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Abstract 
 This paper proposes the exact distribution of Jack-Knife residual which is formally 
called as external studentized residual and used to evaluate the outliers in linear multiple 
regression analysis. The authors have proved that the Jackknife residuals do not follow student’s 
t-distribution and they have explored the relationship among Jack-Knife residual, t-ratio and F-
ratio and have expressed the derived density function of the residual in terms of series expression 
form. Moreover, the new form of the distribution is symmetric, first two moments of the 
distribution are derived and the authors have computed the critical points of Jack Knife residual 
at 5% and 1% level of significance and for varying sample sizes and predictors. Finally, the 
numerical example shows that the results extracted from the proposed approach and classical 
approach are similar even though the proposed distribution of the Jackknife residuals is different.   
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1. Introduction and Related work 
 A studentized residual is the quotient resulting from the division of a residual 
by an estimate of its standard deviation. Typically the standard deviations of residuals 
in a sample vary greatly from one data point to another even when the errors all have 
the same standard deviation, particularly in regression analysis; thus it does not make 
sense to compare residuals at different data points without first studentizing. It is a form 
of a Student's t-statistic, with the estimate of error varying between points. This is an 
important technique in the detection of outliers. It is named in honor of William Sealey 
Gosset, who wrote under the pseudonym Student, and dividing by an estimate of scale 
is called studentizing, in analogy with standardizing and normalizing. Studentization is 
the adjustment consisting of division of a first-degree statistic derived from a sample, 
by a sample-based estimate of a population standard deviation. The term is also used 
for the standardization of a higher-degree statistic by another statistic of the same 
degree (Kendall and Stuart, 1973). In least-squares fitting it is important to understand 
the influence which an observed y value will have on each fitted y value. A projection 
matrix known as the hat matrix contains this information and, together with the 
Studentized residuals, provides a means of identifying exceptional data points (Hoaglin 
and Welsch, 1978). The studentized residuals, tt , (i.e. the residual divided by its 
standard error) have been recommended (Behnken and Draper (1972), Davies and 
Hutton (1975), Huber (1975)) as more appropriate than the standardized residuals (i.e., 
the residual divided by the square root of the mean square for error) for detecting 
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outliers. Also, approximate critical values for the maximum absolute studentized 
residual are available (Lund, 1975). Cook (1977) has been the first to establish a simple 
measure, Di that incorporates information from the X-space and Y-space used for 
assessing the influential observations in regression models. The problem of outliers or 
influential data in the multiple or multivariate linear regression setting has been 
thoroughly discussed with reference to parametric regression models by the pioneers 
namely Cook (1977), Cook and Weisberg (1982), Belsley et al. (1980) and Chatterjee 
and Hadi (1988) respectively. In non-parametric regression models, diagnostic results 
are quite rare. Among them, Eubank (1985), Silverman (1985), Thomas (1991), and 
Kim (1996) studied residuals, leverages, and several types of Cook’s distance in 
smoothing splines, and Kim and Kim (1998), Kim et.al(2001) proposed a type of 
Cook’s distance in kernel density estimation and in local polynomial regression. The 
phrase ‘influence measures’ has glimpsed a great surge of research interests. The 
developments of different measures are investigated to identify the influential 
observation from the early criteria of Cook’s to the present and a definition about 
influence, which appears most suitable, is given by Belsley et al. (1980). Cook’s 
statistical diagnostic measure is a simple, unifying and general approach for judging the 
local influence in statistical models. As far as the influence measures are concerned in 
the literature, the procedures were designed to detect the influence of observations on a 
specific regression result. However, Hadi (1992), proposed a diagnostic measure called 
Hadi’s influence function to identify the overall potential influence which possesses 
several desirable properties that many of the frequently used diagnostics do not 
generally possess such as invariance to location and scale in the response variable, 
invariance to non-singular transformations of the explanatory variables. It is an additive 
function of measures of leverage and of residual error, and it is monotonically 
increasing in the leverage values and in the squared residuals. Recently, Dı́az-Garcı́a 
and González-Farı́as (2004) modified the classical Cook’s distance with generalized 
Mahalanobis distance in the context of multivariate elliptical linear regression models 
and they also establish the exact distribution for identification of outlying data points. 
Considering the above reviews, the authors have proposed the novel and exact 
distribution of Jack-Knife residual which indeed exactly identifies the outlying data 
points and  is discussed in the subsequent sections. 
 

2. Relationship among Jacknife residual, student’s-t and F-ratio 

The multiple linear regression model with random error is given by 
                                                Y X eβ= +                                                               (1) 

where  
)1(nX

Y  is the vector of values of the dependent variable,
 ( )( )1nX p

X
+

 is a full column 

rank matrix of predictors, 
( 1)kX

β is the vector of beta co-efficients or partial regression co-

efficients and 
( 1)nX
e is the residual vector following normal distribution N (0,

2

e n
Iσ ).  

From (1), statisticians concentrate and give importance to the error diagnostics such as 
outlier detection, identification of leverage points and evaluation of influential 
observations. Several error diagnostics techniques exist in the literature proposed by 
statisticians, but studentized residual attracts the statisticians to scrutinize the outliers in 
the Y-space. Studentization can be done in two ways namely internal studentization and 
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external studentization of the regression residuals. Many authors believe internal 
studentization of the residual which follows approximately student’s t distribution with 

2n p− −  degrees of freedom. Weisberg (1980) provided a monotonic transformation 

of the internally studentized residual which followed the exact t-distribution. All the 
works in the literature show that the transformation of residuals to any forms  always 
helps to evaluate the outliers in Y-space. Some authors like Cook (1977) and Hadi 
(1992) proposed measures to find the influential observations and potential outliers in 
the X as well as in the Y-space. Classically the general form of the external studentized 

residual or Jackknife residual ( )iR  of the ith observation is given as 

                                      
( ) 1

i
i

e i ii

e
R

S h

ɵ

ɵ −
=

−
                                                         (2) 

Where �ie is the estimated ith regression residual, ( )e iS −ɵ  is the unbiased standard error 

of the estimated residuals without the ith observation and ( )iih  are the hat values or the 

diagonal elements of the hat matrix ))(( '1' XXXXH −= which involves the set of 

predictors respectively. Usually, the ( )iR  is compared with critical values of student’s 

t-ratio for 2n p− −  degrees of freedom and if the computed ( )iR exceeds, then the 

observation is said to be outlier in the Y-space. Rewrite (2) in terms of the substitution 

of ( )
( ) 21

2
i
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n p r
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n p

−
− − −

=
− −

ɵ   and the true standard error ( )eσ  of the residual as  
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                                         (3) 

From (3), if ( ) 2 21 /e en p S σ− −  follows chi-square distribution with  n-p-1 degrees 

of freedom, then /i eeɵ σ   follows normal distribution with mean 0 and variance 1 and 

the quantum /e eS σ  is equal to 2
1 / 1n p n pχ − − − − . Therefore(3) will be 

further modified as 

                                        

( )

2

2

/ / 1

1
1

2

i
i

i
ii

z n p
R

n p r
h

n p

χ − −
=

− − −
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                                         (4) 

From (4), we know that the ratio 2
1/ / 1i n pz n pχ − −

  − −   
 follows student’s t-

distribution with n-p-1 degrees of freedom. Similarly, Weisberg provided the 
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monotonic transformation of internal studentized residuals ( )ir  in terms of student’s t-

ratio which follows t-distribution with n-p-2 degrees of freedom and  is given as 

                                         
2

2

1
i i

i

n p
t r

n p r

− −
=

− − −
                                                         (5) 

From (5), we can write the squared internal studentized residuals ( )2
ir  in terms of F-

ratio if student’s t-ratio following n-p-2 degrees of freedom, then squared t-ratio 

follows F-distribution with  ( )1, 2n p− −  degrees of freedom. Now, (5) can be 

written as 

                                       
(1, 2)2

(1, 2)

( 1)

( 2)
i n p

i
i n p

n p F
r

n p F

− −

− −

− −
=

− − +
                                          (6) 

In the same manner, Belsley et al. (1980) proved when the set of predictors in a linear 

regression model follows multivariate normal distribution with ( , )
X X
µ Σ , then 

                                                
( )

),1()1)(1(
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                                         (7) 

From (7) it follows F-distribution with ( 1, )p n p− −  degrees of freedom and it can be 

written in an alternative form as 

                                       
( )

),1(

),1(

))/()1((1
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=                               (8) 

Now substituting (6) and (8) in (4), we get the form of Jack-Knife residual as 
                                                                                       

                           

( )
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              (9) 

From (5), it is the most important form identified and based on this, we proposed the 

exact distribution by utilizing the relationship among the Jack-Knife residual )( iR , t-

ratio and the F-ratio’s. From (9), the t and F--ratios  are independent, because the 

computation of )( it  involves the error term ),0( 2
ei Ne σ∼ , the 

(1, 2 )i n p
F

− −
 is the 

squared monotonic transformation of the internal studentized which involves the 

unstandardized true error term ),0( 2
ei Ne σ∼ , hat values )( iih  and 

( 1, )i p n p
F

− −
 is the 

transformation of hat values )( iih  involving the set of predictors 
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' 1 '( ( ) )H X X X X−= . Therefore, from the property of least squares ( ) 0E eX = ,  

it ,
(1, 2 )i n p

F
− −

 and 
( 1, )i p n p

F
− −

  are also uncorrelated and independent. Using this 

assumption, we derived the exact distribution of ( )iR  by further modifying (9) as                                                                   
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      (10)                                                                    

From (10), it can be simplified and ( )iR  is expressed in terms of independent t-ratio 

and beta variables 1iθ   and 2iθ  of the first kind by using the following facts 
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Then, without loss of generality (10) can be written as 
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Where ( ),p nα  is the normalizing constant which is a function of  p, n and the final 

form of (14) can be given as 

                                            
( )
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Based on the identified relationship from (15), the authors have derived the exact 
distribution of the Jack-Knife residual and  is discussed in the next section. 
 

3. Exact Distribution of Jackknife Residual 

 Using the technique of two-dimensional Jacobian of transformation, the joint 

probability density function of the t-ratio and the beta variable of Kind-1 namely 1iθ  

and 2iθ  were transformed into density function of iψ  and it is given as 

                             ( ) ( )1 2 1 2, , , ,i i i i i if u u f t Jψ θ θ=                                         (16) 
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From (15), we know that it  and 1iθ , 2iθ  are independent. Then rewrite (16) as 

                ( ) ( ) ( ) ( )1 2 1 2, ,i i i i i if u u f t f f Jψ θ θ=                                         (17) 

Using the change of variable technique, substitute ii u11 =θ  and ii u22 =θ in (15) we 

get 
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Then partially differentiate (18), compute the Jacobian determinant and substitute in 
(17) as            
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From (20), we know that it  and 1iθ , 2iθ  are independent, then the density function of 

the joint distribution of  it  and 1 2,i iθ θ  is given as 
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                                                                                                                                    (21)                                                                                                               

                               where it−∞ < < +∞ , 1 20 , 1i iθ θ≤ ≤ , , 0n p >  
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and 
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Then substitute (21) and (22) in (20) in terms of the substitution of iu , we get the joint 

distribution of iψ  and 1 2,i iu u  as 
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                  where iψ−∞ < < +∞ , 1 20 , 1i iu u≤ ≤ , 0, >np  and  1 2i iJ u u=  

Using Binomial series expansion rearrange (23) and integrate with respect to 1 2,i iu u , 

we get the marginal distribution of iψ  as 
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Where iψ−∞ < < +∞ , 0, >np , n p> and 
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We know, from (24) 
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Then substitute (25), (26) in (24) and arrange the terms, we get the density function of 

iψ  as 
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where iψ−∞ < < +∞ , , 0n p > , n p> and 
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Using one-dimensional Jacobian of transformation in (15), differentiate and substitute 
in (27), we get the density function of the Jack-Knife residuals as 
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From (28), it is the density function of Jack-Knife residual ( )iR  which is symmetric in 

nature and involves the normalizing constants such as 
1 1

,
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− − + 
 

, 
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− + − + 
 

, ( ),p nα , ( ),p nλ  with two shape parameters ( np, ),where 

B is the beta function, n is the sample size and p is the no. of predictors used in a 
multiple linear regression model respectively. In order to know the location and 
dispersion of Jack-Knife residual, the authors have derived the first two moments in 
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terms of mean, variance from (15) and are shown as follows.  
Using (15), take expectation and substitute the moments of independent t-ratio and beta 

variables 
1 2
,

i i
θ θ  of Kind-1, we get the first moment of iR  as 

                                                ( ) 0
i

E R =                                                                      (29) 

From (29), if the moment of the residual is zero ( ( ) 0iE R = ), then the second 

moment is equal to its variance. Hence, square (15) on both sides, then take expectation 
and substitute the appropriate second order moments of independent t-ratio  and F-

ratios, we get the variance of the iR  which is given as 

( ) ( ) ( ) ( ) ( )2 1 1

1 2i i i i i
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3 1
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As a proposed approach, the authors adopted the test of significance approach to 
evaluate and identify the outliers in a sample. The approach is to derive the critical 
points of the Jack-Knife residual by using the following relationship from (9) and it is 
given as   
               

( )( ) ( )( )
( )

( )( )
( ) ( )(1, 2) ( 1, ), 1

2 1 1
1 1

1 1 2 i n p i p n pi pn i n p
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                                                                                                                                                    (31) 
From (31), for different combination of values of ),( np  and the significance 

probability ( )( ), ( )i i p n
p R R α α> = , we have computed the critical points of Jack-

Knife residual. If the sample size is very large ( )n →∞ , then the limiting distribution 

of iR  follows standard normal distribution with mean 0 and variance 1. By using the 

critical points, we can test the significance of the outliers in a multiple linear regression 
model. The following tables 1, 2 exhibit the significant percentage points of the 
distribution of  Jack-Knife residual for varying sample size(n) and predictors (p) at 5% 
and 1% significance (α ) calculated based on (31). 
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n 
p 

1 2 3 4 5 6 7 8 9 10 
3 0.00 - - - - - - - - - 
4 44.7

762 
0.00
00 

- - - - - - - - 

5 9.30 90.6 0.000 - - - - - - - 
6 5.51 15.5 115.3 0.000 - - - - - - 
7 4.24 8.27 19.00 134.2 0.000 - - - - - 
8 3.63 5.94 9.789 21.68 150.3 0.000 - - - - 
9 3.28 4.84 6.874 10.99 23.99 164.6 0.000 - - - 
1 3.04 4.20 5.503 7.621 12.03 26.05 177.6 0.000 - - 
1 2.88 3.80 4.719 6.039 8.274 12.97 27.93 189.6 0.000 - 
1 2.76 3.51 4.215 5.135 6.510 8.865 13.84 29.68 200.8 0.000
1 2.67 3.30 3.864 4.554 5.502 6.938 9.411 14.64 31.32 211.4
1 2.59 3.14 3.607 4.150 4.854 5.837 7.335 9.922 15.40 32.88
1 2.53 3.02 3.410 3.854 4.404 5.129 6.149 7.707 10.40 16.12
1 2.48 2.91 3.255 3.628 4.074 4.637 5.385 6.441 8.060 10.86
1 2.44 2.83 3.130 3.449 3.822 4.276 4.855 5.627 6.719 8.395
1 2.41 2.76 3.027 3.305 3.623 4.001 4.466 5.061 5.856 6.984
1 2.38 2.70 2.940 3.186 3.462 3.783 4.168 4.645 5.256 6.076
2 2.35 2.65 2.867 3.087 3.330 3.607 3.933 4.327 4.816 5.444
2 2.32 2.60 2.803 3.002 3.219 3.462 3.744 4.076 4.478 4.979
2 2.30 2.56 2.748 2.929 3.124 3.341 3.587 3.873 4.212 4.624
2 2.28 2.53 2.700 2.866 3.043 3.237 3.456 3.706 3.997 4.343
2 2.27 2.50 2.657 2.810 2.972 3.148 3.344 3.565 3.819 4.116
2 2.25 2.47 2.619 2.761 2.910 3.070 3.247 3.445 3.670 3.928
2 2.24 2.44 2.584 2.717 2.855 3.002 3.164 3.342 3.543 3.771
2 2.23 2.42 2.554 2.678 2.806 2.942 3.090 3.252 3.433 3.637
2 2.21 2.40 2.526 2.642 2.762 2.889 3.025 3.174 3.338 3.521
2 2.20 2.38 2.500 2.610 2.722 2.840 2.967 3.104 3.254 3.420
3 2.19 2.36 2.477 2.581 2.686 2.797 2.915 3.042 3.180 3.332
4 2.13 2.24 2.321 2.388 2.454 2.521 2.589 2.661 2.735 2.814
6 2.07 2.14 2.185 2.224 2.261 2.297 2.334 2.371 2.409 2.447
8 2.04 2.09 2.124 2.151 2.176 2.201 2.226 2.251 2.275 2.301
1 2.02 2.06 2.088 2.109 2.129 2.148 2.166 2.185 2.203 2.222
1 2.01 2.04 2.066 2.083 2.098 2.114 2.129 2.143 2.158 2.173
∞ 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

 

  p-no.of predictors      n-Sample Size               

 

Table-1: Significant two-tail percentage points of Jackknife residual at 

( ) ( )( ), 0.05 0.05i i p n
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n 
p 

1 2 3 4 5 6 7 8 9 10 
3 0.000 - - - - - - - - - 
4 819.4 0.0000 - - - - - - - - 
5 52.10 2790.7 0.0000 - - - - - - - 
6 19.85 128.14 3608.3 0.0000 - - - - - - 
7 12.19 40.375 159.19 4230.2 0.0000 - - - - - 
8 9.103 21.899 48.681 183.21 4754.7 0.0000 - - - - 
9 7.494 14.977 25.804 55.182 203.69 5218.2 0.0000 - - - 

10 6.525 11.556 17.330 28.887 60.771 221.91 5638.7 0.0000 - - 
11 5.883 9.5715 13.178 19.201 31.555 65.774 238.53 6026.8 0.0000 - 
12 5.428 8.2945 10.785 14.474 20.828 33.955 70.357 253.92 6389.2 0.0000 
13 5.091 7.4115 9.2530 11.758 15.606 22.298 36.161 74.616 268.34 6730.7
14 4.831 6.7680 8.1981 10.024 12.611 16.632 23.653 38.219 78.617 281.96
15 4.625 6.2798 7.4320 8.8329 10.702 13.386 17.580 24.920 40.155 82.404
16 4.458 5.8978 6.8527 7.9691 9.3921 11.319 14.105 18.469 26.115 41.992
17 4.320 5.5912 6.4004 7.3169 8.4433 9.9026 11.893 14.780 19.309 27.251
18 4.203 5.3399 6.0382 6.8084 7.7274 8.8769 10.377 12.433 15.418 20.109
19 4.104 5.1305 5.7420 6.4016 7.1698 8.1035 9.2810 10.825 12.944 16.027
20 4.019 4.9534 5.4956 6.0693 6.7239 7.5012 8.4544 9.6621 11.249 13.432
21 3.944 4.8017 5.2875 5.7931 6.3600 7.0199 7.8109 8.7857 10.024 11.655
22 3.879 4.6704 5.1095 5.5599 6.0575 6.6271 7.2968 8.1036 9.1011 10.371
23 3.821 4.5557 4.9556 5.3607 5.8024 6.3008 6.8773 7.5588 8.3825 9.4031 
24 3.770 4.4546 4.8213 5.1886 5.5845 6.0257 6.5289 7.1142 7.8086 8.6498 
25 3.724 4.3649 4.7031 5.0385 5.3963 5.7908 6.2352 6.7451 7.3404 8.0482 
26 3.682 4.2848 4.5983 4.9065 5.2322 5.5879 5.9844 6.4338 6.9515 7.5574 
27 3.644 4.2128 4.5048 4.7894 5.0879 5.4110 5.7678 6.1681 6.6237 7.1498 
28 3.610 4.1477 4.4208 4.6850 4.9600 5.2555 5.5791 5.9387 6.3439 6.8062 
29 3.578 4.0887 4.3450 4.5913 4.8460 5.1177 5.4131 5.7388 6.1023 6.5128 
30 3.549 4.0348 4.2762 4.5067 4.7437 4.9949 5.2661 5.5630 5.8917 6.2596 
40 3.353 3.6781 3.8289 3.9670 4.1034 4.2423 4.3861 4.5365 4.6951 4.8636 
60 3.178 3.3723 3.4569 3.5316 3.6030 3.6733 3.7436 3.8148 3.8872 3.9613 
80 3.097 3.2355 3.2940 3.3447 3.3924 3.4388 3.4846 3.5302 3.5759 3.6221 
10 3.050 3.1580 3.2025 3.2409 3.2766 3.3110 3.3447 3.3781 3.4113 3.4446 
12 3.020 3.1081 3.1441 3.1748 3.2033 3.2307 3.2573 3.2835 3.3095 3.3354 
∞ 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 

 

  p-no.of predictors      n-Sample Siz 
    

Table-2: Significant two-tail percentage points of Jackknife residual at 

( ) ( )( ) 01.001.0, => npii RRp  

 

 4. Numerical Results and Discussion 
 In this section, the authors have shown a numerical study of evaluating the 
outliers based on the Jack-Knife residual of the ith observation in a regression model. 
For this, the authors have fitted step-wise linear regression models with different sets of 
predictors in a brand equity study. The data in the study comprised of 18 different 
attributes about a car brand and the data were collected from 275 car users. A well-
structured questionnaire was prepared and distributed to 300 customers and the 
questions were anchored at five point Likert scale from 1 to 5. After the data collection 
was over, only 275 completed questionnaires were used for analysis. Using the step-
wise regression results, 4 nested models were extracted from the regression procedure 
by using IBM SPSS version 22. For each model, the Jack-Knife residuals were 
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computed. The comparison of proposed approach with the classical approach of 
identifying the outliers is discussed through the following tables. 
 
 

M
o

d
el 

p d
f 

(n
-p

-2
) 

Classical approach Proposed approach 

Critical 

( )05.0t  

(n)
( )05.0* tRi >

 
Outliers 

Critical 

( )05.0R  

(n) 
( )05.0RRi >

 
Outliers 

1 1 272 
1.96872 13 

59, 70 ,71 ,25 ,57 
,18 ,20 ,3 ,197 ,1 

,122 ,34 , 51 

1.9826 13 

59, 70 ,71 ,25 
,57 ,18 ,20 ,3 
,197 ,1 ,122 

,34 , 51 

2 2 271 1.96876 13 
70,71,59,57,25,1,
20,3,197,18,122, 

51,34 

1.9967 13 
70,71,59,57,2
5,1,20,3,197,1
8,122, 51,34 

3 3 270 
1.96879 14 

70,71,59,57,25,1,
20,3,197,18,122, 

51,34, 244 

2.0047 14 

70,71,59,57,2
5,1,20,3,197,1
8,122, 51,34, 

244 

4 4 269 
1.96882 13 

70,71,59,57,25,1,
20,3,197,18,122, 

51,34 

2.0116 13 
70,71,59,57,2
5,1,20,3,197,1
8,122, 51,34 

p-no.of predictors         n=275                 df-degrees of freedom 

Table-3: Identification of Outliers based on Classical and Proposed approach at 

5% Significance level 
 

 

M
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d
el 

p d
f 

(n
-p

-2
) 

Classical approach Proposed approach 

Critical 

( )01.0t  

(n) 
( )01.0* tRi >

 
Outliers 

Critical 

( )01.0R  

(n) 
( )01.0RRi >

 
Outliers 

1 1 272 
2.90292 11 

70,71,59,57,25,
20,18,197,3,1,1

22 

2.9385 11 
70,71,59,57,25,
20,18,197,3,1,1

22 

2 2 271 
2.90301 10 70,71,59,57,25,

1,20,3,197,18 
2.9747 10 70,71,59,57,25,

1,20,3,197,18 

3 3 270 2.90310 10 70,71,59,57,25,
197,1,20,3,51 

2.9891 9 70,71,59,57,25,
197,1,20,3 

4 4 269 
2.90319 10 70,71,59,57,25,

197,1,20,3,51 
3.0011 10 70,71,59,57,25,

197,1,20,3,51 

  p-no.of predictors         n=275            df-degrees of freedom  

Table-4: Identification of Outliers based on Classical and Proposed approach at 

1% Significance level 
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 Table-3 and Table-4 clearly visualize the result of the identification of outliers 
based on classical and proposed approach. From the 4 fitted multiple regression 
models, the classical approach helps to identify 13 outliers in model-1, model-2 and 
model-4 at 5% level of significance respectively. Similarly it helps to identify 11 
outliers in model-1, 10 outliers in model-2, model-3 and model-4 at 1% level of 
significance. On the other hand, based on the proposed distribution of Jack-Knife 
residual, the authors identified 13 outliers in model-1, model-2 and model-4 at 5% level 
of significance. Similarly, in model-4 the authors identified 14 outliers at 5% level of 
significance. Likewise, the authors identified 11 outliers in model-1, 10 outliers in 
model-2 and model-4 and 9 outliers in model-3 respectively. From the above discussion 
the authors explored that the proposed distribution of the Jack-Knife residuals helps the 
authors to fix a different calibration point but the number of outliers identified based on 
this calibration point are more or less similar when we compare it with the classical 
approach. This shows that the proposed distribution of the Jack-Knife residuals is 
different from the student’s t distribution, but the results will be same. Hence, the 
proposed distribution of the Jack-Knife residuals can be used as proxy to detect the 
outliers in the Y-space in a multiple linear regression model. The following graphs 
visualize the outliers at 5% and 1% level based on both the approaches. 
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Identification of outliers based on Proposed approach at 5% level 
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Identification of outliers based on Classical approach at 1% level 
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     Identification of outliers based on Proposed approach at 1% level 
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5. Conclusion 

             From the previous sections, the authors proposed the exact distribution of the 
Jack-Knife residuals which helps to evaluate the outliers in a multiple linear regression 
model. At first, the exact distribution of the Jack-Knife residual was derived and the 
authors visualized the density function in terms of series expression with shape 
parameters namely p and n. Moreover, the critical percentage points of Jack-Knife 
residuals at 5% and 1% levels of significance were also computed and are utilized to 
evaluate the outliers. Hence the authors conclude that the proposed distribution of the 
Jack-Knife residuals is non-student and we believe that it can be used as a proxy to 
identify the outliers in the functional data. 
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