observed 

from the table that the Bayes estimate of augmented strength reliability for 

generalized case of ASP gives better result than that of MLE on the basis of 

MSE and absolute biases. In comparison between the Bayes estimate for both 

the priors, it is noticed that the Bayes estimate for gamma prior under square 

error loss function has the minimum mean square error and absolute biases. It 

may also be noticed that the mean square errors and absolute biases gradually 

decrease for the increasing values of sample sizes ( )21 , nn  .       

∗ The variation of (1.5, 4.5)λ has been reported by fixing rest model parameters 

3.5; 2m nµ = = = in Table 2.  It may be noticed from the table that the true 

augmented strength reliability increases with increasing value of λ . Bayes 

estimates for gamma prior under SELF and LLF gives the more precise 

estimate than that of other estimators. The pattern of MSE and absolute biases 

are decreasing in nature for increasing values of sample sizes. Overall, Bayes 

estimates perform better in comparison with MLE on the basis of mean square 

errors and absolute biases. 

∗ In Table 3, the variation of (2,4,8)n have been shown by fixing other model 

parameters 3.5; 2.5; 2mµ λ= = =  and it is observed that the true generalized 
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augmented strength reliability increases with increasing values of  n (number 

of added components), i.e. the strength reliability is enhanced  by adding more 

components. It may be observed from the table that the Bayes estimators gives 

better result than MLE for small value of (2)n but for large (4,8)n the MLE 

gives better result than that of Bayes estimators.  

 

∗ Table 4 presents the variation of (5,7)m by keeping other parameters constant 

3.5; 2.5; 2nµ λ= = =  and it is observed that the augmented strength 

reliability approaches 99% for higher values of .m  It is also noticed that the 

Bayes estimate for gamma prior under SELF performs better among other 

estimators for small value of (5)m  but for higher values of (7)m , the MLE 

performs better. It may also be noticed that the mean square errors and 

absolute biases gradually decrease for increasing values of sample sizes.  

 

µ = 2.5, R = 0.9154851  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.92752 0.92233 0.92192 0.92501 0.92462 

MSE 0.00074 0.00054 0.00055 0.00060 0.00061 

Abs. bias 0.00249 0.00271 0.00311 0.00002 0.00041 

(10,30) 

Avg. 0.91648 0.91393 0.91366 0.91564 0.91538 

MSE 0.00050 0.00043 0.00043 0.00044 0.00044 

Abs. bias 0.00099 0.00156 0.00183 0.00015 0.00010 

(20,30) 

Avg. 0.92875 0.92615 0.92598 0.92756 0.92739 

MSE 0.00031 0.00027 0.00028 0.00028 0.00028 

Abs. bias 0.00155 0.00105 0.00122 0.00036 0.00019 

(30,20) 

Avg. 0.92594 0.92361 0.92345 0.92481 0.92466 

MSE 0.00029 0.00026 0.00026 0.00027 0.00027 

Abs. bias 0.00087 0.00147 0.00162 0.00026 0.00041 

(50,50) 

Avg. 0.92640 0.92494 0.92486 0.92572 0.92564 

MSE 0.00015 0.00014 0.00014 0.00014 0.00014 

Abs. bias 0.00085 0.00060 0.00069 0.00017 0.00009 

µ = 4.5, R = 0.8859389  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.88839 0.89667 0.89624 0.89300 0.89251 

MSE 0.00106 0.00068 0.00068 0.00083 0.00083 

Abs. bias 0.00126 0.00955 0.00912 0.00587 0.00538 

(10,30) 

Avg. 0.89516 0.89901 0.89873 0.89740 0.89710 

MSE 0.00067 0.00052 0.00052 0.00058 0.00059 

Abs. bias 0.00189 0.00574 0.00546 0.00413 0.00383 

(20,30) 

Avg. 0.88720 0.89035 0.89013 0.88929 0.88906 

MSE 0.00050 0.00041 0.00041 0.00045 0.00045 

Abs. bias 0.00126 0.00441 0.00419 0.00335 0.00312 
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(30,20) 

Avg. 0.88497 0.88796 0.88775 0.88683 0.88662 

Mse 0.00046 0.00039 0.00039 0.00042 0.00042 

Abs. bias 0.00152 0.00451 0.00430 0.00338 0.00317 

(50,50) 

Avg. 0.88591 0.88741 0.88730 0.88684 0.88673 

MSE 0.00023 0.00021 0.00021 0.00022 0.00022 

Abs. bias 0.00053 0.00097 0.00086 0.00040 0.00029 

µ = 6.5, R = 0.8585458  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.86145 0.88125 0.88081 0.87110 0.87054 

MSE 0.00148 0.00121 0.00120 0.00125 0.00124 

Abs. bias 0.00291 0.02270 0.02227 0.01256 0.01199 

(10,30) 

Avg. 0.86839 0.87901 0.87872 0.87370 0.87336 

MSE 0.00080 0.00071 0.00071 0.00074 0.00073 

Abs. bias 0.00345 0.01407 0.01378 0.00876 0.00842 

(20,30) 

Avg. 0.87368 0.88146 0.88124 0.87759 0.87734 

MSE 0.00054 0.00049 0.00048 0.00050 0.00050 

Abs. bias 0.00244 0.01022 0.01000 0.00635 0.00610 

(30,20) 

Avg. 0.86686 0.87451 0.87430 0.87071 0.87048 

MSE 0.00054 0.00046 0.00046 0.00049 0.00049 

Abs. bias 0.00083 0.00848 0.00827 0.00468 0.00445 

(50,50) 

Avg. 0.86143 0.86560 0.86548 0.86356 0.86343 

MSE 0.00027 0.00026 0.00026 0.00026 0.00026 

Abs. bias 0.00185 0.00602 0.00590 0.00398 0.00385 

 

Table 1: AVG, MSE and Abs. Bias for estimates of 
kR for variation of µ  

                        when λ = 2.5;m = n = 2 . 

 

,λ = 1.5 R = 0.8795406  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.88260 0.89075 0.89030 0.88850 0.88801 

MSE 0.00119 0.00084 0.00084 0.00098 0.00098 

Abs. bias 0.00306 0.01121 0.01076 0.00896 0.00847 

(10,30) 

Avg. 0.87138 0.87683 0.87651 0.87594 0.87560 

MSE 0.00078 0.00064 0.00064 0.00071 0.00070 

Abs. bias 0.00189 0.00734 0.00702 0.00645 0.00611 

(20,30) 

Avg. 0.86535 0.86975 0.86949 0.86898 0.86871 

MSE 0.00057 0.00048 0.00048 0.00051 0.00051 

Abs. bias 0.00093 0.00533 0.00508 0.00456 0.00430 

(30,20) 

Avg. 0.87484 0.87830 0.87808 0.87772 0.87749 

MSE 0.00048 0.00040 0.00040 0.00044 0.00044 

Abs. bias 0.00060 0.00406 0.00384 0.00347 0.00324 

(50,50) 

Avg. 0.87610 0.87793 0.87782 0.87775 0.87763 

MSE 0.00023 0.00021 0.00021 0.00022 0.00022 

Abs. bias 0.00166 0.00349 0.00338 0.00330 0.00319 
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,λ = 4.5 R = 0.9416981  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.94355 0.93470 0.93435 0.93889 0.93856 

MSE 0.00053 0.00043 0.00044 0.00046 0.00047 

Abs. bias 0.00186 0.00699 0.00735 0.00281 0.00313 

(10,30) 

Avg. 0.93962 0.93486 0.93465 0.93725 0.93705 

Mse 0.00035 0.00031 0.00031 0.00032 0.00032 

Abs. bias 0.00109 0.00367 0.00388 0.00129 0.00148 

(20,30) 

Avg. 0.94012 0.93598 0.93583 0.93807 0.93793 

MSE 0.00026 0.00025 0.00025 0.00025 0.00025 

Abs. bias 0.00018 0.00396 0.00411 0.00187 0.00201 

(30,20) 

Avg. 0.94204 0.93777 0.93764 0.93984 0.93972 

MSE 0.00022 0.00021 0.00022 0.00022 0.00022 

Abs. bias 0.00044 0.00383 0.00396 0.00176 0.00188 

(50,50) 

Avg. 0.94351 0.94111 0.94105 0.94235 0.94229 

MSE 0.00012 0.00011 0.00011 0.00011 0.00011 

Abs. bias 0.00028 0.00212 0.00218 0.00088 0.00094 

 

Table 2: AVG, MSE and Abs. Bias for estimates of 
kR for variation of λ  

                       when µ = 3.5;m = n = 2 . 

 

n = 2, R = 0.8985011          

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.906292 0.907458 0.907018 0.907341 0.906879 

MSE 0.000999 0.000641 0.000642 0.000780 0.000784 

Abs. bias 0.003801 0.004968 0.004527 0.004850 0.004389 

(10,30) 

Avg. 0.896346 0.897823 0.897517 0.897756 0.897443 

MSE 0.000715 0.000558 0.000560 0.000612 0.000615 

Abs. bias 0.000461 0.001938 0.001632 0.001871 0.001558 

(20,30) 

Avg. 0.906355 0.906816 0.906618 0.907002 0.906803 

MSE 0.000396 0.000328 0.000329 0.000354 0.000355 

Abs. bias 0.001662 0.002122 0.001924 0.002308 0.002110 

(30,20) 

Avg. 0.901272 0.901793 0.901612 0.901935 0.901754 

MSE 0.000380 0.000315 0.000316 0.000340 0.000341 

Abs. bias 0.000512 0.001034 0.000852 0.001175 0.000994 

(50,50) 

Avg. 0.898563 0.898759 0.898656 0.898894 0.898790 

MSE 0.000209 0.000190 0.000191 0.000198 0.000198 

Abs. bias 0.000062 0.000258 0.000154 0.000393 0.000289 

  n = 4, R = 0.9832689  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 
Avg. 0.983279 0.977953 0.977877 0.979624 0.979550 

MSE 0.000092 0.000107 0.000109 0.000103 0.000104 
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Abs. bias 0.000359 0.004967 0.005043 0.003296 0.003369 

(10,30) 

Avg. 0.983989 0.981101 0.981057 0.981996 0.981955 

MSE 0.000057 0.000062 0.000062 0.000060 0.000060 

Abs. bias 0.000343 0.002545 0.002589 0.001650 0.001691 

(20,30) 

Avg. 0.985159 0.982782 0.982756 0.983589 0.983565 

MSE 0.000033 0.000038 0.000039 0.000036 0.000036 

Abs. bias 0.000297 0.002079 0.002105 0.001272 0.001296 

(30,20) 

Avg. 0.984799 0.982527 0.982506 0.983268 0.983249 

MSE 0.000030 0.000034 0.000034 0.000033 0.000033 

Abs. bias 0.000234 0.002037 0.002058 0.001296 0.001316 

(50,50) 

Avg. 0.983049 0.981854 0.981843 0.982266 0.982255 

MSE 0.000019 0.000020 0.000021 0.000020 0.000020 

Abs. bias 0.000220 0.001415 0.001426 0.001003 0.001014 

n = 8, R = 0.9991268  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.9990054 0.9973309 0.9973261 0.9978666 0.9978629 

MSE 0.0000013 0.0000064 0.0000065 0.0000043 0.0000044 

Abs. bias 0.0001214 0.0017960 0.0018007 0.0012602 0.0012639 

(10,30) 

Avg. 0.9989527 0.9981277 0.9981258 0.9983415 0.9983399 

MSE 0.0000009 0.0000027 0.0000028 0.0000022 0.0000022 

Abs. bias 0.0001576 0.0009826 0.0009844 0.0007687 0.0007703 

 

(20,30) 

Avg. 0.9991059 0.9985328 0.9985320 0.9986928 0.9986921 

MSE 0.0000005 0.0000014 0.0000014 0.0000011 0.0000011 

Abs. bias 0.0001310 0.0007041 0.0007049 0.0005441 0.0005448 

(30,20) 

Avg. 0.9990842 0.9985520 0.9985514 0.9987098 0.9987093 

MSE 0.0000004 0.0000010 0.0000010 0.0000007 0.0000007 

Abs. bias 0.0000580 0.0005902 0.0005908 0.0004324 0.0004329 

(50,50) 

Avg. 0.9991221 0.9988631 0.9988629 0.9989387 0.9989385 

MSE 0.0000002 0.0000003 0.0000003 0.0000003 0.0000003 

Abs. bias 0.0000189 0.0002779 0.0002781 0.0002023 0.0002025 

 

Table 3: AVG, MSE and Abs. Bias for estimates of 
kR for variation of n  

                       when ,µ = 3.5 λ = 2.5;m = 2 . 

 

m = 5, R = 0.9808704  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.981476 0.977237 0.977140 0.978389 0.978288 

MSE 0.000125 0.000112 0.000114 0.000122 0.000124 

Abs. bias 0.000605 0.003633 0.003731 0.002481 0.002582 

(10,30) 

Avg. 0.978836 0.976402 0.976339 0.977115 0.977052 

MSE 0.000094 0.000091 0.000092 0.000093 0.000094 

Abs. bias 0.000152 0.002586 0.002649 0.001874 0.001937 

(20,30) 
Avg. 0.979773 0.977745 0.977703 0.978387 0.978347 

MSE 0.000063 0.000064 0.000065 0.000064 0.000064 
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Abs. bias 0.000210 0.002237 0.002279 0.001596 0.001636 

(30,20) 

Avg. 0.982698 0.980650 0.980618 0.981282 0.981251 

MSE 0.000048 0.000049 0.000049 0.000049 0.000049 

Abs. bias 0.000142 0.001905 0.001937 0.001273 0.001305 

(50,50) 

Avg. 0.980373 0.979346 0.979330 0.979686 0.979670 

MSE 0.000027 0.000028 0.000028 0.000027 0.000027 

Abs. bias 0.000059 0.000968 0.000984 0.000628 0.000644 

m = 7, R = 0.99035  

1 2( , )n n  Statistic MLE 
Gamma prior Inverted gamma prior 

SELF LLF SELF LLF 

(10,10) 

Avg. 0.990303 0.986837 0.986789 0.987640 0.987589 

MSE 0.000047 0.000057 0.000058 0.000058 0.000059 

Abs. bias 0.000047 0.003513 0.003561 0.002710 0.002761 

(10,30) 

Avg. 0.991388 0.989266 0.989241 0.989791 0.989766 

MSE 0.000027 0.000034 0.000034 0.000033 0.000033 

Abs. bias 0.000173 0.002295 0.002320 0.001769 0.001794 

(20,30) 

Avg. 0.990084 0.988534 0.988517 0.988941 0.988924 

MSE 0.000023 0.000027 0.000027 0.000026 0.000026 

Abs. bias 0.000376 0.001926 0.001943 0.001519 0.001536 

(30,20) 

Avg. 0.989655 0.988081 0.988066 0.988497 0.988482 

MSE 0.000019 0.000022 0.000022 0.000022 0.000022 

Abs. bias 0.000004 0.001578 0.001593 0.001162 0.001177 

(50,50) 

Avg. 0.991415 0.990602 0.990596 0.990845 0.990839 

MSE 0.000009 0.000010 0.000010 0.000010 0.000010 

Abs. bias 0.000096 0.000909 0.000915 0.000666 0.000672 

 

Table 4: AVG, MSE and Abs. Bias for estimates of 
kR for variation of m 

                       when ,µ = 3.5 λ = 2.5;n = 2 . 

 

6. Concluding Remarks 

 In this article, Bayesian estimation of generalized augmenting strength 

reliability parameters of inverse Gaussian distribution under ASP based on independent 

gamma and inverted gamma family of informative priors using symmetric and 

asymmetric loss functions is studied. The Bayes estimators augmenting strength 

reliability are compared with that of MLE. A simulation study is carried out to study the 

behavior of proposed estimators of augmenting strength reliability under various 

combinations of sample sizes 1 2( , )n n  and model parameters including hyper 

parameters.    

  

 The simulation results given in tables suggest that the performance of the 

proposed Bayes estimates of augmented strength reliability based on informative priors 

perform better than ML estimates. It is also observed that the strength reliability of the 

system get enhanced by adding some desired level of components. Thus the ASP is 

suggestive for practical purposes in order to enhance the strength of weaker or failed 

systems.        
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