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Abstract 
In this paper, the failure intensity has been characterized by one parameter length 

biased exponential class Software Reliability Growth Model (SRGM) considering the Poisson 

process of occurrence of software failures. This proposed length biased exponential class model 

is a function of parameters namely; total number of failures θ� and scale parameter θ�. It is 

assumed that very little or no information is available about both these parameters. The Bayes 

estimators for parameters θ�	and θ� have been obtained using non-informative priors for each 

parameter under square error loss function. The Monte Carlo simulation technique is used to 

study the performance of proposed Bayes estimators against their corresponding maximum 

likelihood estimators on the basis of risk efficiencies. It is concluded that both the proposed 

Bayes estimators of total number of failures and scale parameter perform well for proper choice 

of execution time. 

 

Key Words: Binomial Process, Non-Informative Prior, Maximum Likelihood Estimator 

(MLE), Rayleigh Class, Software Reliability Growth Model (SRGM), Incomplete Gamma 

Function, Confluent Hypergeometric Function.  
 

1. Introduction 
 This paper considers Poisson type length biased exponential class model as per 

classification scheme of Musa and Okumoto (1984) developed for software reliability 

models. If we consider the whole program as a single entity to be executed then it takes 

very long time for execution (i.e. in months or years) for the real time system. Musa et 

al. (1987) have suggested that it is convenient to divide the whole program into number 

of runs. The nature and size of the run is depending on the function which is executed 

by the program. The runs are identical repetitions of each other termed as run type. 

Therefore, the time required for the execution of run type is depending upon the size of 

run. Thus, the number of failures observed in single run may vary as the size of run 

varies. Hence the length biased distribution defined by Fisher (1934) and formalized by 

Rao (1965) can be introduced as SRGM. These distributions have also been applied in 

reliability theory (cf. Gupta and Keating (1986), Gupta and Tripathi (1990) and Khatree 

(1989)). 
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Here, it is considered that the failure experienced by time � is distributed as Poisson 

(i.e. Type) and time to failure of an individual fault following length biased exponential 

distribution (i.e. Class). In other words, the functional form of failure intensity in this 

class can be described by length biased exponential distribution. In this model, it is 

assumed that the software failures are independent of each other but depend on length 

of time interval which contains the same software failures. In this paper, Bayes 

estimators for the parameters are obtained using the technique of Musa et al. (1987) 

(see also Singh et al. (2009) and Singh and Andure (2008)) for this model considering 

non-informative priors and they are compared with MLEs in further sections. 

 
2. Model Formulation 
 Considering time to failure following length biased exponential Class with 

parameter �� and Poisson occurrence (type) of software failure i.e. 

 ���	 = 	 ��������� 	; 	� > 0, �� > 0, �[�] 	≠ 00														; 																��ℎ����									  .        (1) 

where ���	 denotes the length biased exponential distribution and �� is scale parameter 

of the distribution. Assuming that the total number of faults remaining in the program at 

time � = 0 is a Poisson random variable with mean ��, the failure intensity !��	 =�����	 (cf. [7]) can be obtained as  !��	 = ���������� ; � > 0, �� > 0 �� > 0        (2)  

 

The parameter �� can also be define as number of failures present initially in 

the software i.e. at time �� = 0. The random variables i.e. failures experienced "��	 
with an average #��$	 = ��%��	 upto execution time �$ can be obtained as  

 #��$	 = ��&1 − �1 + ���$	����*+; 	� > 0, �� > 0 �� > 0        (3) 

 

The probability of getting "��	 = , number of failures experienced by time �$ can be 

obtained by Poisson density with mean  #��$	 (cf. [7]), 

 -["��	 = ,] = .�/&����0���*	$12�3*+45$67.�/&����0���*	$12�3*+4
8!        (4) 

 

Following figures show the behavior of !��	 and #��$	. 
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Fig. 1: Behavior of failure intensity :�;	 and expected number of failures <�;=	 for 

fixed >?�= @?	, different values of >A�= ?. C, A. ?�A. ?	D. ?	and ;=�= A�A	A??	 
 

 

 
Fig. 2: Behaviour of failure intensity :�;	and expected number of failures <�;=	for 

fixed >A�= A. ?	, different values of  >?�= A?�A?	C?	 and ;=�= A�A	C?	. 
 

The behavior of !��	 and #��$	 are studied by plotting the graphs between 

failure times !��	 and ;= as well as #��$	 and	;= considering different values of ���= 0.5,1.0�1.0	5.0	 for fixed �� = 30 and ���= 10�10		50	 for fixed �� = 1.0 

which are presented in Figure-1 and Figure-2 respectively. Some of the important 

observations are presented here. 

 

Failure intensity	!��	 is very high for the smaller values of ��, becoming 

unimodal positively skewed and for larger values of �� > 1.0 and fixed �� = 30 ( see 

Figure-1). The expected number of failures are large for smaller values of failure rate ��. The Figure-2 shows that the failure intensity !��	 is less sensitive for increasing 

values of ���= 10�10	50	 and fixed �� = 1.0. The slope of failure intensity and 
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expected number of failures remains similar for increasing values of �� and fixed �� = 1.0. 

 

3. Maximum Likelihood Estimation 
Now, assuming that ,$ failures are experienced at times �I, � = 1,2, … ,,$ up 

to execution time is �$ (≥ �8*) and the likelihood function of �� and �� can be obtained 

as L���, ��	 = .∏ !��I	8*IN� 4exp	�−#��$		  (cf. Musa et al. (1987)). Using the above 

failure intensity function given in (2) and mean software failures in (3), the likelihood 

function is 

 L���, ��	 = ��8*���8*&∏ �I8*IN� +�R����/&���S$12�3*+         (5) 

where ∑ �I8*IN� = U  

and 

 �V = �1 + ���$	 
The Maximum Likelihood Estimators denoted by �W8� and �W8� for parameters ��and �� 

respectively can be obtained by using standard method, which are 

 �W8� =	 X 8*
Y����0�Z5��*	$12Z5�3*[\           (6) 

and 

�W8� =	 ]��8*�R�5�	$2Z5�3*
�Z5/�*̂ _

� �`
           (7)   

    

 

4. Bayesian parameter estimation 
While testing of the software the tester or experimenter may not have any past 

experience or may have very little knowledge  about the number of failures present in 

the software initially (at � = 0) i.e. �� and scale parameter ��. Hence in such case due 

to unavailability of prior information about both the parameters �� and ��, the non 

informative priors can be considered. The following non-informative prior distributions a���	 and a���	 are considered for parameters �� and ��  

 a���	 ∝ c
�
�/ 	 ; 		��d	[0,∞	0		; ��ℎ����

           (8) 

and 

 a���	 ∝ c
�
�� 	 ; 		��d	[0,∞	0		; ��ℎ����

           (9) 

 

The joint posterior of �� and �� given �(= �I, � = 1,2, … ,,$) is obtained by 

using equations (5), (8) and (9) which is  

 ef��, ��g�h ∝ ��8*�����8*���R����/�/�S$12�3*    

   ,$ < �� < ∞,0 < �� < ∞        (10) 

The marginal posterior of ��, say e���|�	 can be obtained as  

 ef��g�h ∝ ���8*���R��&1 − �V����*+�8*kf,$ , ,$�V����*h 
     0 < �� < ∞    
where 

 �V����* ≤ 1    since  �V ≤ ���*. 
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The marginal posterior of ��, say e���|�	 is   

 ef��g�h ∝ k�2,$	��8*����/�$��8* ∑ �/m
n! o�2,$ , 2,$ + p + 1, �$��U ′		∞nN�  

     ,0 < �� < ∞    

where U ′ = U + p�$ 

The Bayes estimators  for the parameter �� ( say �Wq� ) and for �� (say �Wq�	 are posterior 

mean under squared error loss function and are   

 �Wq� =	r��∑ s�8*0n0�,8*	
n! Ψ�2,$ , 2,$ + p + 1, U ′�$��	∞nN�      (11) 

and  

 �Wq� = 2r��,$�$��∑ s�8*0n,8*	
n! Ψ�2,$ + 1, 2,$ + p + 2, U ′�$��	∞nN�     (12) 

where  Ψ�α, β; t	 is Confluent Hypergeometric Function (cf. Abramowitz  and 

Stegun  (1965) and Gradshteyn  and Ryzhik (1994)), normalizing constant is 

 r = ∑ s�8*0n,8*	
n! Ψ�2,$, 2,$ + p + 1, U ′�$��	∞nN�  

 

Suppose �W be a mle or Bayes estimator of unknown parameter �, let Lf�, �Wh 
be a squared error loss function then risk of �W is defined as u = �[�W − �]�. The risk 

efficiency of �W over any other estimator �WV is defined as  

 u� = 	uVu��           (13) 

where 

 u′ = �[�W ′ − �]�       , ∀	�W ′ ∈ x 

 

5. Discussion 
Here, the Bayes estimators of total number of failures �� and failure rate  �� 

are compared with the corresponding maximum likelihood estimators. The performance 

of proposed Bayes estimators �Wq� and �Wq� over maximum likelihood estimators �W8� 

and �W8� have been compared on the basis of risks efficiencies. The risks efficiencies 

depend upon the values of total execution time i.e. �$ and ,$ i.e. failures experienced at 

times �I , � = 1,2, … ,,$ such that �$ (≥ �8*).  To study the performance, a sample of 

size, say ,$ was generated from the length biased exponential distribution subject to 

condition that �8*  should be less than �$ and it is repeated 10y times. Then, using 

Monte Carlo simulation technique risk efficiencies have been evaluated and are 

presented in the graphs from Figure 3 to 5.  
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Fig. 3: Risk efficiencies of >Zz? and >ZzA for different values of >?�= @?�{	D|	 and >A�= A. C�?. A	{. D	 when ;= = 75 

 

 

 
Fig. 4: Risk efficiencies of >Zz? and >ZzA for different values of >?�= @?�{	D|	 and >A�= A. C�?. A	{. D	 when ;= = 100. 
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Fig. 5: Risk efficiencies of >Zz? and >ZzA for different values of >?�= @?�{	D|	 and >A�= A. C�?. A	{. D	 when ;= = 150. 

 

 From figures 3 to 5, it can be seen that the risk efficiencies u�� of �Wq� 

decrease as �� and �� increase. It can also be seen that for small values of �� and ��the 

proposed Bayes estimator of ��perform better than MLE. The u�� first increases, 

attains a maxima and then decreases as the value of �$ increases. Similarly, it can be 

observed that the risk efficiencies of �Wq� i.e. u�� decrease as the values of �� and �� 

increase but the risk efficiencies u��decrease slowly due to increase of �� and �$. It is 

important to note that the proposed Bayes estimator�Wq� is always better than MLE. On 

the basis of better performance of risk efficiencies of �Wq� and �Wq� over �W8� and �W8� 

following conclusions can be drawn. 

 

6. Conclusions 

• Researchers/software testers may have no information about prior belief about 

the occurrence of software failures.  

• The proposed Bayes estimator of �� can be preferred over MLE if it is felt that 

total number of failures may not be very large and failure rate may be small. 

• The proposed Bayes estimator of �� can be preferred over MLE. 

• This model can be used when there are moderately large numbers of software 

failures in single run. 
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