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Abstract

In this paper, we have defined parametric relative information generating function with
utilities. We have also discussed its particular and limiting cases. It is interesting to note that
differentiation of this relative information generating function at t=0 produces various well known
measures of information. The relative information generating function for different distributions
have also been studied.
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1. Introduction

The concept of information generating function of a probability distribution
was given by Golomb [2] for Shannon’s [10] measure of entropy and Kullback-
Leiblers’s [7] measure of relative information. Golomb [2] defined the information
generating function as

1) = = Lienpi 21 (I.D

where {p;} is a complete probability distribution with i € N,N is a discrete sample
space and t is a real or complex variable. Further it may be noted that

?lt:l =H(P) = — XYienpilogp; (1.2)
where H (P) is a Shannon’s entropy [10], {p;} are probability attached to the events
{E;}.The quantity (1.2) measures average information but does not take into account the
relative information of the events. Belis and Guiasu [1] introduced the measure of
useful information

H(P;U)= — Xien Uipilog p; (1.3)
where {u;} is the utility distribution and u>0 is the utility attached to the i™ event
which occur with probability p; .

Hooda and Bhakar [5] gave mean value characterization of the following
‘useful information measures:

H(P,U):_ ZieN Ulpllogpl/z (143)

ien UiDi
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1
and Hq(P;U) = —log Yien UiD{/Zien Uipi (1.4b)

New mean value characterization of the following ‘useful’ information
measures:

H,(P;U) = ﬁlog [Zien Uip{/Zien Uipi] (1.4¢)

Mahajan and Kumar (2015) have also defined useful information generating
function:

1P:U.t)=— Zien(U; pi)t/Z (1.5)

ien UiDj

and utility distributions and t is a real or complex variable. They have studied the
properties of (1.5) in next section and derived the information generating function for
some probability distributions in section 3.

2. Parametric information generating function
Mahajan and Kumar (2015) have defined a new parametric information
generating function information generating function:

R o n\t
I( P,U ,t) — ZIEN(UI pl) /ZiEN Uipi

Since g < , <1 v and < u; > is bounded for an experiment, more over being

positive term series (1.4a) is absolutely convergent V¢ 21 and also it converges
uniformly and therefore each term of the series possess continuous derivative .So, the
derivative of (1.4a) at t=1 w.r.t. t is:

I(P;U,t):_ ZieN(Ui pi)t/ZiGN Uipi (2 1)

which is (1.4a) and has found wide applications in Economics, Accountancy etc.

In case the utilities are ignored or u=1 for each i, (1.4a) reduces to (1.2) because
xpi=1

n
Suppose P = {(pl,pz, ..... ,0,).0< p, < I,Zpl. = 1} ,be a discrete probability
i=1
distribution of a set of events E= {E, E,,....... E,} ofa discrete infinite sample space N
on the basis of an experiment having utility distribution
U={(us,upuz .. ...... u,); u; > 0 Vi}, where N is discrete sample space.

We know that weighted mean of u; and p; is given by:
Zfl:1 Uipj
ST (2.2)
If we replace U; with weights (U;p;)Pi and p; of order a — 1 then we get new weighted
mean of order a — 1 as:
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1/cx—1

Z.nzl(u.p.)ﬁi pq_l
M P; U)=|~i iPi i )
a( ) i1 (Uipy)Bi

1/01—1

a=>0a#1,B=>1

/z L (Up)fi| O = OT RS

n UB[ 0“*‘61
Ma,B(P;U): =

(2.3)
For which we have the generalized useful information generating function given by
t
I (P; U, 0)=[Mgp. (P; U)]
From equation (2.3) we get

t
n UBI 0“"61 fa-a

I g(P;Ut)= /
a,B( ) P 1(U1p1)Bl

(2.4)
where ¢ is areal or complex variable.

On differentiating equation (2.4) w.r.t. ¢ at =0 respectively, we have:

Bi
s Ui by

0(+B1

Bi 1
Hy' (P, U) = (a—1)""log /Z L1 (Uipp)Pi

n i OH'Bl

Bi _ 1 i1 U
H, (P,U)—a_llog /Z n(Up)Pi 2.5)

which is the generalized useful information measure of order a and type {;.

When [3; = for each i then equation (2.5) reduces to

8 1 n Bp“"'ﬁ 1
— 1 1
Ha(P.U)=Hlog) ™ Y. (UipP 26)

which is the generalized useful information measure of order o and type f.

If B = 1 then equation (2.6) reduces to (1.4c)

= e (260

3. Useful information generating functions and information measures

In this section, we have derived useful information generating functions and
corresponding useful relative information measures for uniform, geometric, Poisson
and exponential distributions as particular examples.
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Example 3.1: For the Uniform probability distribution (% ,% , ,% ) after experiment,

predicted probability distribution (i ,% , ,% ) before experiment and the utility

distribution (u,u,u,...,u) of an experiment, the equation (2.6) reduces as:
t

a+Bi—-1 /0(—1

i

Y (Uipy)Bi

By putting ; =B=1, U; =U and p; = %, then we have,

noyty «
log (P; U, t)= = (N)/

[ n Bi
g (P U, )= 2= V0P

t/cx—l

r,(ud)

Lo (P U, 0) = ()’

Also equation (2.6a) reduces to

i ) B 1 Z.nle. pa/
o lap(Pr U, ) = Ha(P.U)="log| =1 0 fon (qy

|
= —log| = U6 /n 1|
ot l =1 UQ)

I
; a_llog (N)
Zlp(P;U, D) = HE(P, U)= —logN

Example 3.2: Geometric distribution: Consider the Geometric distribution (q, qp, qp’....),
p+q=1 and Geometric utility distribution (v, vu, vu’....). It is the most general case
when utility also follows geometric distribution. Then we have,

lLa,B(P;Ust)=

t/a—-1
v, uu?, .. )Ei q(1,p,p? .. )‘”ﬁi_l/
Xrqv(l,uu?, )@, pps )
Put ‘8,::‘8:1

_[va X (1 u,u?, )@, p,p? D)
vqg Yy, (1,u,u? .. )({A,p,p?..)

t/a—l
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Also equation (2.6a) reduces to

92 } _ 1B N Z 1 p/
eles(®0,0 = @)= Hlog 51 DP o (1

:Ll ZP=1V(1,U,U2,U3...)q(l,p,pz,p3...)a
a 08 S, V(U Uz,ud.)q@,pp?pd..)
1 1 \%
~ L jog V(o))
1 1
a1 V(=g)a()

a
= leg(P; U, )= —log q

Example 3.3: For the exponential distribution with mean 1/A and exponential utility
distribution with mean 1/p, we consider,
p(x) = Ae™™, A>0, 0<x< ooand
ux) = pe ™ ,u>0, 0<y<o
From equation (2.4) after putting f = 1, we have
t

1 [ I e hY (emA)”
Lo (P; U, 1) [2?21{(‘16_”)(16_1;5)}
t

- [(Ae—lx)a_l]a
Also from equation (2.6a)
A1 P U D) = log] B Vipl
ar lap (5 U, 0= a—llog[2?=1(uipi)
g B e (e )"
OB S (e e )

— -1 —Ax
a_llogle

d ] _ _
EIG’B (P; U, t) = logd — Ax

Example 3.4: For the Poisson distribution, we consider,
—A x
px) = 2 x=0,12,...;4>0
e uuy
(X) ; vy=0,1,2,...;0>0

After substltutlon these values and ﬁ =1 in equation (2.4), we get

s (=) T

TS5 ()

Lp(P; U, t)=
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ey

s (P; U, ) :[e_w]t

x!
From equation (2.6a), we get

Z?_l(e—uuyxe—w)“

= y! x!

o (SP))
= y! x!

= Llog (e_ux)a_l

d =1
= lop(P; U, 1) =—log

4. Two Generalized ‘Useful’ relative information functions

Suppose P= { (p1,P2,-----Pn)> 0 <pi<LYI'p;=1} be a discrete probability
distribution whose predicted probability distribution is
Q=1{(A1,92----An), 0< ;= L.E q;=1}
And U= {(uq,uy,....uy), 0<u; , Vv i} is the utility distribution of a discrete sample space
N.
Let us consider,

I(P,Q,t) = Zin(%)piui(t—l)
dI .

/=1 =Z piui log ()

When u; = 1 then

/) =27 pi o8 () "

which is the same expression of Kullback-Leibler relative entropy.

We know that Uj, p; and q; is given by:
21 Uipigi
LU, (4.2)
If we replace U; with weights (U;p;)®i and p; and q;of order (o — 1) then we get new
weighted mean of order ¢ — 1 is:
1/01—1

a—1_a—-1

|2 (uip)Pipft g
Map(P/Q, U= == 2, (Uipy)PFi

Bi_a—1+B Yot
}’1_ U i ¢ - i 9(—1
i=1 Vi Pi di a=0 aELBR =1

Ma,B(P; U): in—l UiBipiBi

4.3)
for which we have the generalised useful information generating function given by:

P t
lap(P/Q; U ,t):[Mm,Bi & U)]
From equation (4.3), we get,
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Y,
oa—1+p4 a-1

qf
! ' . (4.4)
L, UiPipifi

n Bi
lp(P/Q; U o= 21=1 i P

where ¢ is a real or complex variable.
On differentiating equation (2.4) w.r.t ¢ at #=0 respectively. We have:
8 n ) Bip“—l"'ﬁi qu—l
i . — (o — 1)1 i=1 Y Pj i
HY(P/Q; U) = (a— 1) Mlog " U (4.5)

Which is the new generalized useful relative information measure of order o and type

Bi.
When (3; =f for each i, (4.4) & (4.5) respectively reduce to the following :
t

t n UiB jotB-1g,0-1 -1
Lo (P/Q; O=[Mp (P/Q; O] = Hor iR e 46)
i=1 YiPi
B TN—(r — 1)-1 b} UiBPi“+B_1Qi°‘_1]
and Hy"(P/Q;U)=(a — 1) log[ T 4.7
which is new generalized relative information measure of order a and f.
Particular cases :
1) If utilities are ignored or U; for each i, equations (4.6) and (4.7) become
t
o [Eh pi %Pt et
Lp(P/Qs) = [HRa “.8)
n ioc+[3—1 iot—1
lep(P/Q:0) = (a = 1)~ logl Bt 2 “9)
which is the generalized measure of relative information.
ii) If we set B = 1 in (4.8), we have:
t
n ia ioc—l -1 .
1(P/Q ) <[ EEBU T ince 31, py = 1
t
I(P/QU)= [XiL, I)imt‘lim_l]E
1(P/Q V) = [ZiL, (pi)e1q,"] (4.10)

which is new generalized relative information measure.

On differentiating (4.10) at = / and a = 1, we get,

H(P/Q) = XiL, piqilog piq; (4.11)
which is the Shannon Entropy for two generalized relative function.

iii) In case f = 1 in equation (4.4),we have,
1(P/Q;U,6) = [Mc(P/Q; DI

n Lt
T Uipi®qi* a1

1,(P/Q;U,t) =

05( /Q ) (Z?=1 Uipi)
which is generalized ‘useful’ relative information generating function of order a and
differentiation at t=0, we get,

n Uipi® l,a—l
H,(P/Q; U) = Zﬁiéﬁz?gﬁij—— (4.13)

4.12)
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which is new generalized useful relative information measure of order a.

If we have U; =1 and @ — 1 then equation (4.13) reduces to (2.6a). Since .-, p; = 1.
Following Hardy, Littlewood and Polya”! we can also have another Weighted mean of
order ¢ — 1 of p;, q; and U;

as given below :

_ |Zh, uifipi*Fiqi et
M3(P/Q,U) [ v
for which we have generalized useful relative information generating function given
below

1
a1
] ;a+1L,6=>21L,a>0 (4.14)

Ia,ﬁ(P/QﬁUﬁt) = [M(P/Q,U)]t

|:Z?:1 Ui‘gim‘wiqio‘_l]E
(Z?:l Uipi)ﬁi
where t is a real or complex variable.

(4.15)

Differentiating equation (4.15) w.r.t. fat ¢t = 0, we have :
I = (N1 S, UPip*Pigqat
lg,(P/Q:U) = (a = 1)\ log [—% p—-"z ]
=H,Pi(P/Q ; U) (4.16)
which is a new measure and is called as the generalized useful relative measure of order
a and f;. Whenf;= £ for
each i equation (4.15) and (4.16) reduces to
t

n B aB, a-1]a-1
2i=1 Ui"pi"Pqi ] (417)

lop(P/Q;U,t) =
apg(P/Q;U, 1) [ G, up)?

which is also a new measure and can be called the generalized measure of “useful ”
relative information of order a and 3.

Particular cases :
i) If utilities are ignored or U;= 1 for each i in (4.15), we have,
t

_ z{;l(m)“b’(qi)“—l]ﬁ
lap(P/Q,0) [ S0P

On differentiating (4.18) w.r.t. t at t = 0, we get,
t

(4.18)

1a(PIQ ) = (o — 1)t [Hl M@y
“a(P/Q;T)=(a — 1) NER: HA(PIQ) (4.19)

i) If weset f =1in(2.8),we get,
t
La(P/Q; T) = [Ei, () (q)* a1 (4.20)

which is generalized relative information generating function of order a.

i) In case f = 1, equation (4.15) reduces to

t

a . _ [EE i upi®q et
o la(P/Q ; U,T) [—Z?=1 ey ] 4.21)
which is the useful relative information generating function of order «.

On differentiating (4.21) gives
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21a(PIQU,T)~(a - 1)'110g[w]:Ha(P/Q;U) (4.22)

Z?:l Uip;
which is the new generalized relative information.
Further if a — 1, equation (4.22) becomes
n 9. Ag. =1
H(P/Q; U) = [Liz‘,{”—u‘;] (4.23)
i=1 7 iPi

When U;=1, then (4.23) reduces to Kullback-Lieblers measure of relative information
which is given as:

Z?=1 pi“’f](%)
Since )i p;=1, then
H(P/Q; U)=Y1, p;log (%) which is similar to equation (4.1).

5. Two generalized ‘useful’ relative information function for somep
probability distributions

Example 5.1: For the Uniform probability distribution ( i, . %) and Uniform Utility

1
N’'N
distribution (u, u, ..., u) and predicted probability distribution(% ,%, . %)
Also put 8 =1 in equation (4.6), we get:

t

e
W
lop(P/Q.0)= (=)
From equation (4.7) we get,
B0« 112 1o @) )
H,”(P/Q;t) a_llog[ Z{Llu(ﬁ)
H P(P/Q;t)=—[log N + logM]

Example 5.2: Geometric distribution: Consider the Geometric distribution (q, qp,
ap>.....), (z, zw, zw’,....); ztw=1, p+q=1 and Geometric utility distribution (v, vu,
vu?,...). It is the most general case when utility also follows geometric distribution.
Then from equation (1.6) after substituting S=1,

Ia,B(P;U;t)=

Y (v,vu,vu?, ...) (q,9p, qp%, ... ) (2, zw, zw?) %1

X (w,vu,vu?, L) (g, qp, qP%, -

t/a—-1

zqu mi(Luu?, ) (@ p,p? )% (L, w,w?) et
qu ¥, (1,u,u2,..) (1,p,p?,..)

)

t/a—1
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e |
| )

1 t
= I, 5(P/Q,)=2 (5)
Also from equation (4.7) and put § = 1, we get,

9 _ -1 ¥ (vouv?,..)(q.qpap?..)" (Zzw,. )%t
Slep(P/Q0= (@ = 1) og [Hnlmr e G
a a-—-1
o e
va(75)(:5)
1 1 a-1
=7 5t09 ()"

]
= EIQ,B(P/Q, t) = —zlogz — zlogq .

a-1

Example 5.3 : For exponential distribution we consider
p(x)=he™* 1> 0, 0<x<

u(y)=ue W, u>0,0<y < o

q(z)=ye Y%, y>0, 0< y< o

From equation (4.6) after putting f=1 we get
t

P Zin=1(ue_uy)(?\e_“)a(ye—w)a—l a1
I%B (6, t) = [ l

n —Axue~wy
i=1Ae

[“ Yicq(ue™) (Ae‘“)a (ye—YZ)a—1lﬁ

— —uy
7\}1 Zinzl e—Axe
t

_ [()\e—)\x)o‘_l (Ye—yz)ot—l]E

lp (5:1) = Dve ™)'

Also from equation (4.7), we have,
t

s Py Z?:l(ue_uy)(Ae"tx)“(ye—w)aﬂ]ﬁ
Stla,ﬁ (Q.t) = log [ P

— ﬁ log [()\e—hx)(ye—yz)a—l]
ala_ﬁ (g;t) = logh—Ax +logy—vyz

Example 5.4: For poisson distribution, we consider :
—-AX
P(x) =S x=0,1,2,. .. > 0
e—@;y
U(y)=—— y=0,1,2,...;u>0
e YyZ
Q(2)= sz =0,1,2,...;y>0

y
!
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After substituting these values and =1 in (4.6) we get

- ~ & e a-1 t/ot—l
() = [REIE) 5

¢ {Ll(e‘;uy)(e—;ﬂ) |
[ i ((fj"))“‘l (e—zylyzy_ll
oe{2)

Also from equation (4.7) we get
n 1(e_”uy)<e_7‘xx>a(e_vvz)a_l
P 1 1= y! x! z!
RO Ve
—AyX —Yyzy a—1
_aillog [(e X!A ) (e Z‘y ) ]
uf (g; U) =log

Example 5.5: Gamma distribution with one parameter A, p & y

+ log £ VY

C0n51derp(x) k>0 0<x<oo
U(y)— _,p,>0 0<y<o
Q(Z) ,y>0 0<z<o

Put these values in equatlon (4.6) and B;=p=1 we get

- — - —1\%, 1,01 t/o(—l
(1)< [

Z" e yyu 1( —xxh—1)

TA
t
e~XxA—1 e—Zzy—1\ 01 /o1
o () (5]
P e XXA 1 —zZy—l t
| (—;t)=
“B\Q ( TA Ty )
Also from equation (4.7), we have,
n v y_qfe XxA-1 o=z -1\ 01
1 Tz eyt 1< A ) (T)
=—1Iog
a-1

n (e YyM—le—XxA-1
i=1 Tu TA

Xy A=1\ ra=Z,y—1\ %1 a-1
(227 (2
Hﬁ( U)o (225 (2,

Ty

57
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6. Conclusion

We have shown that parametric information generation functions defined in

this paper are generalization of the information generating function based on Shannon’s
measure of Information.
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