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Abstract 
               The intent of this paper is to discuss a reliability calculation technique, using Markov 

modeling of a parallel redundant system which can be repairable or non-repairable. In this paper, 

we will use Markov Modeling technique to provide the derivation for the mean-time-to-failure 

(non-repairable system) or mean-time-between-failure (repairable system) of a parallel redundant 

system, with different unit failure or repair rate, to evaluate the reliability and dependability of a 

parallel operative redundant system.  
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1. Introduction 
 In this paper, we introduce a reliability calculation methodology using Markov 

Modeling, and apply it to the reliability calculation of a parallel redundant system with 

different failure rate and repair rate. In the reliability regime, systems generally can be 

grouped into two categories: repairable or non-repairable. For repairable systems the 

measure of interest is often mean-time-between-failure (MTBF) and for non-repairable 

systems (e.g. Space system), the measure of interest is often mean-time-to-failure 

(MTTF) (the first failure). 

 

 Markov Modeling is a useful and powerful analysis technique with 

applications in systems which vary discretely or continuously with respect to time (or 

space in some case). In reliability we are generally concerned with continuous time, 

discrete state models. These systems are characterized by randomly varying stochastic 

processes. Stochastic processes must have two important properties in order for them to 

be modelled with the Markov approach: 1) memoryless; 2) stationary. A memoryless 

system is characterized by the fact that the future state of the system depends only on its 

present state; a stationary system is one in which the probabilities which govern the 

transitions from state to state remain constant with time (i.e. constant failure rate or 

repair rate). 

 

 Markov Modeling utilizes state transition diagrams to describe the various 

sequences of states, and rates of transitions between states to calculate or approximate 

the probability of being in any particular system state. The states of the model are 
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defined by the system unit failures and how they are maintained. The transitional 

probabilities between states are a function of the failure rates and repair rates (for 

repairable system) of the various system units. A set of first-order differential equations 

are developed by describing the probability of being in each state in terms of the 

transitional probabilities from and to each state. The number of first-order differential 

equations will equal the number of states of the model. The Markov model is 

implemented to determine the probability of being in a given discrete state at a given 

time. By adding up the probabilities of discrete states that represents system success, 

the reliability of the system can be determined.  
 

2. Application of Coverage to Markov Modeling 
 In redundant system modeling we generally consider three Markov element 

states: good, failed covered, and failed uncovered. Covered and uncovered markov 

element states are mutually exclusive meaning that an element cannot fail both covered 

and uncovered. System coverage is generally defined in terms of the conditional 

probability. 

 

 When computing coverage for Markov model elements we are concerned with 

that portion of the Markov element failure rate that is detectable and isolatable. 

Reconfiguration becomes a function of what resources are available at the time the 

failure occurs. 

 

 Figure 1 gives an example of how coverage is used in the Markov model. In 

this case if either fan fails covered, the other fan has the ability to take over full cooling 

function. However, if either fan fails uncovered, system failure occurs. The Markov 

model for this example appears in Figure 2. Note that once state two is entered, no 

resources are available and both the covered and uncovered portions of the remaining 

fans failure rate are routed to system failure. 

 

 
Figure 1: Markov Model Elements Example 

 

 
Figure 2: Coverage Example 
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3. Non-repairable parallel redundant units with different failure rate 

 In order to illustrate how the Markov model equations are developed, we 

assume an operative redundant system which is made of two units as shown in Figure 3. 

System success is defined as one of the two units (unit 1 or unit 2) must be working. In 

the following model, state one is the initial state where unit 1 and unit 2 are both 

operating properly. State two and three are the states where one unit has failed, the 

remaining unit is still working to keep the system operational (success). System only 

fails if both unit 1 and unit 2 fail to meet the system operational requirement. State four 

is reached when unit 1 and unit 2 have both failed. An assumption used in developing 

state transition diagram is that unit 1 and unit 2 cannot change states simultaneously. 

 

 
Figure 3: Non-repairable system state transition diagram 

 

For state one: 

 

The probability of being in state one at time t+∆t is equal to the probability of being in 

state one at time t and not transitioning out during ∆t. This can be written as: 
 

                                                                                           (1) 

 

Rearranging by moving P1 (t) from the right-hand side to left-hand side, and dividing ∆t 

on the both sides of equation (1) to obtain equation (2): 
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Taking Laplace transform to transform the differential equation (2) into the algebraic 

equation (3): 

 

)()()0()( 12111 sPPssP λλ +−=−                         (3) 

 

The boundary condition at time equal zero P1 (0) =1 (both units are operational): 
 

)()(1)( 1211 sPssP λλ +−=−                                        (4) 
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Taking the inverse Laplace transform for P1 (s) in equation (5) to obtain P1 (t) in 

equation (6): 
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For state two: 

 

 The probability of being in state two at time t+∆t is equal to the probability of 

being in state one at time t and transitioning to state two in ∆t plus the probability of 

being in state two at time t and not transitioning out during ∆t. This can be written as: 
 

( )ttPttPttP ∆−⋅+∆⋅⋅=∆+ 22112 1)()()( λλ                      (7) 

 

Rearranging by moving P2 (t) from the right-hand side to left-hand side, and dividing ∆t 

on the both sides of equation (7) to obtain equation (8): 
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Taking Laplace transform to transform the differential equation (8) into the algebraic 

equation (9): 
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The boundary condition of P2 (0) =0, and substitute into the equation (9): 
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Taking the inverse Laplace transform for P2 (s) to obtain P2 (t): 
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The same approach applies to the state three probability equation P3 (t): 
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The reliability function depends on the state one, state two and state three as we define 

the system success is at least one of two units must be working: 
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Simplifying to obtain the equation (15): 
 

ttt
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 The Mean Time To Failure (MTTF) is the integral from time zero to infinity of 

the reliability function of the system. Here, the reliability of the system is defined by 

state one, state two and state three. State four is the failed condition. Consequently, we 

can write the MTTF: 
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This MTTF equation has the same result as the equation 5 in Table 6.2 -3, Page 161, 

Reliability Toolkit: Commercial Practices Edition published by Reliability Analysis 

Center [4]: 
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 The difference between these two equations are: the equation (16) calculates 

the expected time (MTTF) whereas equation 5 calculates the effective failure rate λ. 

 

 The above-mentioned MTTF equation (16) can also be verified by the 

following Binomial distribution reliability modeling process. The basic steps involved 

in developing this type of reliability modeling are to first define what is required for 

mission success and second to define the probability of being in each possible operating 

state (good or failed). The probability of successful operation is the sum of the 

probability of being in a good state. 

 

 

State Unit 1 Unit 2 System state 

1 Good Good Success 

2 Failed Good Success 

3 Good Failed Success 

4 Failed Failed down 

 

Table 1: System operating state 

 

The reliability function in the exponential case is t
etR

λ−=)( , where λ is the failure rate 

and t is the period of time over which reliability is measured. The probability of failure 

(Unreliability) is equal to t
etR

λ−−=− 1)(1 . Then t
e

λ−  and t
e

λ−−1  are substituted in 

the above Table 1 and simplified as shown in the following Table 2: 
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State Unit 1 Unit 2 Probability of being in state 
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Table 2: Probability of being in state 

 
The probability of successful system operation is equal to the sum of probability of 

being in state1, 2 and 3 in the above Table 2, and is expressed as: 
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We can write the MTTF: 
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              (18) 

 

We notice that equation (18) is the same as equation (16). 

 

Note that when unit 1 and unit 2 have the same failure rate, we have the following 

familiar equation: 
 

λ2

3
=MTTF                       (19) 

 

4. Repairable parallel redundant units with different failure rate and 

repair rate 

 In the last section, we discussed the non-repairable parallel redundant 

system with different failure rate. In this section we will discuss the repairable parallel 

redundant system with different failure rate and repair rate.  

 

 A state transition diagram is usually developed to illustrate the connecting 

link and mathematical relationship among each discrete state as shown in in Figure 4. 

The additional characteristic of this model of repairable parallel redundant system in 

Figure 4, compared with the model of the non-repairable parallel redundant system in 

Figure 3, is that when unit 1 or unit 2 has failed in the sequential state 2 or 3, a 

corrective maintenance will be commenced to repair the failed unit which is represented 

by the repair rate µ in the model. 
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Figure 4: Repairable system state transition diagram 
 

A transition matrix is developed to illustrate the mathematical function link among each 

sequential state in order to develop a set of first-order differential equations which 

describe the probability of being in each state. From the state diagram in Figure 4, we 

can write the transition matrix directly as given below: 
 

 1’ 2’ 3’ 4’ 

1 1-(λ1+λ2) λ1 λ2 0 

2 µ1 1-(λ2+µ1) 0 λ2 

3 µ2 0 1-(λ1+µ2) λ1 

4 0 0 0 1 

 

 

From the transition matrix, we can write the probability equation of state two: 
 

( )2 1 1 2 2 1( ) ( ) ( ) 1P t t P t t P t tλ λ µ + ∆ = ⋅ ⋅∆ + ⋅ − + ⋅∆                     (20) 

 

Rearranging by moving P2 (t) from the right-hand side to left-hand side, and dividing ∆t 

on both sides of equation (20): 
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By integrating equation (21), we obtain: 
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( ) ( ) ( )2 2 1 1 2 1 20P P T Tλ λ µ∞ − = ⋅ − + ⋅                                                                                  (23) 

 

Where, the boundary condition: 
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Note that the boundary condition is equal to one at the state of P1 (0) or P4 (∞), and zero 

at all other states. 
 

T1 is defined as the expected time in state one, and T2 is the expected time in state two. 
 

1
2 1
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λ

λ µ
=

+
                    (24) 

 

We can write the probability equation of state 3 using the same approach and obtain: 
 

2
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                                   (25) 

 

The probability equation of state four uses the same approach and obtain: 
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Rearranging by moving P4 (t) from the right-hand side to left-hand side, and dividing ∆t 

on the both sides of equation (26): 
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By integrating equation (27), we obtain: 
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Where, the boundary condition: 
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Substituting the boundary condition into equation (29): 
 

2 2 1 31 0 T Tλ λ− = ⋅ + ⋅                                                                                                              (30) 

 

We can substitute T2 in equation (24) and T3 in equation (25) directly into the above 

equation (30) and solve T1 as follows: 
 

1 2 1 2
1 1

2 1 1 2
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= +
+ +

                  (31) 

 

Solving T1: 
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 Here, the success of the system is defined by state one, state two and state 

three. State four is the failed condition. Consequently, we can write the MTBF. The 

MTBF would be defined as the sum of the expected time in state one, two and three.  

Mathematically, this can be written as: 
 

1 2
1 2 3 1
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1MTBF T T T T
λ λ
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Rearranging to obtain: 
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Substituting T1 from equation (32) into (34): 
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                                     (35) 

 

Note that when unit 1 and unit 2 have the same failure rate and repair rate, we have the 

following familiar equation (36): 
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λ
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In practice, 2 2
1 2 1 2( )λ λ λ λ+ +  is much smaller than 2122122111 µµµλµλµλµλ ++++ . 

Therefore, we could take 2 2
1 2 1 2( )λ λ λ λ+ +   out of the MTBF equation (35) and obtain 

the following approximation equation (37): 
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 This MTBF equation (37) has the same result as equation 2 in Table 6.2-3, 

Reliability Toolkit: Commercial Practice Edition [4]: 
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 The difference between these two equations is that equation (37) calculates the 

expected time (MTBF), and equation 2 calculates the effective failure rate λ. 
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5. Conclusion 
 Markov Modeling is a useful and powerful modeling and analysis technique 

with applications in reliability analyses that are time-based. The reliability 

characteristics or behavior of a system is characterized using a state transition diagram, 

which consists of a set of discrete states that the system can be in, and defines the rate 

at which transitions between those states occur. As such, Markov models consist of 

possible chains of events that are representations of the sequences of failures, and in 

some cases repairs that are used to approximate the reliability and dependability of a 

system. The Markov model is analyzed to determine the probability of being in a given 

discrete state at a given time. By adding up the probabilities of discrete states that 

represent system success to determine the reliability and dependability of a system. 

 The specific equations derived in this paper (i.e. 
1 2 1 2

1 1 1
MTTF

λ λ λ λ
= + −

+
 

for the non-repairable parallel redundant system with different failure rate, and 

( )
1 2 1 2 1 2

1 2 1 2 1 2

( )( )
MTBF

µ µ λ λ µ µ
λ λ λ λ µ µ

+ + +
=

+ + +
for the repairable parallel redundant system with 

different failure rate and repair rate) can be used in the common reliability 

approximation practice. 
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