BAYES ESTIMATION OF SCALE PARAMETER IN GENERALIZED PARETO DISTRIBUTION
Keywords:
Bayes Estimator, Prior, Scale Parameter, Squared Error Loss Function and Asymmetric Precautionary Loss Function.Abstract
Bayes estimators of the scale parameter (p) with known location parameter (μ) and fixed shape parameter (k) of generalized Pareto model are obtained for different priors using Squared Error Loss Function (SELF) and Asymmetric Precautionary Loss Function (APLF) through Lindley’s approach. The calculations have been illustrated with the help of a real data set.
Downloads
References
Bermudez, P. de Zea and Turkman, M. A. A. ( 2003). Bayesian approach to
parameter estimation of the generalized Pareto distribution, Sociedad de
Estadistica e Investigacion Operativa Test, 12, p. 259-277.
Castillo, E. and Hadi, A. S. (1997). Fitting the generalized Pareto distribution
to data, Journal of the American Statistical Association, 92, p. 1609-1620.
Cheng, S. W. and Chou, C. H. (2000). On the BLUE of the scale parameter of
the generalized Pareto distribution, Tamkang Journal of Mathematics, 31(3), p.
-173.
Danish, M. Y. and Aslam, M. (2013). Bayesian estimation for randomly
censored generalized exponential distribution under asymmetric loss functions,
Journal of Applied Statistics, 40(5), p. 1106-1119.
Deidda, R. and Puliga, M. (2009). Performances of some parameter estimators
of the generalized Pareto distribution over rounded-off samples, Physics and
Chemistry of the Earth, 34, p. 626–634.
Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation
for the generalized Pareto distribution, Technometrics, 29(3), p. 339-349.
Lee, W. C., (2012). Fitting the generalized Pareto distribution to commercial
fire loss severity: evidence from Taiwan, The Journal of Risk, 14(3), p. 63–80.
Lindley, D.V. (1980). Approximate Bayesian methods, Trabajos de Estadistica
Y de Investigacion Operativa, 31, p. 223-245.
Mahmoud, M. A. W., Soliman, A. A., Abd Ellah, A. H. and El-Sagheer, R. M.
(2013). Bayesian estimation using MCMC approach based on progressive
first-failure censoring from generalized Pareto distribution, American Journal
of Theoretical and Applied Statistics, 2(5), p. 128-141.
Oztekin, T. (2005). Comparison of parameter estimation methods for the three-
parameter generalized Pareto distribution, Turkish Journal of Agriculture and
Forestry, 29, p. 419-428.
Pandey, H. and Rao, A. K. (2009). Bayesian estimation of the shape
parameter of a generalized Pareto distribution under asymmetric loss
functions, Hacettepe Journal of Mathematics and Statistics, 38(1), p. 69–83.
Saxena, S., Zarrin, S., Kamal, M. and Islam A. U. (2012). Computation of
reliability and Bayesian analysis of system reliability for Mukherjee Islam
failure model, American Journal of Mathematics and Statistics, 2(2), p. 1-4.
Setiya, P. and Kumar, V. (2013). Bayesian estimation in pareto type-I model,
Journal of Reliability and Statistical Studies, 6(2), p. 139-150.
Setiya, P., Kumar, V. and Pande, M. (2015). Bayesian estimation of shape
parameter in Pareto type II distribution, International Journal of Agricultural
and Statistical Sciences, 11(1), p. 111-115.
Singh, V. P. and Guo, H. (1995). Parameter estimation for 3-parameter
generalized Pareto distribution by the principle of maximum entropy (POME),
Hydrological Sciences -Journal des Sciences Hydrologiques, 40, p. 165-181.
Tierney, L. and Kadane, J. (1986). Accurate approximations for posterior
moments and marginal densities, Journal of the American Statistical
Association, 81, p. 82–86.