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Abstract

In the present paper, we consider an M/M/1/N queueing system with environmental,
catastrophic and restorative effects. It is found that the change in the environment affects the state
of the queueing system. The system as a whole suffers occasionally a disastrous breakdown in
both the enviormentle conditions, upon which all present customers are cleared from the system
and lost. A repair process then starts immidiately. Here the repair time is called the restoration
time. During the repair time the customers may arrive in the system. Time dependent solution is
obtained by using probability generating function technique and further the steady state
probabilities of system size are also derived. Some measure of effectiveness and particular cases
of the model have also been derived and discussed.

Key Words: Markovian Queueing System, Catastrophes, Environmental Effects, Restoration,
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1. Introduction

In this paper, we consider a simple Markovian Queueing system with
Environmental, Catastrophic and restotative effects. Due to the simplicity of
Markovian queues, a number of authors have considerd them and obtained the time
dependent as well as the steady state solution. During the last four decaydes the
attention has been focused on the effect of catastrophe. The random occurrence of
catastrophe destoyes all the customers. A wide littreture is avialable for the queueing
model with the possibility of catastrophes [Brockwell (1985), Jain (2010), Chao
(1995)]. Queueing models with catastrophes may be suitable to be applied in many
practical situations like computer communication, biological sciences and agricultural
sciences etc. B. Krishna Kumar et al. (2000) obtained the time dependent solution of
the catastrophic queues and after that a number of authors have generlized their ideas.
Di Cresenzo (2003) have showed that the catastrophic queues may be suitable to
approach in biological sciences, concerning the intraction between myosin heads and
actin filaments that is responsible for force generation during muscle contraction. We
found that the environment plays a very impotant role in queueing theory(2006). The
state of the environment affects the state of the queueing system. When there is a
change in the environment, the queuening system behavea like a catastrophic queue.
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The direct application can be described to a biological phenomenon that there are many
creatures such as cochroaches, ants etc. whose movement is restricted with the change
of temperature (environment). As the temperature drops below a critical temperature

say 1, , the movement (production) of such like creatures becomes almost zero . On

the other hand, as the temperature goes higher than 7|, the movement becomes normal.

So far it is assumed that when catastophe occurs, the system will operate instantly. But
in many practical situation it is found that the system does not work in a normal way
immidiately when suffered from catastrophe. We found that the system will take some
time for its refunctioing (2007). This repair time is called the restoration time. During
the repair time it depends upon the customer wether he joins the sytem or not. In this
paper, we consider that when a customer arrives during the repair time, he must join the
system and wait for service until the repair process is over . We analyze the model and
obtain the time dependent solution by using probability generating function technique.
Further the steady state probabilities of system size are also derived. Some measure of
effectiveness and particular cases of the model have also been derived and discussed.

2. Assumptions and Definitions

e The customers arrive in the system one by one in accordance with a possion
process at a single service station. The arrival pattern is non-homogeneous, i.e.

there may exist two arrival rates, namely ﬂq and O of which only one is

operative at any instant.
e The customers are served one by one at a single channel. The service time is

exponentially distributed. Further, corresponding to arrival rate /7,,, the

possion service rate is £ and the service rate corresponding to the arrival rate
0is (e, .

e The state of the system when operating with arrival rate ﬂ,, and service rate
M, is designated as E whereas the other with arrival rate 0 and service rate

M, is designated as F.

e The Possion rates at which the system moves from environmental states F to E
and E to F are denoted by & and [F respectively.

e The catastrophe occur according to a poisson process with rate { . The effect

of each catastrophe is to make the queue instantly empty.

e The restoration times are independently identically and exponentially
distributed with parameter 77 . The customers may arrive during the restoration
time.

e The queue discipline is first-come-first-served.

e The capacity of the system is finite to M 1i.e., if at any instant there are M
units in the queue then the units arriving at that instant will not be permitted to
join the queue, it well be considered lost for the system.
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Define,
F,,(t)= Joint probability that at time 7 the system in state E and there are zero
customers in the system without the occurrence of catastrophe.

Oy (t) = Joint probability that at time ¢ the system in state F and there are zero
customers in the system without the occurrence of catastrophe.

Py, (t) = Joint probability that at time ¢ the system in state E and there are zero
customers in the system with the occurrence of catastrophe.

Qoo () = Joint probability that at time ¢ the system in state F and there are zero

customers in the system with the occurrence of catastrophe.
Where

Fy=Fy+Fy and Q=0+ 0O

P (t) =Joint probability that at time t the system is in state E and n units are in the
queue,including the one in service.

O, (t) =Joint probability that at time t the system is in state F and n units are in the
queue,including the one in service.

R (¢)=The probability that at time t there are n units in the queue, including the one in

service.

R,()=F0+0,@) [1]

Let us reckon time ¢ from an instant when there are zero customers in the queue and
the system is in the environmental state E so that the initial conditions associated with

P (t) and Q, () becomes,
1; n=0
P (00)=1<0; otherwise

0,(00)=0; Vn [2]
Equations Governing the System

LR (1)= =+ B+ IR+ R0+ 60 (041 (1) o

B0 =~ 4 € 1) P10+ Y P0)+ 00 (1) o
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CRO=h 4+ f+ RO PO+ AP, O+ 0,0 1
B 0=~ + f+ P 0+ APy 0+ a0, (1) 6
£ 00(0) =@+ 6)00(0) + 10,0+ PP 1)+ 0,1 o
e Oun (=414 )00+ Py (06 30,0 )
£0,(0=~(t +a+ 0,0+ i0,., O+ ARWO<n<M o
0,0 =~ 4@+ )0, (04 P, (050 = M (10

3. Transient Analysis
Let, the Laplace Transform of f'(¢) be

f(s)=[e™ f()dt [11]

0
Taking Laplace tranform of the equation [3] to [10] and using the initial conditions
[2], we get

Py (8)=1=~(4 + B+ ) By (s) + 1B (5) + a0y (5) + 1B () [12]
5Py (8) = —(A + B+E +1) Py () + & D P, (5) + 000 () [13]
(S +ﬂ'| + 4 +ﬂ+é’)Fn(S) = ﬂlﬁwrl(s)"'ﬂ'lﬁml(s)"’ag(s); [14]
(s_+u1+ﬂ+§)ﬁM@_)=il13M_1§)+a§M(s) B [15]
504 (8) = —(& +&)00 (5) + 1,0, (s) + BBy (5) + 11040 (5) [16]
$Oun(8) = =(&+17+ &) Quo () + Boaa () + € D 0, () [17)
(s+ 1, +a+)0,(5) = 11,0,,,(s) + BP,(s); [18]
(s+ 1, +a+¢)0,,(s)= BB, (5); [19]

Define, The probability generating function by ,

M
P(z,5)= 21_3” (s)z" [20]
n=0
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0(z,8)= 2 0,(s)z" [21]

R(z,s)= iﬁn (5)z" [22]
where "

R(z,s)=P(z,5)+0(z,s) [23]
and

R,(5)=PF,(s)+0,(s) [24]

Multiplying [12] to [15] by z", summing over the respective region of n and using
equations [20] to [22], we have

[(s+ 4+ B+E+m)z— 4z = 1]P(z,5) —0z0(z,5) + 14, (1= 2) By ()
—A(1-z2)P, (s)z"" —Z—Z{iﬁn(s) =0 [25]

Multiplying [16]-[19] by z", Summing over the respective region of n and using
equation [20]-[22],we have

[ty =25+ st + @+ )O(2,5) + feP(2.5)+ €23 0, () = 1,0, (8)(1-2) = 0

[26]
From [25]

zQ(z,5) =t (1= 2) R () + A (1= 2) B, (5)z"" + 2+ JZiE (s)

P(z,s)= >
[z(s+ 4 +m+B+E)— A4z — ]
From [26],
1, (1= 2)0y(8) = BzP(z,5)~ ¢z ) O, (s)
0(z.5) =

[, —z(s+ 1, + @+ )]
Putting the value of Q(z,s) in [25]

P(z,5) = a2ty (1= 2)0, () ~ a2’ Y 0,() = i (1= DB )ty = 25+ 1 +

+;)]+/11(1_Z)E\4(S)ZM+I[/U2_Z(S+ﬂz ta+Q)]+zlpu, —z(s+ pu, +a

SO GEY RSty =25+t + @+ OVI(s + 4y + 4+ f+{) = A2’
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-1, _Z(S+,u2+a+§)+ﬂzza]

[27]
Putting the value of P(z,s) in eq.[26],

0(z,9) = t,(1-2) Bz () + p, (1= D[(s + A + B+ & + p1)z = 22" — 11,10, (5)
_ﬂﬂ’l(l_z)ﬁM (S)ZM+2 _ﬂzz —ﬂzzé'Zﬁrl(s)—l—é'Z[ﬁlzz +u—(s+ 4

+ B+ ¢+ )z 0, () faz’ + [y —2(s + pryr + M5 + 4

+ B+ E )z =zt — ] [28]
Now From [23] we have,
R(z,s)=P(z,5)+0(z,s)
R(z,s) = azpt, + p, (s + 4, +,[)’+§’+,ul)z—/1122 _ﬂ1](1_2)§0(s)

—é’zzgn(s)[ﬂ,,zz —z(s+ A4+ + B+ + p —oz]
—(1=2) R ()z(s+ py + @+ ) = gty + 21+ (1= 2) P, () A2 1y

—2(s+ 4 +0!+§)—ﬂ112M+2]+§Z§‘E(S)[ﬂz —z(s+u,ta+g) - pr]

tzlp, —z(s+p, +a+ &)= B2t =275  +s[Az =27 (A + g, + i+

F20) 42t + )~ 2C B+ a+ &)+ (1= )2 (py + a+ &) +
+ (i + 4+ B+ O] - ] [29]

The unknown quantities in [29] are determined as follows:
Setting z=1, in [27] and [28] respectively, we have

=M— _ (s+a+9)
P(1,s) ;Pn(s) GiBraiD) [30]
0(1,5)=>0,(s) = p [31]

o s(s+p+a+d)

Further, [29] is a polynomial in z and exists for all values of z, including the three zeros
of the denominator. Hence B, (s), O,(s), R, (s) are obtained by setting the

numerator equal to zero and substituting the three zeros a,, a,, a,(say) of the

denominator (at each of which the numerator must vanish).The Laplace transform of
various state probabilities for the number of units in the queue, including the one in
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service can be picked up as the co-efficient of the different powers of z in the expansion
of [29].

Particular Case
Now letting @ —>©,f —> 00 and setting £ =/,=4 (say) in [29], we have

r(z,8) = (1= 2)[R(s)+ 0 ()]~ 42" (1-2)P, ()~ 2~ Zé“[zﬁn (s)

+ i@(s)]//llzz —z(s+ A+ pu+C)+ u

n=0

u(1=2)Ry(5)= 42" (1= 2)B, () -2 &
S

r(z,s)= 5
Az —2(s+ A+ pt)+u

[32]

where

Ry(5)= Ry () + 0y (s)

r(z,5) =lim[lim R(z,s)]

P00 a—>wx
[32] is a polynomial in z and exists for all values of z,including the two zeros of the
denominator.Hence, the unknown quantities R,(s) and P, (s) can be evaluated as

before.

4. Steady State Results
This can at once be obtained by the well-known property of the Laplace
transform given below:
lim f(¢) =1imsf(s) lcm[By final value theorem]
t—0 s—0

if the limit on the left hand side exists.

Thus if
M
R(z)= ZRHZH
n=0
where

R, =1im SR, (s)
Then

M - M
R(z)= ZHH(}SRH (s)z" = 1jn(}SZRn (5)z"
n=0 5> s> n=0

R(z)= 1jn(}sR(z,s)

and
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M M M
dR,=>DP+>0, =1 [33]
n=0 n=0 n=0

By employing this property, we have from [29]

R(z)= 1irr01sR(z,s)

R(z)= p,(1-2)[az + (4 +/8+§+/u1)2_}“122 - 110, +[&z/(a+ B

+ONBAZ =20+ + B+ C+ o)+ + (1) Bl Sz — 2(u,

+a+ O+ (=242 B, [, —2(u, + a+8) = fel+[z(a + (e

+ B+, =2y +a+ &+ P2 Ao+ py +§) = 2° [ A (a+ 1, + &)

oy + (Al + p+ B+ O+ G (a+ B+ O]+ 2 {ouy + i, (4 + 14+ B
+O ] [34]

or, we can write,
R(z)= T(2)Q,+N(z)Py+L(z)P, +M(z) 35)
K(z)
where T (z), N(z) and L(z)are the coeffcients of (,, F, and P,, respectively in

the numerator of [34] and K(z) is the denominator of [34]. [35] is a polynomial in z

and exists for all values of z, including three zeros of the denominator. Hence Qo , P0
and P, can be obtained by setting the numerator equal to zero. Substituting the zeros
b1 , b2 and b3 (say) the denominator (at each of which the numerator must vanish).

Now, three equations with the constants Qo , Po and PM are

T(b,)0,+ N(b)P,+L(b)P, =-M(b,) [36]
T(b,)0, + N(b,)P, + L(b,)P,, =—M (b, [37]
T(b,)0, + N(b,)P, + L(b,)P,, =M (b) [38]

we Know that,

AX =B

T(bl) N(bl) L(bl) Qo _M(bl)
T(bz) N(bz) L(bz) Po _M(bz)
T(bs) N(b3) L(bs) PN _M(b3)

then,
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All _AZI A31
Ad]'A 1 _AIZ Azz A32

A=Y
I | I T S

After some calculation, we have

- AllM(bl) + Ale(bz) - A31M(b3)

&) y
P = Ale(b1) — AzzM(bz) + AszM(bz)
0
A

— A13M(b1) + A23M(bz) — A33M(b3)

P, y

where,

T'(h) N(b) Lh)
A=|T(b,) Nby) Lby)
T'(bs) N(bs) L(by)

A, is the co-factor of the (i, /)" element of A.

By putting the values of Q,, F, and P,, in equation (4.35), we have

R(2) = {T(z)[-M (b)) 4, + M (b,) Ay, — M (b,) A, 1+ N(2)[M (b)) 4,,
— M (b)) Ay, + M (b)) Ay, 1+ L(2)[-M (b)) A5 + M (b,) 4,
— M (b)) A1+ AM(2)}/A.K(2) [39]

4.1 Mean Queue Length
Define,
L g =Expected number of customers in the queue excluding the one in service.

then
L, =[R'(2)]..,

Therefore from equcation [39] we have,

L, = KT (){=M(b) A4, +M(b,) A, —M (by) Ay, }+ N' (DM (b) A,
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- M(bz )Azz + M(b3 )A32] + L’( 1 )[_M(bl )A13 + M(bz )A23 - M(b3 )A33]
+ AM'(I)] - T(l)[_M(bl)All +M(b2)A21 _M(b3)A31] + N(l)[M(bl)AIZ

- M(bz)Azz + M(b3)A32] + L(l)[_M(bl)AB + M(bz)Az3 _M(b3)A33]

+ AM(l)]AK'(l)/A[K(l)]2 [40]
where dashes denotes the first derivative with respect to z.
Particular Case

Relation [32], on applying the theory of Laplace transform gives
= —= z
H(1=2)Ry(5) A" (1-2)By ()~ 2~ &
S

r(z,s)= 5
Az —z(s+ A+ + )+ u

_ u(1-2)R, -2 (1-2)P, - &

r(z) ;
Azt =2+ + G+ p

[41]
where

r(z) =limsr(z,s)

s—0

and

R, = limSRO(S),PM = limsP,, (s)

s—>0 s—0

[41] is a polynomial in z and exists for all values of z, including the two zeros of the
denominator. Hence R, and P,, can be obtained by setting the numerator equal to
zero. Substituting the two zeros @, and @, (say) of the denominator (at each of which

the numerator must vanish). Equating the denominator with zero, we get two roots @,

and a, .

Ak Uk §) 4
1 2/1'

G )t a4 ) —4dp
2 221

Putting the two zeros @, and @, (say) of the denominator (at which the numerator must
vanish).
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Two equation determining the constants R, and P, are,
u(l—a)R, - Aa'"'(1-a,)P, = (a, [42]
ﬂ(l_az)Ro_/’l'laéMH(l_az)PM =¢a, [43]

On solving these equations. we have

(g, —a,) ga, A oma 44,
P, =—A—2_ gnd R, =—22 470
M alM+1 _aé\/H—l 0 (l—az),u u 2 aé\“l _alM+1
Now from [41], we have
M M- My
r(z)=§+(1 A4 (1=a))P,(a, +a, z+..+z )z(i), (4]

Aa(1-a,) i—0 4

if £ =0 (i.e no catastrophe is allowed) then from equation [41] we have,

_ (,URO — ﬁ“lZMHPM)
T 2 !

The condition, [im7(z) =1 gives,

z—1

URy = AP, = -4 [46]

As 1(z) is analytic, the numerator and denominator of [45] must vanish simultaneously

for z = u/ /1,, which is a zero of its denominator. Equating the numerator of equation

[45] to zero for z = /A, we have,

Ry=p By p="1<1 (7
y7,
Putting the value of P, in [46] from (47), we get
l-p
R, = 1T
so, from [47]
l-p
s
from [45], we have
1 _ 1 _ M+1
()= L) ]
l-p l-pz

which is a well known result of the M/M/1 queue with finite waiting space M.
When there is an infinite waiting space, the corresponding expression for r(z) is
obtained by letting M tends to infinity in [48], if Max(p,modz) <1.
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1 —
rz)=—F [49]
1-pz
which is again a well-know result of the M/M/1 queue with infinite waiting space.

Concluding Remarks

In the present paper, we consider a simple finite capacity Markovian queueing
system with environmental, catastrophic and restorative effects. The direct application
of the model can be described to a biological phenomenon that there are many creatures
such as cochroaches, ants etc. whose movement is restricted when we put up a sepray
on them (catastrophes) and also with the change of temperature (environment). As the

temperature drops below a critical value say 7, , the movement (production) of such
creatures becomes almost zero . On the other hand , as the temperature goes higher than
T,,, the movement becomes normal.
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