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Abstract 

 The problem of a change in the mean of a sequence of random variables at an unknown 

time point has been addressed extensively in the literature.  But, the problem of a change in the 

variance at an unknown time point has, however, been covered less widely. This paper analyses a 

sequence of autoregressive, AR(p),  time series model in which the variance may be subjected to 

multiple changes at an unknown time points.  Posterior distributions are found both for the 

unknown points of time at which the changes occurred and for the parameters of the model. A 

numerical example is also discussed. 

 

Key Words: Time Series Model, Autoregressive Model, Variance Change, Posterior 

Distribution. 

 
1. Introduction 
 In recent times, inference problems associated with time series models with 

change point problems are increasingly met within the statistical analysis of many real 

life problems. In the study of change point the relationship between yield data and 

explanatory variables in growth models, dependence studies in chemical reactions, etc., 

it is very often noted that the relationship is of one type for a certain configuration of 

the values of the explanatory variables and of another type for a different configuration 

of the values of the explanatory variables.  Such changes in the relationships are, some 

time sudden and some time gradual. In such circumstances, it is not possible to use the 

conventional theory of time series models which explicitly assumes a fixed rigid 

relationship throughout. Switching linear models are quite useful and provide better 

models for the data in such situations. 

 

 Consider a manufacturing industry producing a particular consumer product. 

The profit margin of the company may follow a particular pattern (per capita) until a 

period when a new technology is introduced or the workers are given specialized 

training in handling the machines. From that period onwards the profit margin (per 

capita) may show a new pattern. This is an example of a sudden structural change. In 

this example, the time point when a structural change takes place is clearly predictable. 
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But, in many real life problems, this may not be possible and we may have to make 

inferences only on the basis of the data collected on the variables of interest. 

 

 In certain other situations, the structure of the models may begin to change 

either through the mean or variance of the errors at a particular period of time due to 

one or more reasons and the change may continue over a certain period of time at the 

end of which it might stabilize. Hsu(1977) examines the problem of testing whether 

there has been a change in the variance at an unknown time point using sampling 

theory, and applies to stock return data and also give a Bayesian treatment of a similar 

problem. 

 

 Considerable work has been done in the recent past on the structural changes 

in regression models regarding the detection, estimation and inferences of switch points 

and parameters of switching linear regression models and sequences of normal, 

Poisson, Binomial and Gamma random variable. But very little work has been reported 

on switching time series models. 

 

Switching first order autoregressive process with one change is defined as  

Xt = α1 Xt-1 + et ; t = 1,2, …, t1 

Xt = β1 Xt-1 + et ; t = t1 + 1,2, …, n 

 

where t1 is the shift point, t1 = 1, 2, …, n – 1, α1 and β1 are the autoregressive parameter 

of before and after change respectively, et′s are identically independently distributed 

normal variables with mean zero and common variance σ2
 and other details can be 

found in Broemeling (1985). 

The problem of variance changes in the AR(1) model is defined as  

 

Xt = β Xt-1 + et,  t = 1, 2,  ...   ,  N 

 

   σ1
2
  ; 1 ≤ t ≤ k and 

           with     var (et) = 

   σ2
2
  ; k < t ≤ N 

 

and other details can be found in Menzefricke (1981). 

 

 The organization of this paper is as follows. The Section I gives a brief 

introduction about change point problems in time series models.  Section II provides a 

brief review of change point problems. Section III provides the Bayesian inference to 

variance changes in the autoregressive time series models. Section IV provides the 

numerical study and Section V gives the brief summary and conclusion of the paper.  

 

2. Review of literature 

Page (1950) had studied the concept of switch point problem with reference to 

a sequence of random variables. He considered a sequence of binomial random 

variables and used the moving averages for estimating the point of change in the 

corresponding sequence of means of the random variables.  
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A little later, as an application of the change point problem, Page (1954) investigated 

the problem of detecting the change in a parameter θ, measuring the quality of an 

output from a continuous production process. Page also studied the problem of 

detecting the changes in the means of the observations in a sequence of random 

variables by using a cumulative sum of the observations (CUSUM) by assuming a 

distributional model. He assumed that under the null hypothesis all the n observations 

arise from a distribution F(x/θ) and under the alternative the first m observations come 

from F(x/θ′), θ≠θ′, where F(x/θ) is a member of a specified family of distributions 

indexed by θ. Remarking that the general properties of the indicated test procedure are 

difficult to evaluate, he considered the case where the variables are Bernoulli random 

variables and for this case he compared the power of his test with that of a standard 

single sample binomial test and, on the basis of numerical studies, concluded that the 

loss of power is quite small. 

 Page’s single change problem was extended to the case of multiple changes by 

Silvey (1958) in which he formulated the problem as a multiple decision problem 

associated with the testing of the hypothesis that the distribution function of  

the i
th

 observation, say, Fi is the same for all i against the alternative that there are k 

changes in the sequence of distribution functions of the observations, viz.  

F1 = F2 = … = Fi ≠ Fi+1 = … = 
2i

F ≠ 
1i2

F + = …  
1ik

F + = … = Fs, s being the total 

number of observations. On this basis, he introduced an estimation procedure which 

ensures that the probability of over estimating the number of changes does not exceed a 

specified level α whatever the true situation may be. 

 The several works reviewed above belong to the classical or the sampling 

theory approach. The first Bayesian work in the area of switch point problem was by 

Chernoff and Zacks (1964) who introduced the Bayesian methodology to estimate the 

mean of the “current variables” in multiple changes problem in a sequence of normal 

random variables by assuming the relationship between successive means to be 

µi+1 = µi + Ji zi,   i = 1, 2, …, n – 1  

where, Ji is an indicator variable which assumes the value one if the change occurs 

between the time points i and i+1 and zero otherwise and Zi is a random variable which 

represents the amount of change when a change takes place. They assumed a normal 

prior for the mean and the amount of change and a uniform prior for the change points. 

By assuming a quadratic loss function, the Bayesian estimator for the mean of Xn was 

derived. He also considered the Bayesian approach to derive a test procedure for testing 

the hypothesis that all the µi ’s are equal against the alternative that 

µ1 = µ2 = … = µm ≠ µm+1 = µm+2 = … = µn 

1 ≤ m ≤ n – 1, µm+1 > µm,  m unknown. He considered two cases viz., µ1 known and µ1 

unknown. He applied his test procedure to Page's problem for a binomially distributed 

sequence of random variables and compared the power function of the resulting test 

with that of the Page's test procedure numerically. The quality of the procedure was 

examined by a simulation study employing numerical integration technique throughout.  

 Instead of the multiple changes model of Chernoff and Zacks (1964), Hinkley 

(1971) considered a model incorporating a single change in the mean of a sequence of 
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normal random variables with constant known variance. A CUSUM test procedure was 

used to estimate the change point.  

 Bayesian estimate of the change point with respect to a finite sequence of 

normal random variables with known σ was obtained by Broemeling (1972) who 

employed non informative prior for all the parameters. It is to be remarked at this stage 

that in the Bayesian approach to the change point problem every one, without any 

exception, has used only the uniform distribution as the prior distribution for the switch 

point. 

 Later on, Broemeling(1974) studied the same problem employing conjugate 

priors for the parameters.  He also used the Posterior odds ratio to test the hypothesis 

that the change point is a specified point.  For the same model, assuming σ2
 to be 

unknown, Holbert(1982) derived the posterior distribution of the change point 

employing  noninformative prior for σ2
. He also carried out a numerical study with 

different values for the mean parameter in which shift exists. Subsequently, Lee and 

Heghinian (1977) studied the same change point problem for a sequence of normal 

random variables employing normal prior for the mean parameter and non informative 

prior for the scale parameter and derived the posterior distribution of the shift point and 

the amount of shift. They have applied their results to data relating to traffic deaths in 

the state of Illinois during 1962 to 1971. 

 Smith (1975) considered a Bayesian approach  to  the problem of making 

inferences about the  point  of  change  in  a sequence  of  random   variables   at  which  

the underlying distribution changes. The objective was, for the first time, clearly stated 

as locating the change point. Inferences were based on the posterior probability of the 

possible change points. He also gave the detailed analysis for the binomial and normal 

cases and also provided a numerical illustration. 

 It is needless to point out that all the above works relate to abrupt changes in 

the means of a sequence of random variables. Hsu (1977) for the first time, studied the 

variance change problem with respect to a sequence of normal random variables and 

developed a locally most powerful test (LMPT) and a chi-square CUSUM test to test 

the hypothesis of no change against the alternative that there is a change in the variance 

at some point in the finite sequence of random variables. He concluded, on the basis of 

power comparisons, that the CUSUM chi-square test is a useful one for investigating 

the variance shift problem.  

 Quandt and Ramsey (1978) introduced a kind of mixture model approach to 

study the changes in the means of a sequence of random variables {Xi}. They assumed 

that the distribution of Xi is N(µ1, 
2

1
σ ) with probability p and N (µ2, 

2

2
σ ) with 

probability (1-p) where 0 ≤ p ≤ 1 and i = 1,2, ..., n. They also introduced a new method 

of estimation which consists in taking as the estimator that value which minimizes the 

sum of squares of the differences between the theoretical and the sample moment 

generating functions. He established the consistency and asymptotic normality of his 

estimators.  

 Menzefricke (1981) extended the work of Hsu (1977) by considering a 

sequence of independent normal random variable where in the variance is subjected to a 

change at an unknown point of time. There were many cases corresponding to the 

means being equal or unequal, known or unknown, and these were discussed employing 
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normal-gamma priors. They also gave numerical illustration to explain the evaluation of 

these posterior probabilities.  

 In all the works reviewed above, one of the common basic assumptions is that 

the means of the random variables, before and after the switch point, were not 

dependent on each other. Smith (1975) examined the stability of the regression 

relationship over time with reference to multiple 1inear regression models. Employing 

non-informative prior for the change point and normal prior for the regression 

parameters he used the posterior odds ratio, which he called as a Bayes factor, to test 

the hypothesis of no change in the regression relationship against the alternative of at 

most one change in the regression relationship. This result was applied to certain real 

life data. He also explained how this technique could be applied to cover more general 

linear time series models and in particular, explained how a shift in the ARMA (1,1) 

processes can be identified by the procedure.  

 Salazar (1980) studied the gradual changes problem in the context of time 

series models, first and second order autoregressive process models, lagged variable 

model and auto correlated error models through the Bayesian approach employing non-

informative prior for all the parameters except the precision parameter for which a 

gamma prior was employed. Bayesian estimators were obtained for all the parameters 

by utilizing numerical integration techniques to remove the nuisance parameter. 

Venkatesan and Arumugam (2005, 2007) derived the Bayesian estimates of the first 

order autoregressive model through the parameter changes and Venkatesan et al., 

(2009) were studied the mean changes with respect to the autoregressive time series 

models with multiple changes and illustrated with numerical study subsequently Kohn 

and Kohn (2008) studied the multiple change points problems in mixture models. 

 

3. Multiple changes in the variance of AR(p) model  and it’s Bayesian 

Analysis 

 This section is concerned with a study of the problem of changes in the 

variance of the AR(p) time series model and the investigation of a Bayesian inference 

to the same. This study was originally motivated by a study of daily stock price data, 

Hsu (1977) in which the time series consisted of the logarithms of the price relatives. It 

was apparent that, although the resulting observations were stationary in the mean, the 

variability was not constant throughout the series and subject to step changes at non-

predictable time points. Consequently, any analysis based on the assumption of 

variance homogeneity could be misleading.  

Let us consider the general order autoregressive model, AR(P) and is given by 

   Xt = β1Xt-1 + β2 Xt-2 + .... + βp Xt-p + et ; t = ..., -1, 0, +1, ...                   (3.1) 

where E{Xt} = 0 ∀ t, and all the roots of the equation  

β(B) = (1- β1B
1
 - β2B

2
 - .... -βnB

n
) lie outside the unit circle, the Backshift operator is 

defined by B
n
 Xt = Xt-n, for which the AR(p) is stationary and {et} is a sequence of 

independent normal variables with mean all zero and the variance σ2
 be subject to 

changes. 
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Now, consider a series {Xt}; t = 1, 2, ... , N and mnnn ˆ...,,ˆ,ˆ 21  be preliminary 

estimates of the time points n1, n2, ...., nm at which variance changes occur.  

Define n0= Nnandn m == +10 ˆ1ˆ  and  

Let     var (et) = )1(,....,2,1;; 1
2 +=≤<− mintn iiiσ and 

2
1

2
2

2
1

2 ...,,,( += mσσσσ )  

Given m (number of changes in the data)    and    X = (X1, X2, ..., XN)′ 
The likelihood function resulting from “N” observation is given by 

P(X/Θ)  ∝
2/)(2

1

1

1)( −−−+

=
∏ ii nn

i

m

i

σ exp {-Si(β)/2σi
2
}...                                (3.2) 

Where Si(β) = ∑ −−−−
+=

−−−
−

i

i

n

nt
ptpttt XXXX

1

2
2211

1

)...,( βββ ; 

                     i = 1, 2, ..., m+1 

Θ = (β1, β2, ..., βp, )...,,,,...,,, 21
2

1
2
2

2
1 mm nnn+σσσ  

Hence there are p + m + 1 + m = 2m + p +1 parameters in the model. 

To find the posterior distribution of Θ, first we have to specify the prior distribution for 

the parameters as follows,  

(i) ni, the change points follows a discrete uniform distribution in its range. 

(ii) the autoregressive parameters β = (β1, ..., βp)′ follows a Multivariate normal 

distribution with mean vector µ and variance covariance matrix Σ (µ and Σ are known) 

(iii) 
2
iσ  follower inverted gamma distribution with parameters δi and γi (i = 1, 2, 

..., m+1) 

Therefore the joint prior distribution of the parameters of Θ is given by  

    

1
2

111 ( ) ( )
( 1) ( / )2 22

1

( ) ( ) . | |i i i

m

i

i

P e e
β µ β µ

δ γ σσ
− + ′− − Σ −−  − + −  

=

Θ ∝ Σ∏ . 
   

                             (3.3) 

By using the Bayes theorem, the joint posterior distribution function can be obtained as,  

 

P(Θ/X) ∝  P(X/Θ). P(Θ) and is given by 
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P/Θ/X) ∝ 
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t = ni-1 + 1, ..., ni   ; r = 0, 1, ..., P ; i = 1, 2, ..., (m + 1) 

when, we define Σ=′
iA , then we get the following, after simplification, 
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 The above (3.5) joint posterior distribution of Θ = (β1, β2, ..., βp, n1, n2, ..., nm, 

)...,, 2
1

2
1 +mσσ  is a very complicated expression and is analytically not tractable. 

One way of solving this problem is to find the marginal posterior distribution using 

MCMC technique. 

 

4. Numerical study 
 In order to illustrate the solutions of the change point problems described in 

section 3 a computer study was carried out. The main aim of the numerical study is to 

illustrate the evaluation of the estimates of the parameters on the basis of the 

methodology developed. In this paper MCMC technique is used to compute marginal 

posterior distributions and Bayes estimates of the parameters. Markov Chain Monte 

Carlo (MCMC) is a powerful technique for performing integration by simulation. In 

recent years MCMC has revolutionized the application of Bayesian statistics. Many 

high dimensional complex models, which were formally intractable, can now be 

handled routinely. Bayesian calculations not analytically tractable can be performed 

using MCMC once a likelihood and prior are given. MCMC simulation algorithm in its 

basic form is quite simple and becoming standards in much Bayesian application. One 

of the basic goals of general Bayesian framework is to compute expectations with 

respect to a high dimensional probability distribution.  
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 The two main algorithms used in MCMC applications are 

(i) Gibbs Sampler and (ii) Metropolis algorithms. All other algorithms are 

generalization of Metropolis. The simplest MCMC algorithm is a Gibbs sampler. Gibbs 

sampler iteratively samples each variable conditional on the most recent value of all 

other variables. The analytical solution is not available for the posterior density 

function since the joint posterior distribution is a complicated function of the 

parameters. Therefore, one may have to resort to numerical integration or MCMC or 

Gibbs sampling technique to determine the estimates. 

 Variance changes in time series data are illustrated by following. Box and 

Jenkins (1970) fitted the ARIMA (0, 1, 1) model to a series of 369 IBM stock prices. 

The same data is fitted through the methodology suggested in section 3 by the first 

difference of the same series (logarithm). Further due to certain practical limitations in 

computing, attention was focused on the switching first order autoregressive process. 

The point estimates of the parameters were evaluated numerically by taking the 

posterior mean as the estimate. MCMC technique is used to evaluate the marginal 

posterior distribution and hence the Bayes estimates. We propose an AR(1) model with 

two innovations variance changes and is given in the following results: 

 

                                       0.99  ;  t < 179  

α̂ = 0.13,         10
4
 var (et)=       0.60  ; 180 ≤ t  ≤ 235 

                                                    0.72              ;  t ≥ 235 

 

 

 

5. Results and conclusions 
 This paper is the output of an investigation regarding the building up of 

suitable model to represent the structural changes in time series models. Bayesian 

methodology has been used in making inferences about the parameters of the model. A 

Bayesian solution of the change point problems through the variance change in 

autoregressive models is discussed and a numerical study has been illustrated through 

the procedure developed and also to examine the quality of the results obtained. 

Generally, the estimates are found to be close to the true values using which IBM stock 

price data. The estimates are quite close to the true values when the magnitude of the 

switch is large relative to the variance. 
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