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Abstract  
 A double sampling estimator and its generalized case representing a class of estimators 

using auxiliary information in the form of mean and variance both is proposed for the estimation 

of population variance. Bias and Mean Square Error are found and the properties of the 

estimators are studied. A comparative study with the estimators available in the literature is also 

carried out and it is shown that the proposed estimator and its generalized estimator are more 

efficient.  
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1. Introduction 
    In sampling theory, it is well known that the auxiliary information is used to 

improve the precision of the estimators of the population parameters and if parameters 

of the auxiliary variables are not known in advance then double or two phase sampling 

technique is used.  In double sampling or two-phase sampling technique, we first take a 

preliminary large sample of size n′ (called first phase sample) from a population of size 

N and then a sub-sample of size n (called second phase sample) is drawn from the first 

phase sample of size n′  by simple random sampling without replacement scheme at 

both the phases. At first phase sample of size n′, only the auxiliary variable X  be 

observed but at the second phase sample of size n, the study variable Y and the auxiliary 

variable X  both are observed. 
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For estimating finite population variance, a double sampling estimator and a 

generalized estimator using auxiliary information in the form of mean and variance are 

proposed as 
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In order to obtain bias and mean square error of the proposed estimators, let us denote 

by 

0eYy +=    1eXx +=  
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2. Bias and Mean Square Error of the proposed estimator d  

 The proposed estimator d  given by (1.1) is   
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In terms of  ie ’s, 2,1,0=i   and by taking first degree of approximation, the proposed 

estimator reduces to  
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Now taking expectation on both the sides of (2.1) and then using the values of the 

expectations given from (1.4) to (1.5), the bias in d  to the first degree of 

approximation is given by 
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Now squaring (2.1) on both the sides and then taking expectation, the mean square error 

of  d  to the first degree of approximation is given by 
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Now using the values of the expectations given from (1.4) to (1.5), the mean square 

error in d  to the first degree of approximation is given by 
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which attains the minimum for the optimum values of 1k and 2k  given by  
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substituting the values of 1k and 2k  given by (2.4) and (2.5) in (2.3), the minimum 

mean square error of d  is given by 
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3. Bias and Mean Square Error of the proposed estimator gd   

The proposed generalized estimator gd  in (1.2) is 

( )vufydg ,ˆ 2−=θ       (3.1) 
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In terms of  ie ’s, 2,1,0=i   and by taking first degree of approximation, the proposed 

estimator reduces to  
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Now taking expectation on both the sides of (3.2) and using values of the expectation 

given in (1.4) and (1.5), the bias in gd to the first degree of approximation is given by 
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Now squaring (3.2) on both the sides and then taking expectation and using values of 

the expectation given in (1.4) and (1.5), the mean square error in gd to the first degree 

of approximation is given by 
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which attains the minimum for the optimum values of 1f and 2f  given by  
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substituting the values of 1f and 2f  given by (3.5) and (3.6) in (3.4), the minimum 

mean square error in gd  is given by  
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4. Efficiency comparison with the available estimators 

 For comparing the efficiency of the proposed estimators d and gd , let us 

consider the following  

(i) Usual conventional unbiased estimator of population variance in case of 
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from (4.1) and (2.6) and (3.7) it is clear that the proposed estimators d and gd  are 

having mean square error lesser than the usual conventional unbiased estimator. 
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(ii) Estimator of population variance given by Peeyush Misra and R. Karan 

Singh 
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from (4.2) and (2.6) and (3.7), it is clear that the proposed estimators d and gd  are 

having mean square error lesser than the mean square error of the estimator of 

population variance given by Peeyush Misra and R. Karan Singh (2014). 

 

5. Conclusion 
 The comparative study of the proposed estimators of population variance 

establishes their superiority in the sense of having minimum mean square error over the 

usual conventional unbiased estimator of population variance in case of SRSWOR and 

the estimator of population variance given by Peeyush Misra and R. Karan Singh 

(2014). 

 

Acknowledgements 
 The author is very indebted to the editor in chief and also to the referees for 

their valuable suggestions leading to the improvement of the contents and presentation 

of the original manuscript. 

 

References 
1. Cochran, W.G. (1977). Sampling Techniques, 3rd edition, John Wiley and 

Sons, New York. 

2. Murthy, M. N. (1967). Sampling Theory and Methods, 1
st
 edition, Statistical 

Publishing Society, Calcutta (India). 

3. Peeyush Misra and R. Karan Singh (2014). Estimation of population variance 

using a generalized double sampling estimator, Sri Lankan Journal of Applied 

Statistics, Vol. 15, No. 3, p. 211-220. 

4. Sukhatme, P.V. and Sukhatme, B.V. (1970). Sampling theory of surveys with 

applications, 3
rd

 revised edition, IOWA State University Press, Ames, U.S.A.  

 

 


