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Abstract 
 The present investigation deals with the problem of estimation of ratio of population 

variances under two different realistic situations of complete response and random non-response 

in the sampled units. Using information on an auxiliary variable, two classes of Jack-Knife 

estimators of ratio of population variances are proposed separately for these two situations and it 

is shown that the proposed classes of Jack-Knife estimators are unbiased up to the first order of 

approximations. Properties of the proposed classes of estimators have been studied and their 

respective optimality conditions are discussed. Proposed classes of estimators are empirically 

compared with the usual sample estimator of ratio of population variances under the similar 

realistic situations and their performances have been demonstrated through numerical illustration 

and graphical interpretation which are followed by suitable recommendations. 
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1. Introduction   
 The problem of estimation of population variance arises in many practical 

situations. For example, an agriculturist needs an adequate understanding of the 

variations in climatic factors especially from place to place (or time to time) to be able 

to plan on when, how and where to plant his crop. The variance estimation technique 

using auxiliary variable was first considered by Das and Tripathi (1978). Further this 

was extended by Srivastava and Jhaji (1980), Isaki (1983), Upadhyay and Singh (1983), 

Tripathi et al. (1988) and Ahamed et al. (2003) among others. In many situations, 

information on an auxiliary variable may be readily available on all unit of the 

population; for example, tonnage (or seat capacity) of each vehicle or ship is known in 

survey sampling of transportation and number of beds in different hospitals may be 

known in hospital surveys.  
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 However in some practical situations, it is common experience in sample 

surveys that data cannot always be collected from all the units selected in the sample. 

For example, the selected families may not be at home at the first attempt and some of 

them may refuse to cooperate with the interviewer even if contacted. As many 

respondents do not reply, available sample of returns is incomplete. The resulting 

incompleteness is called non-response and is sometimes so large that can completely 

vitiate the results. Statisticians have long known that failure to account for the 

stochastic nature of incompleteness can damage the actual conclusion. An obvious 

problem, that one needs to justify, arises when ignoring the incomplete mechanism. 

Rubin (1976) advocated three concepts: missing at random (MAR), observed at random 

(OAR), and parameter distribution (PD). Rubin defined: “The data are MAR if the 

probability of the observed missingness pattern, given the observed and unobserved 

data, does not depend on the value of the unobserved data”. Singh and Joarder (1998) 

studied the estimation procedures of population variance by defining one discrete 

probability distribution model in the presence of random non-response situations in the 

sampled units and afterward this model was adopted in the population variance 

estimation procedure by Singh et al. (2012).  

 

 It is to be noted that the estimation procedures of population variance have been 

developed by several authors; however, no efforts have been made to estimate the ratio 

of population variances. An estimate of the ratio of variances of two characters of a 

population may be of considerable interest and its huge important real life impacts may 

be presented. For example, if the ratios of variations of income and expenditure are 

known from previous few years, then one may estimate their yearly ratio and plan for 

suitable investment for the current year and if the ratio of variations of body 

temperature and pulse rate of a patient during diseases estimated properly, then the 

doctors may prescribe adequate medicine for him. Similarly, the consistent performance 

of a company may be determined from the study of variation of NAV (in SENSEX or 

other equivalent indexing system) and its monthly production. Any one of them alone is 

not sufficient to determine it. By computing their monthly ratio for some period of time, 

we can easily estimate how consistently the company has performed. In order to 

provide an in-depth presentation of the proposed work, an illustrative scenario is 

provided. Consider the case of player’s selection process in international cricket. It is 

often seen that the all-rounder cricketers with consistent performances get the priority. 

In order to judge the same the ratio of batting variances and balling variances of the 

players plays an important role. To estimate this ratio, the data of batting and balling 

performances of the players are collected from previous few years/ months where it 

may be seen that some players were out of international cricket for certain period of 

time for several reasons such as lack of good performances and injury cases and these 

lack of information cases may be treated as non–response situations. Motivated with the 

above arguments, in the present work an attempt has been made to estimate the ratio of 

variances of two characters of a population. In some practical situations, it is seen that 

the bias becomes a serious draw back. Therefore, inspired with the Jack-Knife 

technique of unbiased estimation adopted by Quenouille (1956) and Gray and 

Schucancy (1972), we have proposed two classes of estimators separately for 

estimating the ratio of population variances for two different realistic situations of 

complete response and random non-response in the sampled units. The dominance of 

the proposed classes of estimators over the sample estimator of ratio of population 
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variances under the similar realistic situations have been established through numerical 

illustration and graphical interpretation.  

 

2. Formulation of estimators   
 Consider a finite population 

1 2 3 N
U = (U , U , U , . . ., U ) of N units, y and x are 

the variables under study and z be the auxiliary variable. Let 
k

y ,  
k

x  and 
k

z  be the 

values of y, x and z for the k-th (k = 1, 2, . . ., N) unit in the population. Our purpose is 

to estimate the ratio population variances of the study variables y and x in presence of 

the auxiliary variable z. Let a sample S of size n (n =2m; m being integer) is drawn by 

simple random sampling without replacement scheme (SRSWOR) from the entire 

population U. The sample S of size n is split up at random into two sub samples 1S  and 

2S of size m each.  

Hence onwards, we use the following notations for the population parameters: 

Y, X, Z : Population mean of the variables y, x and z respectively.   

( )
N

-12 2

y i

i =1

S = N - 1 (y - Y) :∑  Population variance of the study variable y.   

2 2
x zS , S :

 
Population variances of the study variable x and the auxiliary variable z 

respectively.  
2

y

2

x

S
R = :

S
 Ratio of population variances of the study variables y and x.   

N
a b c

abc i i i

i = 1

1
µ  = (y  - Y) (x  - X) (z  -Z) ;

N
∑  (a, b, c) being non negative integers,  

{ }a b c
2 2 2

abc abc 200 020 002λ  =  µ µ   µ   µ ,

0 400 1 040 2 004
C  = (λ - 1) , C  = (λ  - 1) , C  = (λ  - 1) ,

( )01 220 400 040
ρ  = λ  - 1 (λ  - 1)(λ  - 1) , ( )02 202 400 004

ρ  = λ - 1 (λ  - 1)(λ  - 1) ,

( )12 022 040 004 N

1
ρ  = λ  - 1 (λ  - 1)(λ  - 1) ,  f = - .

N
  

It is to be noted that
01

ρ  is the correlation between ( )2

y - Y and ( )2

x - X .  Similarly 
12

ρ  

is the correlation between ( )2

x - X and ( )2

z - Z and 
02

ρ  is the correlation between 

( )2

y - Y and ( )2

z - Z ;  see for instance Upadhyaya and Singh (2006).  

 Now, to estimate the ratio of population variances R we consider the following 

two different realistic situations separately as: 

Situations I: Units of the samples S,
1

S  and 
2

S  give complete response for the study 

variables y, x and the auxiliary variable z.  

Situations II: Random non-response situations occur for the variables y, x and z in the 

units of the samples S,
1

S  and 
2

S . 
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 We have suggested two classes of estimators separately to estimate R under the 

above different realistic situations and present them below. 

2.1. Proposed class of estimators applicable for situation I  

 When the units of the sample S,
 1

S  and 
2

S  give complete response for the 

variables y, x and z, the usual sample estimator of ratio of population variances R may 

be considered as   

n

n

2
y

n 2
x

s
R =

s
          (1) 

where  

( )
n

n
-12 2

y i n

i =1

s = n - 1 (y - y )∑ and ( )
n

n
-12 2

i n

i =1

s = n - 1 (x - x )
x ∑ are the sample variances of the 

study variables y and x respectively based on sample S of size n, 

n
 y  and 

n
x are the sample means of the variables y and x respectively based on the 

sample S.  

 However, the aim of a statistician is to develop superior of the method of 

estimation over the usual one. Accordingly, inspired with the estimation procedures 

suggested by Bahl and Tuteja (1991) which discussed exponential ratio and product 

type structures for estimating population mean, one may suggest a class of estimators of 

R based on the sample S of size n as 

n

n

2 2
z z

n n 2 2
z z

S  - s
t = R exp c

S  + s

 
 
 
 

        (2) 

where c is suitably chosen real constant,  

n
z  and ( )

n

n
-12 2

z i n

i =1

s = n - 1 (z - z )∑  are the sample mean and variance of the auxiliary 

variable z respectively based on the sample S of size n. 

It may be seen that the proposed class of estimators nt  converges to (i) nR when c = 0 

(ii) exponential ratio-type estimator when c = 1 and (iii) exponential product-type 

estimator when      c = -1. It is also noted that the estimators nR and nt are biased which 

becomes a serious drawback for their practical applications. Therefore, an unbiased 

estimator of ratio of population variances R is more desirable.  

 Motivated with the above arguments and following the Jack-Knife unbiased 

estimation technique adopted by Quenouille (1956) and Gray and Schucancy (1972), 

we propose the class of estimators of ratio of population variances R as 

n c m
1

c

t - r t
T = 

1 - r
          (3) 

where ( )m 1 2

1
t = t  + t ,

2
        (4) 
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1m

1m

2 2
z z

1 1m 2 2
z z

S  - s
t = R exp c

S  + s

 
 
 
 

 and 2m

2m

2 2
z z

2 2m 2 2
z z

S  - s
t R exp c

S  + s

 
 =
 
 

 are the classes of 

exponential type estimators of R based on the sample  
1

S  and 
2

S respectively,  

( )jm

m
2 2

y i jm

i =1

1
s = (y -y ) ,

m-1
∑ ( )jm

m
2 2

i jm

i =1

1
s = (x -x )

m-1
x ∑ and 

( )jm

m
2 2

i jm

i =1

1
s = (z -z )

m - 1
z ∑  are the 

sample variances and
jm jm

 y ,  x  and 
jm

z are the sample means of the respective variables  

based on the samples ( )jS j = 1, 2  of size m, 

1m

1m

2
y

1m 2
x

s
R = 

s
 and 2m

2m

2
y

2m 2
x

s
R = .

s
 

It is to be noted that the classes of estimators ( )it i = 1, 2 and nt  are biased and we have 

considered  
( )
( )

n
c

m

B t
r = 

B t
 where ( )B t denote the bias of a class of estimators t .  

2.2. Proposed class of estimators applicable for situation II  
 In this section, we have considered that the occurrences of the random non-

response situations of the study variables y, x and the auxiliary variable z on the 

samples S,
1

S  and
2

S  follow discrete probability distribution models as presented below.  

 If r{ }r = 0, 1, 2, . . ., (n - 2) denotes the number of units of the sample S on 

which information could not be obtained due to random non-responses, then the 

observations of the variables y, x and z can be taken from the remaining (n − r) 

responding units of the sample S. Since we are interested in the problem of unbiased 

estimation of ratio of the population variances, it is assumed that r is less than (n − 1), 

that is, 0  r (n - 2).≤ ≤  We also assume that if p denotes the probability of a non-

response among the (n − 2) possible values of non-responses, then r has the following 

discrete probability distribution given by 

( ) ( ) n - 2 r n - 2 - r

r

n - r
P r = C  p q

nq + 2p
       (5) 

where q = 1- p and n - 2

r
C denote the total number of ways of obtaining r non-responses 

out of the total possible (n − 2) responses; see for instance Singh and Joarder (1998) 

and Singh et al. (2012).   

 Similarly, if the information on { }1 1r r  = 0, 1, 2, . . ., (m - 1)  and 

{ }2 2r r  = 0, 1, 2, . . ., (m - 1)  numbers units of the samples 
1

S and
2

S  respectively could 

not be obtained due random non-responses, then the required observations of the 

variables y, x and z can be taken from remaining 
1

(m - r )  and 
2

(m - r )  responding units 

of the respective samples 
1

S  and
2

S . As the sample S is divided at random into two sub 

sample 
1

S  and 
2

S of equal size, therefore, it is assumed that 10  r  (m - 1)≤ ≤  and 

20  r  (m - 1)≤ ≤ . We have denoted 
1p and 

2p  as the probability of non-response 

among the (m - 1) possible values of non-responses from the sample 
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1
S and

2
S respectively. Thus, 

1
r and 

2
r  have the following discrete probability 

distributions as  

( ) ( )
1 1

1

1 r m - 1 - rm - 1

1 r 1 1

1 1

m - r
P r = C  p q

mq  + p
,       (6) 

and ( ) ( )
2 2

2

2 r m - 1 - rm - 1

2 r 2 2

2 2

m - r
P r = C  p q

mq  + p
      (7) 

where 
1 1q = 1- p , 

2 2q = 1- p , 
1

m - 1

rC  and 
2

m - 1

rC are the total number of ways of 

obtaining 
1r and 

2r  non-responses respectively from the total possible (m – 1) 

responses.  Since the number of non-responding units in the sample S remains same 

even after splitting of S into two sub samples 
1

S  and 
2

S , therefore, the relation among 

r, 
1
r and 

2r can be defined as  

1 2r = r  + r .               (8) 

It is to be noted that the non-response probability models defined in equations (5)-(7) 

are free from actual data values; hence, can be considered as a model suitable for MAR 

situation. 

 We have defined following sample parameters based on the responding units of 

the samples S,
 1
S  and 

2
S  as:  

n - r n - r n - r
* * *

n i n i n i

i = 1 i = 1 i = 1

1 1 1
x = x , y = y , z = z :

n - r n - r n - r
∑ ∑ ∑ Sample means of the respective variables 

based on the responding units of the sample S.  
j j jm - r m - r m - r

* * *

jm i jm i jm i

i = 1 i = 1 i = 1j j j

1 1 1
 x = x , y = y , z = z :

m - r m - r m - r
∑ ∑ ∑ Sample means of the respective 

variables based on the responding units of the samples ( )jS j = 1, 2 .  

( ) ( ) ( )n n n

n - r n - r n - r
*2 * 2 *2 * 2 *2 * 2

y i n x i n z i n

i = 1 i = 1 i = 1

1 1 1
s = (y -y ) , s = (x -x ) , s = (z -z ) :

n - r - 1 n - r - 1 n - r - 1
∑ ∑ ∑ Sample 

variances of the respective variables based on the responding units of the sample S. 

( ) ( ) ( )
j j j

jm jm jm

m - r m - r m - r

*2 * 2 *2 * 2 *2 * 2

y i jm x i jm z i jm

i = 1 i = 1 i = 1j j j

1 1 1
s = (y -y ) , s = (x -x ) , s = (z -z ) :

m-r -1 m-r -1 m-r -1
∑ ∑ ∑   

 Sample variances of the respective variables based on the responding units of the 

samples ( )jS j = 1, 2 .  

 Following the work of section 2.1 and considering the random non-response 

probability models discussed above, we propose the class of estimators for estimating 

the ratio of population variances R based on the responding units of the samples S, 

1S and
2S  as 

*

*

* *
n mc

2

c

t - r t
T = 

1 - r
         (9)  

where  
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n

n

2 *2
z z* * *

n n 2 *2
z z

S  - s
t = R exp c

S  + s

 
 
 
 

, ( )* * *
m 1 2

1
t = t  + t ,

2
 

n

n

*2
y*

n *2
x

s
R = 

s
 is the sample estimator of ratio of population variances R based on the 

responding units of the sample S, 

1m

1m

2 *2
z z* * *

1 1m 2 *2
z z

S  - s
t = R exp c ,

S  + s

 
 
 
 

2m

2m

2 *2
z z* * *

2 2m 2 *2
z z

S  - s
t = R exp c

S  + s

 
 
 
 

 are the classes of exponential 

type estimators of  R based on the responding units of the samples  
1

S  and 

2
S respectively, 

1m

1m

*2
y*

1m *2
x

s
R = ,

s
 2m

2m

*2
y*

2m *2
x

s
R = ,

s
 

*
c  is the suitably chosen real constant and we have considered 

( )
( )

*

*
n

c *
m

B t
r = .

B t
  

 

3. Variances of the proposed classes of estimators 1 2T  and T     

3. 1. Variance of the class of estimators 1T   

 If the units of the samples S, 
1S and

2S  give complete response for the variables 

y, x and z, then to derive the expression of variance of the proposed class of estimators 

1
T to the first order approximations we use the following transformations under large 

sample approximations as  

( ) ( ) ( )
1m 1m 1m

2 2 2 2 2 2

y y 0 x 1 z 2s = S 1+ e , s = S 1+ e , s = S 1+ e ,
x z ( )

2m

2 2

y y 3s = S 1+ e , ( )
2m

2 2

x 4s = S 1+ e
x

( )
2m

2 2

z 5s = S 1+ e
z

 ( ) ( ) ( )
n n n

2 2 2 2 2 2

y y 6 x x 7 z z 8s = S 1+ e , s = S 1+ e , s = S 1+ e .  

Such that ie  < 1  ∀ (i = 0, 1, . . ., 8).  

Thus, we have the following expectations.   
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2

0 3 m 0 1 4 m 1 2 5 m 2 2 5 N 2

2 2 2 2 2

6 0 6 3 6 n 0 7 1 7 4 7 n 1 1 4 N 1

2 2 2

8 2 8 5 8 n 2 0 3 N 0 0 4 1 3 N 01 0 1

E e = E e = f C , E e = E e = f C , E e = E e = f C , E e e = f C ,

E e =E e e =E e e = f C , E e = E e e =E e e = f C , E e e = f C ,   

E e = E e e = E e e = f C , E e e = f C , E e e =E e e = f ρ C C

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 5 2 3 N 02 0 2 1 5 2 4 N 12 1 2 2 7 5 7 n 12 1 2

0 2 3 5 m 02 0 2 1 2 4 5 m 12 1 2 1 8 4 8 n 12 1 2

1 6 4 6 6 7 0 7 3 7 n 01 0 1 0 1 3 4 m 01 0 1

,  

E e e =E e e =f ρ C C , E e e =E e e =f ρ C C , E e e =E e e =f ρ C C

E e e =E e e =f ρ C C ,E e e =E e e =f ρ C C , E e e =E e e =f ρ C C  

E e e =E e e =E e e =E e e =E e e =f ρ C C ,E e e =E e e =f ρ C C , 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

7 8 n 12 1 2 2 6 5 6 6 8 0 8 3 8 n 02 0 2

0 7 3 7 n 01 0 1

 (10)

E e e =f ρ C C , E e e =E e e =E e e =E e e =E e e =f ρ C C , 

E e e =E e e =f ρ C C ,  















  

where  

  m

1 1
f =  - 

m N

 
 
 

 and n

1 1
f =  - .

n N

 
 
 

  

Under the above transformations 
1 2

t , t and 
n

t take the following forms  

( )( )
-1

-1 2 2
1 0 1

- ce e
t = R 1+ e 1+ e exp 1+

2 2

    
   
    

,               (11) 

( )( )
-1

-1 5 5

2 3 4

- ce e
t = R 1+ e 1+ e exp 1+

2 2

    
   
    

              (12) 

and ( )( )
-1

-1 8 8

n 6 7

- ce e
t = R 1+ e 1+ e exp 1+ 

2 2

    
   
    

             (13) 

Expanding the above terms binomially and using the results from equation (10), we 

have obtained bias of the classes of estimators 
1 2

t , t and 
n

t  to the first order of 

approximations as 

( ) ( )1 1 mB t = E t - R = f A                  (14) 

( ) ( )2 2 mB t = E t - R = f A                  (15) 

and  

( ) ( )n n nB t =E t -R  = f A                  (16) 

where 
( )

( )
2

2 2

1 2 01 0 1 12 1 02 0 2

c +2c c
A = C + C - ρ C C + ρ C - ρ C C R.

8 2

 
 
 
 

  

Substituting the above results in equation (3) and taking expectations up to first order of 

approximations, it is found that  

( )1E T = R                                                              (17) 

and n
c

m

f
r = 

f
                     (18) 

which indicates that the class of estimators 1T  is unbiased for estimating R up to the 

first order of approximations. 

Thus, we have the following theorem.  



Estimation of ratio of population variances in …                                                                       85 
 

  

 

Theorem 1: Variance of the class of estimators 1T  to the first order of approximations 

are obtained as 

( ) ( ) ( )
2

2 2 2 2

1 n 0 1 01 0 1 2 02 0 12 1 2

c
V T = f C + C - 2ρ C C + C - c ρ C - ρ C C R

4

 
 
 

           (19) 

Proof. The variance of the class of estimators 1T  is given by 

       ( ) ( )
( )

( ){ }
2

22 n c m
1 1 n c m c2

c c

t - r t 1
V T = E T - R = E - R = E t - r t - 1 - r R

1 - r 1 - r

 
 
 

   

               
( )

( ) ( )
2

n c m2

c

1
= E t  -R - r t - R

1 - r
    

       
( )

( )
( )

( ) ( )

( )
( )( ) ( )( )

2
22 c

n 1 22 2

c c

c

n 1 n 22

c

r1
E t - R + E t -R  + t -R

1 - r 4 1- r

r
   - E t - R t -R t - R t -R

1- r

 =  

 + 

 

Using the expansions of 1 2t , t and nt  given in equations (11)-(13) and results from 

equation (10), we have the expression for the variance of the class of estimators 1T  to 

the first order of approximations as presented in equation (19).         

3. 2. Variance of the class of estimators 2T  

 When random non-response situations occur for the study variables y, x and the 

auxiliary variable z on the samples S, 
1S and

2S , we derive the variance of the class of 

estimators 2T up to first order of approximations using following transformations under 

large sample approximations as.   

( ) ( ) ( )
1m 1m 1m

*2 2 * *2 2 * *2 2 *

y y 0 x 1 z 2s = S 1+ e , s = S 1+ e , s = S 1+ e ,
x z ( )

2m

*2 2 *

y y 3s = S 1+ e , ( )
2m

*2 2 *

x 4s = S 1+ e ,
x

( )
2m

*2 2 *

z 5s = S 1+ e
z

 ( ) ( ) ( )
n n n

*2 2 * *2 2 * *2 2 *

y y 6 x x 7 z z 8s = S 1+ e , s = S 1+ e , s = S 1+ e .  

Such that
*

ie  < 1  ∀ (i = 0, 1, . . ., 8).  

Thus, we have following expectations. 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

*2 * 2 *2 * 2 *2 * 2 *2 * 2 *2 * 2 *2 * 2

0 1 0 1 1 1 2 1 2 3 2 0 4 2 1 5 2 2

*2 * * * * * 2 *2 * * * * * 2 * * 2

6 0 6 3 6 n 0 7 1 7 4 7 n 1 2 5 N 2

*2 * * * * * 2

8 2 8 5 8 n 2

E e =  f C , E e = f C , E e = f C , E e = f C , E e = f C , E e = f C , 

E e =E e e =E e e = f C , E e = E e e =E e e = f C , E e e = f C ,

E e = E e e = E e e = f C ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

* * 2 * * 2 * * *

0 3 N 0 1 4 N 1 0 1 1 01 0 1

* * * * * * * * * * * *

0 2 1 02 0 2 1 2 1 12 1 2 6 7 n 01 0 1 3 4 2 01 0 1

* * * * * * * * *

3 5 2 02 0 2 4 5 2 12 1 2 6 8 n 02 0 2 7

, E e e = f C , E e e = f C , E e e = f ρ C C ,

E e e = f ρ C C , E e e = f ρ C C ,E e e =f ρ C C , E e e = f ρ C C ,

E e e = f ρ C C , E e e = f ρ C C , E e e = f ρ C C ,E e( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

* * *

8 n 12 1 2

* * * * * * * *

0 4 1 3 N 01 0 1 0 5 2 3 N 02 0 2

* * * * * * * * * * * * *

1 6 4 6 0 7 3 7 n 01 0 1 1 5 2 4 N 12 1 2

* * * * * * * * *

2 6 5 6 0 8 3 8 n 02 0 2

* * *

2 7 5

e = f ρ C C ,

E e e = E e e = f ρ C C , E e e =E e e = f ρ C C ,

E e e =E e e =E e e =E e e =f ρ C C ,E e e =E e e = f ρ C C  

E e e =E e e = E e e =E e e =f ρ C C ,

E e e =E e e( ) ( ) ( )* * * * * *

7 1 8 4 8 n 12 1 2

 (20)

=E e e =E e e f ρ C C ,


















= 

  

where 
*

1

1 1

1 1
f =  - ,

mq + p N

 
 
 

*

2

2 2

1 1
f =  - 

mq + p N

 
 
 

and *

n

1 1
f =  - .

nq + 2p N

 
 
 

 

Proceeding as section 3.1 and using the results from equation (20), it can be observed 

that the class of estimators 2T is unbiased for the ratio of population variances R up to 

first order of approximations ( )2i. e. E T = R    and we have obtained the expression for 

the variance of the class of estimators 2T to the first order of approximations as  

( )
( )

( ) ( )* *

*

* 2 o * *2
n n 2 2 2 *c c

2 0 1 01 0 1 2 02 0 12 1 22

c

f + r f -2r f c
V T = C + C -2ρ C C + C -c ρ C -ρ C C

41- r

 
 
 

  (21) 

where  

 
( )*

*

n

c * *

1 2

2 f
r = 

f + f
 and 

o

1 1 2 2

1 1 1 2
f =  +  - .

2 nq + 2p nq + 2p N

 
 
 

    

It is to be noted that if p = 1p = 2p = 0 (there is no non-response), the variance of the 

class of estimators 2T  coincide with the variance of the class of estimators 1T   as given 

in equation (19).  

 

4. Minimum variances of the proposed classes of estimators 1T and 2T  

 It is obvious from the equations (19) and (21) that the variances of the proposed 

classes of estimators ( )iT i = 1, 2  depend on the different values of the constants c and 

*c .  Therefore, we desire to minimize their variances.  

 The optimality conditions under which proposed classes of estimators 1T  and 

2T have minimum variances are obtained as     

( )02 0 12 1*

2

 2 ρ C - ρ C
c = c  =

C
                                                 (22) 
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Substituting these optimum values of the constants c and *
c  in equations (19) and (21), 

we have obtained the expressions of minimum variances of the classes of estimators 

( )iT i = 1, 2 as  

( ) ( ){ }22 2 2

1 n 0 1 01 0 1 02 0 12 1Min. V T = f C + C - 2ρ C C - ρ C - ρ C R              (23) 

and ( )
( )

( ){ }* *

*

* 2 o *
2n n 2 2 2c c

2 0 1 01 0 1 02 0 12 12

c

f + r f - 2r f
Min. V T = C + C - 2ρ C C - ρ C - ρ C R

1- r
 (24) 

Remark 4.1: It may be observed from the optimality conditions in equation (22) that 

the optimum values of constants c and 
*c  of the proposed classes of estimators 

( )iT i = 1, 2 depend on unknown population parameters such as
0 1 2

 C , C , C ,
12

ρ  and 

02
ρ . Thus, to use such estimators one has to use guessed or estimated values of them. 

Guessed values of population parameters can be obtained either from past data or 

experience gathered over time. A scatter diagram for at least a part of current data will 

help in this regard; for instance see Murthy (1967) and Tracy et al. (1996). If the 

guessed values are not known then it is advisable to use sample data to estimate these 

parameters as suggested by Singh et al. (2007) and Gupta and Shabbir (2008). 

Replacement of the population parameters by their respective sample estimates may 

turn the proposed classes of estimators to be biased. However, they can be converted to 

the classes of unbiased estimators up to first order of approximations by using Jack-

Knife technique as suggested in this paper. It could be seen that the variances of the 

proposed classes of estimators remain same up to the first order of approximations, 

even if population parameters are replaced by their respective sample estimates.      

 
5. Efficiency comparisons of the proposed classes of estimators 

1
T and 

2
T  

 To examine the performances of our proposed classes of estimators 
1

T  and 
2

T , 

we have compared their efficiencies with usual sample estimator of ratio of population 

variances under the similar realistic situations. Since the sample estimator nR  and *

n
R  

defined in sections 2.1 and 2.2 respectively are biased, therefore, we have obtained their 

mean square errors up to the first order of approximations as  

( ) ( )2 2 2
n n 0 1 01 0 1M R f C + C - 2ρ C C R=                          (25) 

and  

( ) ( )* * 2 2 2

n n 0 1 01 0 1M R = f C + C - 2ρ C C R  respectively.              (26) 

The proofs of the mean square errors of the estimators 
n

R and *

n
R defined above can be 

derived in similar way as suggested in sections 3.1 and 3.2 respectively. The 

performances of the proposed classes of estimators 
1

T  and 
2

T  under their respective 

optimality conditions are empirically compared with 
n

R and *

n
R   and we have 

demonstrated their merits through numerical illustration and graphical interpretation. 

5.1. Numerical Illustration  
We have chosen four natural population data sets to illustrate the efficacious 

performances of our proposed classes of estimators 1T and 2T . The source of the 
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populations, the nature of the variables y, x, z and the values of the various parameters 

are given as follows.  

Population I-Source: Cochran (1977, Page- 182)  

y: Number of ‘placebo’ children. 

x: Number of paralytic polio cases in the placebo group. 

z: Number of paralytic polio cases in the ‘not inoculated’ group.  

N= 34, 
0

C = 2.3219, 
1

C = 1.8268, 
2

C = 2.0887, 
01

ρ = 0.6661, 
02

ρ = 0.5657,  

12
ρ = 0.6005. 

 It is to be noted that this population was also considered by several authors including 

Choudhury and Singh (2012).  

Population II-Source: Murthy (1967, Page- 399) 

y: Area under wheat in 1964. 

x: Area under wheat in 1963. 

z: Cultivated area in 1961.  

N= 34, 
0

C =  1.6510, 
1

C =  1.3828, 
2

C = 1.3447, 
01

ρ =  0.9218, 
02

ρ =  0.8914, 
12

ρ =  

0.9346. 

This population was considered as numerical evidence in the works of several authors 

including Jhajj et al. (2005) and Choudhury and Singh (2012). 

Population III- Source: Sukhatme (1970, Page- 185) 

y: Area under wheat in 1937. 

x: Area under wheat in 1936. 

z:Total cultivated area in 1931. 

N= 34, 
0

C =  1.5959, 
1

C =  1.5105, 
2

C = 1.3200, 
01

ρ =  0.6251, 
02

ρ =  0.8007, 
12

ρ =  

0.5342. 

It is to be noted that this population was presented to justify the works of by several 

authors including Agrawal and Roy (1999). 

Population IV-Source: Murthy (1967, Page- 288) 

y: Output. 

x: Fixed Capital 

z: Number of workers.  

N= 80, 
0

C =  1.1255, 
1

C =  1.6065, 
2

C = 1.3662, 
01

ρ =  0.7319, 
02

ρ =  0.7940, 
12

ρ =  

0.9716. 

This population was also considered as numerical evidence in the works of several 

authors including Jhajj et al. (2005). 

  

 Using the above data sets, we have compared the efficiencies of our proposed 

classes of estimators
i

T (i = 1, 2)  under their respective optimality conditions with the 

sample estimator of ratio of population variances and the findings are displayed in 

tables 1-2.  It is to be noticed from equation (24) that the minimum variance expression 

of the class of estimators 
2

T depend on values of the non-response rates p, 
1p and

2p , 

which are difficult to obtain. Therefore, to examine the performance of the class of 

estimators 
2

T  we make use of maximum likelihood estimators of p, 
1p and

2p  say p̂ , 

1p̂ and 
2p̂  respectively, which are presented in Lemma 5.1. Replacing the non response 

rates by their respective likelihood estimates, we have the following expression for 
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minimum variance of the class of estimator  
2

T  up to the first order of approximations 

as 

 ( )
( )

( ){ }* *

*

* 2 o *
2n n 2 2 2c c

2 0 1 01 0 1 02 0 12 12

c

ˆ ˆ ˆˆ ˆf + r f - 2r f
ˆMin. V T = C + C - 2ρ C C - ρ C - ρ C R

ˆ1- r
        (27) 

where 

*

1

1 1

1 1
f̂ =  - ,

ˆ ˆmq + p N

 
 
 

*

2

2 2

1 1
f̂ =  - ,

ˆ ˆmq + p N

 
 
 

 *

n

1 1
f̂ =  - ,

ˆ ˆnq + 2p N

 
 
 

 

( )
*

*

n

c * *

1 2

ˆ2 f
r̂ = 

ˆ ˆf + f
 and 

o

1 1 2 2

1 1 1 2
f̂ =  +  - .

ˆ ˆ ˆ ˆ2 nq + 2p nq + 2p N

 
 
 

 

We have designated the percent relative efficiencies (PREs) of our proposed classes of 

estimators with respect to estimators nR  and *
nR  as  

n

1

M(R )
E = ×100

Min. V(T )
 and 

*
* n

2

M(R )
E  = ×100

ˆMin. V(T )
 respectively.     

Lemma 5.1. We have obtained the expressions of likelihood estimates of non-response 

probability of p, 
1p and

2p  as  

( ) ( ) ( )
( )

2
(n-1+ r) - n - 1 + r - 4rn n - 3 / n - 2

p̂= 
2 n - 3

,               (28) 

( ) ( )( ) ( )
( )

2

1 1 1

1

(m + r ) - m+ r - 4r m + 1 m - 2 / m - 1
p̂ = 

2 m - 2
,             (29) 

and  

( ) ( )( ) ( )
( )

2

2 2 2

2

(m + r ) - m+ r - 4r m + 1 m - 2 / m - 1
p̂ = 

2 m - 2
 respectively           (30)  

(see for instance Singh and Joarder (1998) and singh et al (2012)) 

 

where the numbers of non-responding units of the samples S, 
1S and

2S satisfy the linear 

relationship between them as indicated in equation (8).  

 

 

Population E 

Population I 101.5480 

Population II 108.1028 

Population III 113.9210 

Population IV 158.9146 

 

Table 1: PRE of the class of estimators 
1T  with respect to nR . 
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Population I 

n R 1r  *E  n R 1r  *E  n R 1r  *E  n R 1r  *E  

20 3 1 100.9 22 4 2 101.1 24 5 2 100.9 26 6 3 101.1 

2 100.9 3 100.5 3 100.9 4 100.6 

4 2 100.9 5 2 100.7 6 3 100.9 7 3 100.8 

3 100.1 3 100.7 4 100.3 4 100.8 

Population II 

n R 1r  *E  n R 1r  *E  n R 1r  *E  n R 1r  *E  

20 3 1 107.4 22 4 2 107.6 24 5 2 107.5 26 6 3 107.6 

2 107.4 3 106.9 3 107.5 4 107.1 

4 2 107.4 5 2 107.2 6 3 107.5 7 3 107.3 

3 106.5 3 107.2 4 106.8 4 107.3 

Population III 

n R 1r  *E  n R 1r  *E  n R 1r  *E  n R 1r  *E  

20 3 1 113.2 22 4 2 113.4 24 5 2 113.2 26 6 3 113.4 

2 113.2 3 112.7 3 113.2 4 112.9 

4 2 113.2 5 2 113.0 6 3 113.2 7 3 113.1 

3 112.3 3 113.0 4 112.6 4 113.1 

Population IV 

n R 1r  *E  n R 1r  *E  n R 1r  *E  n R 1r  *E  

30 4 2 158.4 40 6 3 158.5 50 8 5 158.4 60 10 4 158.6 

3 157.7 4 158.2 6 157.9 6 158.6 

6 3 158.0 8 5 157.9 10 5 158.5 12 5 158.5 

4 157.2 6 156.8 6 158.3 7 158.5 

 

Table 2: PRE of the class of estimators 
2T  with respect to *

nR  for different    

choices of n, r and 
1r . 

 

5.2. Graphical interpretation 

 We have established the dominance of our proposed classes of estimators 
1

T  and 

2
T  over the usual sample estimator of ratio of population variances by pictorial 

representation. In this section, we have considered N = 500, n = 100,     r = 20, 1r  = 

12, 0 1 2C C C≅ ≅ and compare the efficiencies of our proposed classes of estimators for 

different choices of correlations 01ρ ,  
02

ρ  and 
12

ρ .  This could not only improve the 

readability of the results but also allow the comparison of a much denser grid of 

different correlation values.  
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      Figure 1:  PRE of 

1
T  (

12
ρ 0.8= )                 Figure 2:  PRE of 

2
T (

12
ρ 0.8= )                 

                        

                          
        Figure 3:  PRE of 

1
T  (

02
ρ 0.4= )             Figure 4:  PRE of 

2
T  (

02
ρ 0.4= )   

Note: r 01, r 02 and r 12 denote 
01 02

ρ , ρ  and 
12

ρ  respectively in the figures 1- 4. 

 

6. Conclusions  
 The following conclusions may be drawn from the present study. 

1. From tables 1- 2, it is observed that: 

(a) Our proposed class of estimators 
1

T  under its optimality condition is preferable over 

the usual sample estimator nR .   

(b)  For the different choices of sample size n and the number of non-responding units 

(i. e. r and
1r ), proposed class of estimators

2
T  under its optimality condition is more 

efficient than the sample estimator *
nR  which indicates that the class of estimators 

2
T  

can handle the problem of random non-responses effectively.  

 2. From figures 1-4, it is noticed that:  
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 (a) For fixed value of
12

ρ , the percent relative efficiencies of the proposed classes of 

estimators 
i

T (i = 1, 2)  under their respective optimality condition are increasing with 

the increasing values of 
01

ρ .  

(b) For fixed value of
02

ρ , the percent relative efficiencies of the proposed classes of 

estimators 
i

T (i = 1, 2)  under their respective optimality condition are increasing with 

the increasing values of 
12

ρ . 

 These phenomena indicate that our proposed classes of estimators could perform 

significantly, if a high positively correlated auxiliary variable is available and the study 

variables have strong correlation between them.   

 

 Thus, the superiority of the suggested classes of estimators over the usual 

sample estimator of ratio of population variances has been established and it is found 

that the use of an auxiliary variable is highly rewarding in terms of the proposed classes 

of estimators. Moreover, it may be noted that the proposed classes of estimators are 

unbiased up to first order of approximations, which indicate profoundness of their 

practical applications. Hence, the proposals of the classes of estimators in the present 

study are justified as they unify several results and therefore, they may be 

recommended to the survey statisticians and practitioners for their usage in real life 

problems.     
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