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Abstract 

 Bayesian estimation of reliability of a component, )()( tXPtR ≥= , when X  

follows two-parameter geometric distribution, has been considered. Maximum Likelihood 

Estimator (MLE), an Unbiased Estimator and Bayesian Estimator have been compared. Bayesian 

estimation of component reliability )( YXPR ≤= , arising under stress-strength setup, when 

Y  is assumed to follow independent two-parameter geometric distribution has also been 

discussed assuming independent priors for parameters under different loss functions. 

 

Key Words: ML Estimator, Quasi-Bayes Estimate, Unbiased Estimator. 

 

1. Introduction 

 Various lifetime models have been proposed to describe the important 

characteristics of  lifetime data. Most of these models assume lifetime to be a 

continuous random variable. However, it is sometimes impossible or inconvenient to 

measure the life length of a device on a continuous scale. In practice, we come across 

situations where lifetimes are recorded on a discrete scale. Discrete life distributions 

have been suggested and properties have been studied by Barlow and Proschan [1]. 

Here one may consider lifetime to be the number of successful cycles or operations of a 

device before failure. For example, the bulb in Xerox machine lights up each time a 

copy is taken. A spring may breakdown after completing a certain number of cycles of 

‘to-and-fro’ movements. 

 

 The study of discrete distributions in lifetime models is not very old. Yakub 

and Khan [11] considered the geometric distribution as a failure law in life testing and 

obtained various parametric and nonparametric estimation procedures for reliability 

characteristics. Bhattacharya and Kumar [2] have considered the parametric as well as 

Bayesian approach to the estimation of the mean life cycle and that of reliability 

function for complete as well censored sample. Krishna and Jain [3] obtained classical 

and Bayes estimation of reliability for some basic system configurations.  

 

The geometric distribution [abbreviated as )(θGeo ] is given by 

 =−== xxXP x ;)1()( θθ 0, 1, 2,……..;     10 << θ  
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and the component reliability is given by 

 ( ) ;tR t tθ= = 0, 1, 2,………..            (1) 

 

Modeling in terms of two-parameter geometric and estimation of its 

parameters and related functions are of special interest to a manufacturer who wishes to 

offer a minimum warranty life cycle of the items produced. 

 

The two-parameter geometric distribution abbreviated as ),( θrGeo ] is given by 

;)1()( rxxXP −−== θθ  ,....2,1, ++= rrrx  10 << θ  and ∈r {0, 1, 2,…..}        

and the component reliability is given by 

;)( rttR −= θ  ,.........2,1, ++= rrrt            (2) 

 

The continuous counterpart of geometric (i.e. exponential) distribution, one-parameter 

as well as two-parameter is considered by a host of authors (see ref. Sinha [10]). 

  

 In the stress-strength setup, )( YXPR ≤=  originated in the context of the 

reliability of a component of strength Y subjected to a stress X . The component fails if 

at any time the applied stress is greater than its strength and there is no failure when 

YX ≤ . Thus R  is a measure of the reliability of the component. Many authors 

considered the problem of estimation of R  in continuous setup in the past. In the 

discrete setup, a limited work has been done so far. Maiti [4] has considered stress (or 

demand) X  and strength (or supply) Y as independently distributed geometric random 

variables, whereas Sathe and Dixit [9] assumed as negative binomial variables, and 

derived both MLE and UMVUE of  .R  Maiti and Kanji [7] has derived some 

expressions of R using a characterization of )( YXP ≤  and Maiti ([5], [6]) 

considered MLE, UMVUE and Bayes Estimation of R for some discrete distributions 

useful in life testing. 

 

If X  and Y follow two-parameter geometric distributions with parameters ),( 11 rθ
and ),( 22 rθ  respectively, then 

  
δρθ 2=R  for 0>δ  

       
δθρ −−−= 1)1(1  for ,0<δ                     (3) 

 where 

21

1

1

1

θθ
θ

ρ
−

−
= and .21 rr −=δ  

The objective of this article is to compare the estimates of reliability for mission 

time as well as stress-strength set up for two-parameter geometric distribution. The 

paper is organized as follows. In section 2, we have summarized MLE, Unbiased 

Estimator (c.f. Maiti et al. [8]) and derived Quasi-Bayes estimate of )(tR  under 

different loss functions assuming conjugate priors for the parameters involved. We 

attempt Quasi-Bayes estimate since derivation of posterior distribution seems to be 

intractable. Different scale invariant loss functions are considered, viz., squared error 

loss, squared log error loss, Modified Linear Exponential (MLINEX) loss, Absolute 
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error loss and the corresponding estimates have been compared. We have discussed 

MLE, Unbiased Estimator and Quasi-Bayes estimates of R in section 3. All 

comparisons have been made through simulation study in section 4. Section 5 

concludes. 

 

2. Inference on )(tR  

Let  ),....,,( 21 nXXX  be a random sample from ),( θrGeo .  Maximum Likelihood 

Estimator of r  and θ  are )1(X  and 
Sn

S

+
 respectively, where )1(X  is smallest 

observation among nXXX ,....,, 21  and .)(
1 )1(∑ =

−=
n

i i XXS  ML Estimators of 

)(tR  is given by 

  1)(ˆ =tRM          for )1(Xt ≤  

                 

)1(Xt

Sn

S
−







+

=   for .)1(Xt >  

Here ( )SX ,)1(  is sufficient statistic for ),( θr , but it is not complete (c.f. Maiti et al. 

[8]). 

For ,1=n  

   ( ) 1,| )1( =SXxf  

For 2=n   

   ( )
2

1
,| )1( =SXxf    if )1(Xx =  

                
2

1
=   if  SXx += )1(  

For ,3≥n  ,nS <  

( ) ( )
( ) 







 −+









−−

−+−−
=

S

nS

XxS

nXxS
SXxf

12
,|

)1(

)1(

)1(      

                                                                                          if SXxX +≤≤ )1()1(  
 

    =  0    otherwise 

 

For ,,3 nSn ≥≥  

( ) 
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−
−
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 −+
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,| )1(
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nS
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       if ( ) SXxnSX +≤<−−+ )1()1( 1  

= 0    Otherwise. 

 

Hence, using the Rao-Blackwell theorem, an unbiased estimator of )(tR  is given as 

follows: 

For ,1=n   

   ( ) 1ˆ =tRU  if )1(Xt ≤  

                 0=  if .)1(Xt >  

For ,2=n  

   ( ) 1ˆ =tRU  if )1(Xt ≤  

                
2

1
=  if SXtX +≤< )1()1(  

                 0=  if SXt +> .)1( . 

For 3≥n  and ,nS <  

( ) 1ˆ =tRU  if )1(Xt ≤  

 
( )
( )∏∑

−

=

+

= −−++

−−++

−++
−

=
2

1 )1(

)1(

)1( 1

1

1

1)1( n

j

SX

tx jnSX

jxnSX

nSX

n
  

    if SXtX +≤< )1()1(  

 = 0    if ..)1( SXt +>  

 

For 3≥n  and ,nS ≥  

( ) 1ˆ =tRU  if )1(Xt ≤  
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= 0    Otherwise. 

 

We obtain the Bayes estimates of the parameters under the assumptions that 

the parameters θ  and r  are random variables. It is assumed that θ  and r  have 

independent beta and Poisson priors as follows: 

( )
( )

( ) ;1
,

1 11 −− −= qp

qpB
θθθπ  ,10 << θ  0, >qp  

and  

( ) ;
!r

er
rλ

φ λ−=   =r 0, 1, 2…  

Here ( ) ( )∫
−− −=

1

0

11 .1, θθθ dqpB
qp

  

The joint distribution of θ  and r  given observations is given by 

( ) ( ) ( )θπθθ ,.,||, rrxLXrg =  

 ( ) ( )

( )
( )

!
.1

,

1
.1

111

r
e

qpB

r
qprxn

n

i i λ
θθθθ λ−−−−
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( ) ( ) ( ) ;
!

1|,
11)1(

r
eXrg

r
qnprXnS λ

θθθ λ−−+−+−+ −∝  ,10 << θ   

      )1(,.......2,1,0 Xr = . 

The posterior distributions of  θ  and r  are as follows: 

( )
( )( )

( )( )∑ =

−

−
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0 )1(
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and 
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( ) ( ) ×−= −+−++ 11

)1(2 1,| )1( qnpnXS
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Derivation of posterior distribution of )(tR  seems to be intractable. 

Therefore, Quasi-Bayes estimates of these expressions by substituting Bayes estimates 

of the parameters involved have been obtained. Comparisons have been made through 

simulation study. Some scale invariant loss functions have been considered to get 

Bayes estimates of θ  and r . These are summarized in the following discussion. 
 

2.1 Squared Error Loss 
 

The loss function is given by 

  ( )
2

1 1, 






 −=
α
δ

δαL  

and estimates of θ  and r  are  
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respectively. 

 

2.2. Squared log error loss 
 

The loss function is given by 

( ) ( )
2

2

2 lnlnln, 






=−=
α
δ

αδδαL  

and estimates of  θ  and r  are 
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where  ( ) ( )( ) ( )( )[ ]nqpwXnSpwXnSwI +++−+−+−+= )1()1( ψψ  

and ( )uψ  is digamma function. 
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2.3 MLINEX 
 

The loss function is given by 

( ) 0,0;1ln,3 >≠
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= ccL γ
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and estimates of  θ  and r [assuming 1=c ] are 
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and ( )[ ] ,,|ˆ
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Particular Case: when ,1=γ  we have Entropy loss function. Then 
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2.4 Absolute error loss 
The loss function is given by 
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To get the Bayes estimate of r , we have to solve the following equation for .M  
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3. Inference on R 

 Let ( )
1

,......, 21 nXXX  and ( )
2

,......,, 21 nYYY  be random samples from 

( )11 ,θrGeo  and ( )22 ,θrGeo  respectively. ( )
1)1( ,SX  and ( )

2)1( ,SY  are defined in 

the same way as in section 2. Hence ML Estimator of R is given by 
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where, 1)1(1 SXW += , .2)1(2 SYW +=  The variance of this unbiased estimator will 
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 Derivation of 

posterior distribution of R  in this case seems to be intractable. Therefore, Quasi-Bayes 

estimates of R by substituting Bayes estimates of the parameters derived in section 2 

have been found out. 

 

4. Simulation and Discussion 
We generate sample of size n and on the basis of this sample, calculate MLE 

and UE and Quasi-Bayes estimate of ( )tR  and their Mean Squared Errors (MSEs). 

10000 such estimates have been calculated and results, on the basis of these estimates 

have been reported in Tables 1-4.  In each table, there are six rows in average estimate 

of reliability and their MSEs. Information reported as 1st row: MLE, 2
nd

 row: UE, 3
rd

 

row: Bayes estimate under squared error loss, 4
th

 row: Bayes estimate under squared log 
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error, 5
th

 row: Bayes estimate under entropy loss, 6
th

 row: Bayes estimate under 

Absolute error loss. Each table has been prepared considering different choices of a 

particular parameter, keeping others fixed at initial set up. All simulations and 

calculations have been done using R-Software and algorithms used can be obtained by 

contacting the corresponding author. 

 

Maiti et al. [8] have reported that MLE of ( )tR  perform better in mean square 

error sense if 5.0)(02.0 << tR ; otherwise UE performs well. From tables 1-4, it is 

observed that quasi-Bayes estimates are better than MLE as well as UE in all most all 

cases. Among four quasi-Bayes estimates, the estimate under squared error loss seems 

better, whereas the estimate under absolute error, the performance is not encouraging. 

 

We also generate samples of size 
1n  and

2n , and on the basis of these 

samples, calculate MLE and UE and Quasi-Bayes estimate of R and their Mean 

Squared Errors (MSEs). Here, we take ,1021 == nn  and 1000 estimates of R have 

been taken for calculating MSEs [Tables 5-6]. Maiti et al. [8] have reported that UE of 

R  perform better in mean square error sense for extreme low and high reliable 

components; in other cases, MLE is better. But in all most all case, quasi-Bayes 

estimates are better. 

 

5. Concluding Remark 
This paper takes into account the Bayes estimation aspect of reliability with 

two-parameter geometric lifetime. The continuous distributions are widely referenced 

probability laws used in reliability and life testing for continuous data. When the lives 

of some equipment and components are being measured by the number of completed 

cycles of operations or strokes, or in case of periodic monitoring of continuous data, the 

discrete distribution is a natural choice. Bayesian Estimation procedures have been 

worked out for estimating reliability assuming independent priors for parameters under 

different loss functions. In all most all cases, quasi-Bayes estimates of reliability are 

better in mean square error sense. Some other distributions that are used as discrete life 

distributions are to be considered and their Bayes estimation aspect of reliability are to 

be attempted in future.  
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t Reliability Avg. Estimates MSE 

  0.3166573 0.006389343 

  0.324255 0.00666498 

20 0.32768 0.3196006 0.005297303 

  0.3256051 0.005139682 

  0.3236131 0.5139682 

  0.3328666 0.005644666 

  0.1090191 0.002340292 

  0.1079153 0.002589489 

25 0.1073742 0.1035126 0.002289946 

  0.1071390 0.002308059 

  0.1059272 0.002299524 

  0.1111683 0.002561238 

  0.03964109 0.0007162865 

  0.03618544 0.0007241272 

30 0.03518437 0.03638538 0.0005862288 

  0.03813851 0.0006180215 

  0.03754956 0.0006067526 

  0.04018129 0.0007150897 

  0.01482919 0.000193777 

  0.01198529 0.0001630661 

35 0.0115292 0.01269303 0.0001348279 

  0.01346045 0.0001460612 

  0.01320140 0.0001421481 

  0.01440264 0.0001740828 

Table 1: Average Estimates and Mean Square Errors of )(tR with n=20, r=15, p=8, 

q=2. 
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n Reliability Avg. Estimates MSE 

  0.1060938 0.00479161 

  0.1265446 0.007624039 

10 0.1073742 0.09549643 0.003795114 

  0.1042998 0.003998701 

  0.1013891 0.003922511 

  0.1330134 0.009238643 

  0.1084599 0.003447145 

  0.1217706 0.004772602 

15 0.1073742 0.1045881 0.003014518 

  0.1098457 0.003102323 

  0.1080907 0.003068467 

  0.1185306 0.004424606 

  0.1086262 0.002678777 

  0.1184946 0.003431893 

20 0.1073742 0.1041115 0.002489043 

  0.1079099 0.002514939 

  0.1066405 0.002503606 

  0.1121600 0.002841681 

  0.1080681 0.002088382 

  0.1158652 0.002549381 

25 0.1073742 0.1050123 0.001967833 

  0.1080312 0.001982178 

  0.1070225 0.001975586 

  0.1114314 0.002153514 

Table 2: Average Estimates and Mean Square Errors of )(tR with r=15, t=25, p=8, q=2. 
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r Reliability Avg. Estimates MSE 

  0.0146542 0.000238691 

  0.01405295 0.0002928919 

5 0.01152922 0.01356151 0.0001464932 

  0.01438816 0.0001601152 

  0.01410971 0.00015539861 

  0.01536586 0.0001893861 

  0.0384844 0.000921849 

  0.04098456 0.001267719 

10 0.03518437 0.03600980 0.0006123444 

  0.03781796 0.0006448308 

  0.03721048 0.0006333065 

  0.03980784 0.0007365458 

  0.1086646 0.003386037 

  0.1220295 0.004699975 

15 0.1073742 0.105009 0.002266010 

  0.1088256 0.002296038 

  0.107502 0.002283241 

  0.1130798 0.002605971 

  0.3177951 0.008842791 

  0.35122351 0.01040297 

20 0.32768 0.3101675 0.006174129 

  0.3165970 0.005882643 

  0.3144629 0.005970977 

  0.3250680 0.006599251 

Table 3: Average Estimates and Mean Square Errors of )(tR with n=20, t=25, p=8, q=2. 
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θ  Reliability Avg. Estimates MSE 

  0.03177319 0.000551296 

 0.02824752 0.03256912 0.0006866504 

0.7  0.02770768 0.000340732 

  0.02991801 0.0003669113 

 p=7, q=3 0.02917032 0.0003570654 

  0.03059155 0.000396458 

  0.1069406 0.002548496 

 0.1073742 0.1166341 0.003241387 

0.8  0.1060890 0.002650470 

  0.1098881 0.02693512 

 p=8, q=2 0.1086186 0.002676484 

  0.1142395 0.003059418 

  0.3413777 0.006712354 

 0.3486784 0.3679966 0.007528894 

0.9  0.3315982 0.006204844 

  0.3363357 0.006150177 

 p=9,  q=1 0.3347966 0.006167038 

  0.3841432 0.01139207 

  0.4763589 0.006831021 

 0.4839823 0.5050617 0.007228364 

0.93  0.4655819 0.005150811 

  0.4723362 0.005180253 

 P=13,  q=1 0.4702358 0.005167441 

  0.5644204 0.1685316 

 

 

 

0.96 

 

 

0.6648326 

 

 

p=24,  q=1 

 

0.6677073 0.005206639 

0.6918656 0.005490035 

0.6256307 0.004290399 

0.6394016 0.003793488 

0.6353227 0.00390119 

0.953012 0.1613833 

 

 

0.99 

 

0.9043382 

 

p=99,  q=1 

0.9352147 0.00497277 

0.9412775 0.002639834 

0.8405322 0.004131144 

0.8572153 0.002276667 

0.8522604 0.002768958 

0.980264 0.230441 

Table 4: Average Estimates and Mean Square Errors of )(tR with n=20, r=15, t=25. 
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 5   10  

 Reliability Avg. 

Estimates 

MSE Reliability Avg. 

Estimates 

MSE 

  0.593202 0.013734  0.103300 0.004158 

  0.589705 0.013978  0.100187 0.004813 

5 0.588235 0.593160 0.008214 0.098864 0.088356 0.002387 

  0.589218 0.007796  0.094898 0.002323 

  0.590506 0.007942  0.092725 0.002338 

  0.589435 0.008925  0.094697 0.002533 

  0.928161 0.002695  0.593680 0.012493 

  0.933117 0.003082  0.590026 0.012775 

10 0.930794 0.935221 0.001711 0.588235 0.584252 0.008245 

  0.929792 0.001753  0.580510 0.007879 

  0.931604 0.001735  0.581726 0.008002 

  0.929551 0.001922  0.580201 0.009766 

  0.984090 0.000344  0.925457 0.002877 

  0.988884 0.000283  0.930138 0.003267 

15 0.988368 0.987664 0.000160 0.930794 0.932667 0.001880 

  0.985964 0.000186  0.927189 0.001946 

  0.986543 0.000176  0.929023 0.001919 

  0.985866 0.000205  0.927168 0.002199 

  0.995580 
6.22

510−×  
 0.983920 0.000375 

  0.997830 
3.44

510−×  
 0.988676 0.000319 

20 0.998045 0.997158 
2.39

510−×  
0.988368 0.987053 0.000177 

  0.996679 
2.90

510−×  
 0.985314 0.000207 

  0.996845 
2.72

510−×  
 0.985909 0.000196 

  0.996672 
3.18

510−×  
 0.985451 0.000232 

Table 5a: Average Estimates and Mean Square Errors of R with 

3,7,3,7,10 221121 ====== qpqpnn  
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 15   20  

 Reliability Avg. 

Estimates 

MSE Reliability Avg. 

Estimates 

MSE 

  0.021989 0.000582  0.005531 
8.08

510−×  

  0.016748 0.000526  0.002837 
4.82

510−×  

5 0.016616 0.017008 0.000286 0.002792 0.003660 
2.44

510−×  

  0.019145 0.000324  0.004284 
3.04

510−×  

  0.184193 0.000310  0.004069 
2.83

510−×  

  0.019219 0.000355  0.004237 
3.30

510−×  

  0.098864 0.004131  0.019886 0.000460 

  0.095907 0.004796  0.014591 0.000423 

10 0.098864 0.095491 0.002746 0.001661 0.016505 0.000241 

  0.102057 0.002773  0.018651 0.0002736 

  0.099870 0.002757  0.017918 0.000261 

  0.101985 0.003164  0.018323 0.000297 

  0.584511 0.012804  0.102787 0.004199 

  0.580772 0.013095  0.099599 0.004870 

15 0.588235 0.593470 0.006776 0.098864 0.095308 0.002635 

  0.589606 0.006541  0.101879 0.002674 

  0.590869 0.006622  0.099684 0.002654 

  0.589494 0.011931  0.100602 0.003813 

  0.925069 0.002907  0.588104 0.013467 

  0.929745 0.003305  0.584571 0.013697 

20 0.930794 0.930670 0.001782 0.588235 0.589184 0.006215 

  0.925033 0.001879  0.585346 0.006211 

  0.926922 0.001842  0.586599 0.006222 

  0.924809 0.002638  0.578639 0.020662 

Table 5b: Average Estimates and Mean Square Errors of R  with 

3,7,3,7,10 221121 ====== qpqpnn  
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 5   10  

 Reliability Avg. 

Estimates 

MSE Reliability Avg. 

Estimates 

MSE 

  0.527212 0.017147  0.301431 0.012172 

  0.526890 0.015018  0.310643 0.011810 

5 0.526315 0.527249 0.012307 0.310478 0.309978 0.008902 

  0.526866 0.0126550  0.310687 0.009150 

  0.526997 0.012590  0.310478 0.009102 

  0.525530 0.015986  0.274773 0.013459 

  0.728055 0.011734  0.517795 0.015961 

  0.718481 0.011729  0.517974 0.014000 

10 0.720294 0.721179 0.008835 0.526315 0.524161 0.009955 

  0.719954 0.009045  0.523790 0.010837 

  0.720326 0.009006  0.523915 0.010609 

  0.749458 0.012557  0.519945 0.024380 

  0.845243 0.007065  0.725654 0.012068 

  0.838176 0.007881  0.715987 0.012066 

15 0.834836 0.826150 0.005976 0.720294 0.708335 0.007628 

  0.827784 0.0060043  0.7122060 0.008112 

  0.827390 0.0060046  0.711245 0.007982 

  0.870079 0.007777  0.756649 0.018033 

  0.909896 0.003701  0.842101 0.007403 

  0.907375 0.004407  0.834737 0.007828 

20 0.902472 0.876734 0.005034 0.834836 0.793630 0.006973 

  0.884843 0.004444  0.808061 0.006014 

  0.882684 0.004592  0.804243 0.006224 

  0.931743 0.004333  0.873130 0.009625 

Table 6a: Average Estimates and Mean Square Errors of R  with 

1,9,1,9,10 221121 ====== qpqpnn  
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 15   20  

 Reliability Avg. 

Estimates 

MSE Reliability Avg. 

Estimates 

MSE 

  0.176727 0.007721  0.104030 0.004384 

  0.185015 0.008525  0.107695 0.005208 

5 0.183515 0.192788 0.006518 0.108363 0.134013 0.004755 

  0.190298 0.006536  0.124208 0.004076 

  0.190934 0.006540  0.126825 0.004242 

  0.140342 0.009060  0.068923 0.004552 

  0.299440 0.012136  0.182073 0.008720 

  0.308754 0.011652  0.190438 0.009657 

10 0.310784 0.323621 0.008177 0.183515 0.230966 0.008483 

  0.318944 0.008760  0.214370 0.007319 

  0.320141 0.008602  0.218775 0.007569 

  0.269985 0.020795  0.142069 0.012357 

  0.528051 0.016868  0.302399 0.012456 

  0.527508 0.014852  0.311517 0.012054 

15 0.526315 0.523521 0.005220 0.310784 0.371186 0.008077 

  0.523198 0.007006  0.350055 0.007246 

  0.523318 0.006485  0.355758 0.007328 

  0.516243 0.038350  0.285457 0.031339 

  0.728946 0.012284  0.531249 0.015239 

  0.719389 0.012217  0.530590 0.013301 

20 0.720294 0.663570 0.008039 0.526315 0.521966 0.001070 

  0682566 0.007419  0.522492 0.002797 

  0.677480 0.007469  0.522351 0.002149 

  0.740730 0.028737  0.518026 0.055713 

Table 7b: Average Estimates and Mean Square Errors of R  with 

1,9,1,9,10 221121 ====== qpqpnn  


