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Abstract 

 The present paper proposes a sometimes pool testimator of scale parameter (mean life) 

of negative exponential distribution under general entropy loss function, when it is assume that 

both the guarantees are known If a real life situation is modeled by this distribution having mean 

life time of certain items as θ1 and now it is suspected that the mean life may change due to some 

technological advances and assumes the value θ2 then we may have conditional information on θ1 

as θ1≥θ2(however θ1 may be less than or equal to θ2).This uncertainty can be resolved by using 

preliminary testing and then a sometimes pool testimator is proposed for θ1The risk properties of 

this estimator have been studied under General entropy loss function and it is claimed that the 

estimator dominates the never pool estimator (in terms of having smaller risk) in certain range of 

life ratio. Use of a general entropy loss function facilitates to control the risk of proposed 

estimators for various directions and degrees of asymmetry. 
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1. Introduction 

1.1 The model 

 The negative exponential distribution has been a subject of comprehensive 

studies since fifties. A systematic development of life testing originated from the work 

of Epstein and Sobel (1953) and the subsequent progress made in this field can gauged 

from the bibliography of Mendenhall (1958) and Govindrajulu (1964) among others. 

Let us consider that two independent random sample sizes �� and �� are available from 

the negative exponential distributions defined by, 

 

����,	�, 
�� = 
�
������� �������� � ;		�� ≥ 	�, 
� > 0	0																															�. !. "                                       (1.1.1) 
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Where 	� and 
� (# = 1, 2) are the location and scale parameter respectively. 	� is also 

interpreted as the minimum guarantee period or threshold or shift parameter or within 

which no failure can take place, and 
�  represents the mean life. 

 

Under the assumption of squared error loss function (SELF) Ramkaran and 

Bhattacharya (1984) have estimated the mean life of negative exponential distribution 

by a sometimes pool estimator. Rai (1996) proposed a sometimes pool estimator for 

mean life under Linex loss function, for a single parameter exponential distribution. 

Srivastava and Tank (2001) have studied the risk properties of Sometimes pool 

testimators using an asymmetric loss function proposed by Basu and Ebrahimi. 

 In this paper we have considered the Negative Exponential distribution and proposed 

an estimator of	
�, using type II censored sample information. The problem under 

consideration has the following three situations. 

Situation I:	� and 	� are known. 

Situation II: A1 =A2 and the common value may be known /unknown. 

 Situation II:  Nothing is known about 	� and	�. 

The present paper deals with situation I only. 

 

1.2 Asymmetric loss functions 

 The choice of an appropriate loss function is very important under the 

Bayesian set up as it is the loss function chosen, decides about the Bayes estimator and 

more importantly the risk associated with it. Several authors have proposed Bayes 

estimators for different parameter(s) in various distributions using different loss 

functions. 

 

 We know that in many real life situations the overestimation or under 

estimation are not of equal consequences. Several authors such as Canfield (1975), 

Zellner (1986), Basu and Ebrahimi (1991), Srivastava (1996), Srivastava and Tank 

(2001), Srivastava and Tanna (2001), Srivastava and Tanna (2007, 2012), Srivastava 

and Shah (2010) and others have shown that the estimators or testimators of the 

parameters of interest under the asymmetric loss function demonstrate their superiority 

over the estimators obtained under squared error loss function (SELF). 

 

 Basu and Ebrahimi (1991) proposed a modified LINEX loss function, though 

this worked for many parameter(s) and parametric functions but had its own limitations 

in some cases where the estimators could not be obtained in closed forms. 

A suitable alternative to modified LINEX loss is the General Entropy Loss (GEL) 

proposed by Calabria and Pulcini (1994 a) given by: 

 &'�
,( 
� ∝ *+�(�,- − �/� +�(�, − 10                                                                           (1.2.2) 
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Whose minimum occurs at
1 = 
. 

 This loss is a generalization of the entropy loss used by several authors for 

example, Dey et.al (1987), and Dey and Liu (1992), where the shape parameter ‘p’ is 

equal to unity (1). The more general version of (1.2.2) allows different shapes of the 

loss function to be considered (say) when � > 0, a positive error (
1 > 
) causes more 

serious consequences than a negative error and similarly when  p<0, a negative error is 

more serious. 

The Bayes estimate of 
 under the GEL can be obtained in a closed form using: 
1' = 23��
�-�456                                                                                                    (1.2.3) 

 

Provided that 3��
�-� exists and is finite. 

 

When		� = −1, the bayes estimate (1.2.3) coincides with the Bayes estimate under the 

squared error loss function. 

 

1.3 Background 

 Srivastava and Tank (2001) have considered the problem of testimation of a 

scale parameter with probability density function given by (1.1.1) under linex loss 

function, when it is assumed that both the guarantees are known. We have proposed a 

sometimes pool estimator of scale parameter �
�� in section 2. The risk of the proposed 

estimator 
178 using GEL function has been derived in section 3. In section 4 we have 

compared the relative risk of 
178 with never pool estimator
19. The paper concludes 

with section 5. 

 

2. The sometimes pool testimator 

 Let ��� ≤ ��� ≤ ⋯ ≤ ��<5  be the ordered failure times of the first =� items in 

a life testing experiment, in which �� items were placed on test and  let ��� ≤ ��� ≤⋯ ≤ ��<>  be the ordered failure times of first =� items in another life test, where �� 

items were placed. Suppose that the underlying distribution of each ��? is a two 

parameter exponential distribution ���� , 	� , 
��, # = 1,2; 		@ = 1,2, … , =�  given by 

(1.1.1). 

  

 We are interested in estimating
�, when it is suspected that there may be a 

change in the average life�#. �.		
� ≥ 
��. Then to incorporate this doubtful information, 

we test the hypothesis BC: 
� = 
� against B�: 
� ≠ 
� using the test statistic proposed 

by Epstein and Sobel (1953).As the two samples are combined only when H0 is 

accepted implying that a pooled estimator can be proposed thus we have the always 

pool estimator. However when H0 is rejected we do not have sufficient evidence to 

combine the two samples and hence work with only the first sample so we have a never 

pool estimator. Thus, our Sometimes pool estimator can be proposed as follows: 
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178 = F
1- = G5HG><5H<> ; 						#�	BC	#I	JKK��L�M

19 = G5<5 ; 																								0. !.												 "                                                               (2.1) 

 

Where, N� = ∑ ���? − 	�� + ��� − =�����<� − 	��; 		# = 1, 2<�?Q� . 

We know that  
�G5�5  and 

�G>�>  follow R� distribution with 2=� and 2=� degrees of freedom 

respectively. 

 

To test BC, we use the statistic S = <><5 . G5G>  which follows F distribution with �2=�, 2=�� 

degrees of freedom. So, the required test is to reject BC at 100T% level of significance, 

if S < S� or S > S� where S� = S��2=�, 2=�� and S� = S��2=�, 2=�� are the lower and 

upper 
W� quantiles of F distribution with 2=� and 2=� degrees of freedom. 

Thus 
178  can be written as: 

 


178 = 			 F 
1- = G5HG><5H<> ; 						#�	S� ≤ <><5 . G5G> 	 ≤ S�

19 = G5<5 ; 																																0. !.												"																																																													(2.2) 

 

The risk of 
178  has been derived in the next section. 

 

3. Risk of 
178 

 The joint density of N� and  N� is given by 

 X�N�, N�� = K��N��<5���N��<>����� *− YN�
� + N�
�Z0 

 

WhereK� = �[�=��[�=���
��<5���
��<>����� 

 

Now let us make following transformations 

 � = N� + N� → N� = ]^�H^_ = G5G> → N� = ]�H^ 	with	jacobian	|k| = ]��H^�>																																																																�3.1) 

 

Then the joint density functions of �and _ is; 

 X��, _� = K� ]l5ml>n5^l5n5��H^�l5ml> ��� �− ]�H^ +�̂5 + ��>,�                                                    (3.2) 
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Again let us make the following transformations 

 N� = N�, _ = G5G> → N� = G5̂ 	with	jacobian	|k| = G5^>                                                (3.3) 

 

Therefore, the joint density function of �N�, _� is; 

 X�N�, _� = K� G5l5ml>n5^l>m5 ��� �− G5̂ +�̂5 + ��>,�                                                          (3.4) 

 

Now, the risk of 
178 under general entropy loss function &'�
1, 
� can be defined as: 

 

		o'�
178� = 							
pqq
qqr

*s s t��(u�5 �- − �/� ��(u�5 � − 1v∞Cw>w5 X��, _�M�M_0
+		*s s t��(x�5 �- − �/� ��(x�5 � − 1v∞C∞C X�N��X�_�MN�M_0

−			*s s t��(x�5 �- − �/� ��(x�5 � − 1v∞Cw>w5 X�N��X�_�MN�M_0yzz
zz{														(3.5) 

 

A straightforward integration of (3.5) gives us 

 

 

o'�
178� =

pq
qq
qq
qq
qq
qr |�<5H<>H-�}6|�<5�|�<>��<5H<>�6 s ^l5n5��H^�6��H}^�l5ml>m6 M_l5l>w>l5l>w5+� Y�/��=� + =�� − /��=��� +~�>�=�, =�� − ~�5�=�, =��,Z+ |�<5H-�|�<5��<5�6 ����=� + =�� − /��=���+����=� + =�� − ��=��� − 1− |�<5H-�|�<5��<5�6 ~�>�=�H-, =��

−� }l5��<5,<>� s /� +�H}^}^ , ^l5n5��H}^�l5ml> M_l5l>w>l5l>w5 yz
zz
zz
zz
zz
z{

                  (3.6) 

 

Where, �� = =�S��=� + =�S�� , �� = =�S��=� + =�S�� ���� is Euler’s Psi function. 

 ���� = ��] /��[���� , ���, �� = |���|���|��H��  

and	~�N, �� = s �n�]6n5�]��s �n�]6n5�]∞� ; refers to the standardized incomplete gamma function. 
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4. Risk Comparison 

 A natural way of comparing the risk of the proposed sometimes pool 

testimator 
178, is to study its performance with respect to the best available estimator 
19 for this purpose we obtain the risk of conventional estimator 
19 under &'�
,( 
� as:  

 o'�
19� = t*s s t��(x�5 �- − �/� ��(x�5 � − 1v∞C∞C X�N��X�_�MN�M_0v                             (4.1) 

 

A straightforward integration of (4.1) gives us: 

 o'�
19� =
� |�<5H-�|�<5��<5�6 − ����=� + =�� − /��=���+����=� + =�� − ��=��� − 1 �																																																																																(4.2) 

 

Now define the relative risk of 
178 with respect to 
19 under &'�
,( 
� as follows 

 o� = ����(x�����(�u�                                                                                                           (4.3) 

 

Using (3.6) and (4.2) the expression for o� given in (4.3) can be obtained; it is observed 

that o� is a function of	=�	,=�, p, � and ∝. To observe the behavior of o� we have taken 

several values of these viz. ∝= 1%, 5%, 10% and 16%, �  represents the life ratio and  

has been allowed to vary as � = 0.2�0.2�1.0. ‘�’ which is the shape parameter for the 

loss function is prime important factor and decides about the overestimation/under 

estimation in the real life situation has been taken as	� = ±1.0�±1.5� ± 3.0. We have 

considered several values of =� and =� which are given in the following tables (table 4.1 

when =� < =� and table 4.2 when=� > =�) to observe the performance ofo�. Some 

graphs of o� for the data considered above are provided in the appendix. However, our 

conclusions based on all the graphs are given in the next section. 

 

Table 4.1 ��� < ��� Table 4.2 ��� > ��� �� �� �� �� 

4 

6 

8 

8 

8 

10 

8 

8 

10 

4 

6 

8 

 

5. Conclusion 

  The relative risk calculations for these different values of  =�, =�, p, � and ∝ 

are made and these values show that the proposed testimator 
178 of scale parameter �
�� fairs better than the unbiased estimator of the same for almost all values of � (life 

ratio) considered here. Practically whenever � (life ratio) is greater than or equal to 0.5 
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it definitely performs better. While using the sometimes pool estimator a quantity of 

interest is the level of significance ‘T’ and while using the asymmetric loss functions 

the quantity of interest is the degree of asymmetry, so here we have fixed ‘T’ and 

allowed the variations in �s
 and then we have fixed ‘�’ and allowed the variations in ∝s

. 

Values of o� is maximum at ∝= 1% and when  � = 3.0, however, for other values of 

‘�’ also the values of o� > 1 indicating that the proposed estimator is better. Next we 

consider  the  negative  values  of   ‘�’ and it is  observed that for   � = −1.0		&−3.0 

and ∝= 1% the maximum gain is obtained in the values of o�, it is also noticed that for 

other negative values of ‘�’ the behaviour is same i.e. 
178 dominates 
19 but the 

reported values correspond to the maximum gain (in terms of relative risk). It is also to 

be remarked that behaviour is same for =� > =� and =� < =� situations however it is 

noticed that the magnitude of o� is lower in case for	=� > =�. 

 

 So, in the present study it is concluded that a lower level of significance 

i.e.∝= 1% yields better results when overestimation is more harmful than 

underestimation i.e. � = 3.0, however the same level seems to be better for � =−1.0		&−3.0 (but now with a changed magnitude of degree of asymmetry). Therefore 

estimation of 
178 using general entropy loss function gives better control over error in 

both over estimation/underestimation situations. 
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Appendix 
 

(1)  1 24, 8, 3.0r r p= = =    

 

(2)  1 24, 8, 1%r r α= = =    
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(3)  1 24, 8, 1.0r r p= = = −

 

(4)  1 24, 8, 1%r r α= = =    
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(5)  1 26, 8, 3.0r r p= = =   

 

(6)  1 26, 8, 1%r r α= = =    
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