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Abstract 
The paper considers a competing risk model based on decreasing failure rate Weibull 

and constant failure rate exponential models. The failure may arise due to either of the two causes 

where the former represents death due to birth defect and the latter represents an accidental 

failure that may occur at any moment during the normal life cycle. The Bayes analysis is done 

using weak but proper priors for the parameters. Since the posterior analysis involves analytically 

intractable integrals, the paper proposes a Gibbs-Metropolis hybridization scheme to draw the 

corresponding posterior samples. For initial values of model parameters, the paper proposes the 

use of maximum likleihood estimates obtained using expectation-maximization algorithm. The 

numerical illustration is provided based on a simulated data example. 
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1. Introduction 

In life time data analysis both exponential and Weibull distributions are 

exceedingly entertained models perhaps because of their ease and high usability. Mann 

et al. (1974), Lawless (2002), Hamada et al. (2008) are some of the important 

references dealing with variety of developments related to the two models. Whereas 

Hamada et al. (2008) is exclusively a Bayesian reference, the other two deal with 

mainly classical inferential developments. In its simplest form, the Weibull distribution 

can have two parameters with probability density function (pdf) given by, 
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where Z is used to denote the corresponding random variate,  is the scale parameter 

and  determines the shape of the distribution. It is, in fact, the parameter  that makes 

the Weibull distribution a rich and a flexible family. Reliability characteristics such as 

the hazard rate, reliability, mean time to failure, etc. are available in closed forms and 

these are given, respectively, by 
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Thus for , the hazard rate increases and the model can be used to 

characterize failure due to ageing. Similarly, for , the hazard rate of the model 

decreases and the situation can be used to characterize failure due to early birth defects 

or infancy. For , the model reduces to one‐parameter exponential distribution that 

characterizes constant hazard rate scenario. This last situation may be attributed to the 

failures arising due to accidents and it can occur at any time in any given situation 

either characterized by  or . It is to be noted that shape of the Weibull 

distribution is concave and skewed for  and convex (exponential type) otherwise. 

As a result, the inferential developments for the two situations are not exactly the same, 

see Mann et al. (1974), Upadhyay et al. (2008), etc. 

It is often pertinent to consider a situation where failures may occur due to 

more than one mutually exclusive causes say, for example,  where the 

random variables  represent failure times. Such a model may be referred to as 

the competing risk model. Among various possibilities for  and , suppose  is 

governed by Weibull Law (1) with  and  is governed by the exponential law 

representing failures due to accidents. Competing risk models based on exponential and 

Weibull failures have already been considered in the literature by a number of authors. 

Friedman and Gertsbakh (1980) is perhaps the earliest reference where the authors have 

considered mostly the classical inferences. Bosquet et al. (2006) is another important 

reference based on exponential and Weibull failures with inferential developments 

mostly in Bayesian framework. The authors have considered a detailed study although 

restricted to  for the Weibull shape parameter, a situation that describes failures 

due to ageing only. The authors have mentioned in their work that they are deliberately 

considering  but did not provide any logical justification for not entertaining the 

situation when . Among other notable references on competing risk models, one 

can consider Chan and Meeker (1999), Park and Pedgett (2004), etc. although these 

references consider competing risk models based on a large family of distributions and 

not directly concerned with exponential‐Weibull based competing risk models. A few 

other significant references in competing risk analysis involving Weibull or related 

models include Berger and Sun (1993), Bacha et al. (1998) and Basu et al. (2003), etc. 

Sinpurwalla (2006) is a recent text covering topic on competing risk analysis as well 

although the discussion focuses on Bayesian developments only. 

This paper is an attempt to the fill in the gap by considering a competing risk 

model based on the minimum of Weibull (with ) and exponential random 

variables. If X is used to denote the corresponding random variable, the hazard rate and 

the reliability functions for the model can be defined, respectively, as 
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                                                                                 (2) 

                                                                           (3) 

where scale parameter  results from the exponential model that can be obtained by 

taking =1 in (1). A different scale for the exponential model is used for generality 

only. Obviously, the pdf corresponding to random variable  can be written as 

 

                                                                                      (4) 

where  and  are the scale parameters and  is the shape parameter. It may be noted 

that the shape of the distribution is similar to Weibull (with ) and exponential 

models though the curve corresponding to (4) passes somewhere between the two 

curves. The mean time to failure is not available in closed form although it can be 

solved numerically. The corresponding expression for the mean time to failure is given 

by 

                                                        (5) 

Sometimes, one may also be interested to know the probability of failures 

arising due to birth defect or infancy over the accidental failures. The corresponding 

expression though not available in closed form can be worked out by means of 

numerical integration or Monte Carlo integration. The expression for this probability 

can be obtained as 

           

(6) 

The model given in (4) with  restricted to less than unity can be considered 

as a new model and practically nothing appears in the literature with regard to both 

classical and Bayesian inferences. At first sight it appears a simple three‐parameter 

family but the inferential developments are slightly difficult compared to its two 

component models. We do not intend to provide a complete inferential development 

rather propose a full Bayesian analysis using an important sample based approach. As 

an intermediate step, we shall also obtain maximum likelihood (ML) estimator using 

expectation‐maximization (EM) algorithm. 
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The plan of the paper is as follows. The next section considers the Bayesian 

model formulation for the proposed model (4) using proper but weak priors for the 

parameters. The section also provides a brief discussion on the corresponding posterior 

analysis using a hybrid scheme based on the Gibbs and the Metropolis algorithms. This 

scheme actually uses the Gibbs sampler algorithm but the corresponding full 

conditionals are generated using Metropolis steps. Also, since the implementation of 

hybrid scheme requires initial values of the parameters, it is proposed to use ML 

estimates using EM algorithm. The same has been discussed in brief in subsection 2.1. 

Section 3 provides numerical illustration based on a simulated data from the model (4). 

A few numerical estimates are given for illustration presuming that other characteristics 

of interest can be similarly worked out. A brief conclusion is given in the last section. 

2. Bayesian Model Formulation 
Let us consider a random sample  of size  from the model 

(4), the corresponding likelihood function (LF) can be written as 

.           

(7) 

The next important task in Bayesian modeling formulation is prior 

specification for the parameters. Prior distribution does play a crucial role in Bayesian 

inferences and an inappropriately specified prior may lead to poor inferences. We, 

however, propose the use of weak but proper priors for the parameters (see also Ranjan 

et al. (2013)) so that the inferences are mostly data driven. In the same very spirit, we 

consider independent uniform priors for both scale and shape parameters arising 

because of the Weibull component. The corresponding choices can be written as 

,                                                                                                         (8) 

,                                                                                         (9) 

where M is the hyperparameter in the prior for , a large choice of which increases the 

vagueness in the prior. Moreover, since  is restricted to less than unity, a choice of 

uniform prior for  in the range (0, 1) appears natural. 

For , we propose to consider inverted gamma prior with scale parameter  

and shape parameter  as given below. 

.
                                                                                     (10) 

There is no specific criterion for the selection of inverted gamma family 

except that it is flexible and offers a natural conjugate prior for the exponential scale. 

One can, of course, consider its hyperparameters  and  in such a way that prior 

remains vague (see, for example, Upadhyay et al. (2001)). We, however, propose to 
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consider a different strategy based on the expert opinion for selection of its 

hyperparameters (see, for example, Bosquet et al. (2006)). Suppose an expert is asked 

to give a possible interval for  where its values are expected to lie and suppose he 

suggests  and  as the lower and upper limits of this interval. He further suggests 

that all the values within this interval are equally probable. Using such a consideration 

given by the expert, the prior hyperparameters  and  can be obtained using the 

following relationships. 

                                            (11) 

                                                                                   (12) 

Of course, larger the difference between  and , greater is the vagueness 

in the prior for . 

Once the priors are specified, the joint posterior of the parameters can be 

easily obtained by combining the priors with the LF via Bayes theorem. The same can 

be specified up to proportionality as 

 

                                                                                        (13) 

The posterior given in (13) is analytically difficult to offer closed form 

solution and, therefore, sample based approaches appear to be the only easy alternative. 

We proceed by implementing the Gibbs sampler algorithm, the simplest form of which 

requires generating from one dimensional full conditional at a time by considering all 

such full conditionals in turn. The complete algorithm and its necessary implementation 

details can be found in Upadhyay and Smith (1994), among others. To look on the 

possibility for implementing the algorithm, let us write the three full conditionals as 

  

                                                                                                                                     (14) 

                

(15) 

                

(16) 
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Once the full conditionals are specified, the next objective is to simulate 

samples from the same so that the Gibbs sampler algorithm can be implemented to get 

samples from the posterior (13). The details for simulating from the full conditionals 

are discussed in subsection 2.1. 

2.1 A hybrid scheme based on Metropolis within Gibbs sampler 
It can be seen that the full conditionals in (14)‐(16) are not easy from the 

viewpoint of sample generation. We, therefore, propose the use of Metropolis algorithm 

for simulating from each full conditional and thereby refer the scheme as a hybrid 

scheme based on Metropolis within Gibbs. It is to be noted that the Metropolis 

algorithm requires instead the generation from a proposal density and accepts the value 

with some probability, say . To clarify, suppose we want to simulate from 

 using a symmetric kernal  where  is the current realization and  is 

the next generated proposal from . The algorithm accepts the value  with 

probability 

                                                                             (17) 

For simulating from the full conditionals, we recommend to work with the 

parameterization ,  and  and use normal 

kernel with mean as the current realization and standard deviation as c times the 

Hessian based approximation at the current realization where c is some scaling constant 

often taken to be in the range 0.5 and 1.0 (see, for example, Upadhyay and Smith 

(1994)). For details about the algorithm and its implementation, one can refer to Smith 

and Roberts (1993), Upadhyay et al. (2001), among others. 

For initial values for running the chain, one can use any properly chosen 

estimates of various parameters although we have used ML estimates obtained using 

EM algorithm. The details are given in next subsection. 

2.2 ML estimation using EM algorithm 
Although it can be proved that the likelihood equations have a unique 

consistent solution, the direct maximization of LF in (7) may often lead to unstable 

numerical results (see, for example, Bousquet et al. (2006)). To avoid this, one may 

visualize the proposed competing risk model in an alternative way as an incomplete 

data model. This visualization is natural since it is not known which of the two 

component models is actually responsible for a particular observation though it is 

known that observations are arising from one of the two models. This incomplete data 

assumption opens the scope for EM algorithm where the apparent advantage is that one 

can avoid direct maximization of LF in (7) and the maximization step can be 

implemented separately for exponential and Weibull models. 

The EM algorithm is an iterative procedure to find ML estimate in the 

presence of missing data (see Dempster et al. (1977)). The algorithm iterates between 

two steps known as expectation (E) and maximization (M) steps. E step finds the 

conditional expectation of the missing data given the observed data and the current 

estimated parameters. It then substitutes these expectations for the missing data while 
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M step maximizes the expected value of log likelihood using expected values of 

missing observations (see Little and Rubin (2002)). The procedure continues iteratively 

unless a stability of ML estimates is achieved. 

To clarify the idea, let us first consider a binary variable  that completes the 

data structure. The complete data can then be written as , ,  

where the binary variable  indicates that the associated observation is coming 

from an exponential (Weibull) model. So the resulting competing risk density can be 

written as 

                                              (18) 

where  denotes the hazard function corresponding to exponential (Weibull) 

model. Similarly,  is the reliability function corresponding to exponential 

(Weibull) model. Obviously, the log likelihood based on complete data =( ) 

can be written as 

                                                                                                                        (19) 

Let us take  and let  denotes its current value. The expected value of 

log likelihood  can be given as 

                                                                                         (20) 

where   and . 

Here  denotes the probability that the observation , , is coming 

from the exponential (Weibull) distribution. 

The equation (20) forms the E‐step of EM algorithm. Moreover, it may be 

noted that (20) has an additive structure that results from the contribution of both 

exponential and Weibull distributions. This additive decomposition of (20) facilitates 

the implementation of M‐step in the sense that it maximizes separately the terms 

corresponding to exponential and Weibull distributions. The exponential term can be 

maximized by direct differentiation with respect to the exponential parameter  

whereas the Weibull term can be maximized using any of the iterative procedures, say 

for example, Newton‐Raphson method (see Mann et al. (1974), Press et al. (2007)), as it 

cannot provide closed form differentiations when differentiated with respect to the 

Weibull parameters  and . These two steps can be repeated until the iterating 

algorithm converges to give the desired ML estimates. 
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3.  Numerical illustration 
For numerical illustration, we have considered two simulated data sets of size 

100 and 200 from the competing risk model (4). These samples were generated using 

the parameter values ,  and . It is to be noted that these 

choices of parameter values are arbitrary and meant for the sake of illustration although 

these values provide higher proportion of failures due to initial birth defect, a situation 

that appears natural to consider. The probability of failure due to infancy (see (6)) for 

these sets of parameter values can be obtained as 0.66. The complete list of simulated 

observations is not given due to paucity of space. The arithmetic average and the 

corresponding standard deviations for these simulated observations were, however, 

6.61(6.19) and 7.47(8.11), respectively, where the values in parentheses correspond to 

those based on sample of size 200. 

We next considered implementing the MCMC algorithm as described in 

Section 2 using Metropolis within Gibbs steps. For the choice of hyperparameters  

and , we consider the specification of expert as  = 1.0 and  = 30.0 within which 

the value of  is expected to lie. Values of  and  were then obtained using (11) and 

(12). For the hyperparameter M involved in the prior for , we considered a few 

arbitrary values for  such as  and it was seen that there was no 

appreciable change in the results by the variation in the values of . The results in the 

present paper are reported for =20.0. For initial values for starting the chain, we used 

ML estimates obtained by EM algorithm as discussed in subsection 2.2. These ML 

estimates were found to be 14.88(19.35), 12.96(11.26) and 0.62(0.61), respectively, for 

,  and  where the values in parentheses correspond to sample size 200. 

We rather worked with the parameterization ,  and 

 and used normal kernel for generating from each full conditional. As 

initial values, we considered the means of the normal kernels as derived from the 

corresponding ML estimates of ,  and . The exact variances were difficult to 

obtain and, therefore, we worked with the numerical approximations by evaluating 

numerically the second derivatives and evaluating the same at the corresponding ML 

estimates. A number of choices were made for the scaling constant c between 0.5 to 1.0 

and it was noted that c = 0.6 provides a good acceptance probability in each case. 

We considered a single long run of the Gibbs chain and the convergence 

monitoring was done using ergodic averages. It was found at about 7000 iterations 

though the chain was run beyond that to pick up posterior samples of size 1000 by 

taking outcomes at a gap of 10. The gap was chosen to make serial correlation 

negligibly small (see also Upadhyay et al. (2012)). 

Table 1 provides posterior summaries of ,  and  in the form of estimated 

posterior mean, median, mode and highest posterior density (HPD) interval with 

coverage probability 0.95. Values in parentheses correspond to those based on sample 

of size 200. In general, the estimates convey that posterior densities are almost 

symmetrical in each case with not much variability. This last observation is evident 

from the values of estimated HPD interval with coverage probability 0.95. We also 

notice from the estimated posterior summaries that the results are close to the true 

parameter values that were used to generate the simulated data sets and this difference 
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reduces with the increasing sample size. Besides the posterior summaries on the model 

parameters, the Table 1 also provides the estimated probability of failures due to 

infancy or birth defects (see (6)) and the value appears to be quite close to its 

parametric counterpart. 

 

 

Table 2 provides a few estimated posterior characteristics of reliability, hazard 

rate and mean time to failure, the first two estimates are obtained at the mission time 

t=6.0. The values in the parentheses correspond to those based on sample of size 200. 

Once again we have given the estimated characteristics in the form of posterior mean, 

median, mode and HPD interval with coverage probability 0.95. It is to be noted that 

these reliability characteristics are estimated by forming their samples by substitution 

using the final posterior samples of ,  and  (see also Upadhyay et al. (2012)). The 

posterior density estimates of reliability and hazard functions are also shown in Figures 

1‐2 in the form of box plots. These figures correspond to simulated data set of size 200. 

These estimated densities are obtained at several mission times t =2(2)10 (see Figures 

1‐2), which clearly show that the two estimated characteristics, in general, decrease as 

the time t increases and this observation appears natural as well. The estimates, in 

general, exhibit almost symmetrical posterior surfaces for all the three characteristics. 

The variability does not appear to be high which is evident from the values of the 0.95 

HPD limits (see Table 2). A word of final remark: we are not going into various details 

though any desired posterior characteristic can be studied and conclusions can be 

accordingly drawn once we have samples from the various posteriors. 
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Fig. 1: Boxplot showing the estimated posteriors of reliability for different values 

of  
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Fig. 2: Boxplot showing the estimated posteriors of hazard function for different 

values of  

4. Conclusion 
The paper successfully considers a simple competing risk model based on 

Weibull and exponential failures where the former is restricted to shape less than unity. 

Such models are important because they consider the failures due to initial birth defects 

and simultaneously take in to account the situation when items are subject to the risk of 

accidental failures specified by the constant hazard. The paper provides the complete 

Bayes analysis using Gibbs sampler algorithm with intermediate Metropolis steps for 

generation from various full conditionals. The results are obtained using simulated data 

sets of size 100 and 200. ML estimates based on EM algorithm is also attempted which 

might be of interest to classical statisticians as well though ML estimation is attempted 

for starting the MCMC chain. Overall, the paper provides yet another interesting 

scenario of low dimensional posterior and describes the scope of Markov chain Monte 

Carlo simulation for complete posterior analysis.  
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