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Abstract   

This paper considers the problem of estimating population mean Y of survey variable 

Y using circular systematic sampling design along with non response problem. Motivated by 

Sahai and Ray (1980), Koyunsu and Kadilar (2010), Singh and Solanki (2013) and Singh and 

Malik(2014), we have suggested three modified class of estimators for Y . The properties of the 

suggested estimators are discussed and are compared with sample mean and linear regression 

estimator. Also, an empirical study is carried out to judge the merits of suggested estimators over 

other competitors based on circular systematic sampling over simple random sampling. 

Key Words: Regression Estimator, Circular Systematic Sampling, Two-Phase 

Sampling, Non- Response, Asymptotic Variance, Efficiency. 

1. Introduction 

          In sample surveys, auxiliary information on the finite population under study 

is quite often available from previous experience, census or administrative databases. 

The sampling literature describes a wide variety of techniques for using auxiliary 

information to improve the sampling design and/or obtain more efficient estimators. It 

is well known that when the auxiliary information is to be used at the estimation stage, 

the ratio, product and regression methods are widely employed.  

 

          Systematic sampling technique is operationally more convenient than simple 

random sampling. It also ensure at the same time each unit has equal probability of 

inclusion in the sample. In this method of sampling, the first unit is selected with the 

help of random number and remaining units are selected automatically according to 

predetermined pattern. Hasel (1942) and Griffth(1945-1946) found systematic sampling 

to be efficient and convenient in sampling certain natural populations like forest areas 

for estimating the volume of the timber and area under different types of cover. 

Cochran (1946) and Hajeck (1959) had stated that in large-scale sampling work, this 

procedure provides more efficient estimators than those provided by simple random 

sampling and/or stratified random sampling for certain populations. 
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When the population mean X  of the auxiliary variable x is known, 

Swain(1964) and Shukla (1971) have suggested the ratio and product estimators for the 

population mean Y of the survey variable y, respectively, along with their properties in 

systematic sampling. Some other notable work in this area are Singh and Singh (1998), 

Singh R. et al.(2012), Singh and Jatwa (2012), Singh and Solanki(2012) and Verma et 

al. (2014). 

 

          In linear systematic sampling, given a sample size n, sampling is possible only if 

population size N is divisible by n. Even when this condition is satisfied, the scheme 

cannot provide estimate of variance of the sample mean. This scheme has two 

drawbacks namely, given N, n has limited choice and variance of the sample mean is 

not estimable. The first limitation could be removed through circular systematic 

sampling as suggested by Lahiri(1952). The procedure consists in selecting a unit, by a 

random start, from 1 to N and then thereafter selecting every 
thk  unit, k being an 

integer nearest to N/n, in a circular manner, until a sample of n units is obtained. 

Suppose that a unit with random number i is selected. The sample will then consists of 

the units corresponding to the serial numbers 

   









+<−+

−=

≤+≤+

=

.jkiN,Njki

)1n(,.......,1,0ifor

,Njki1,jki

Label  

[for details see Singh and Chaudhary (1986),pp83)].  

In the following manner, we may draw N circular systematic samples, each of size n as 

displayed in Table 1. 

Sample number 

1 2 ...... i ....... N 

1u  2u   
iu   

Nu  

1ku +  2ku +   
iku +   

N2u  

....... .......  .......  ....... 

....... .......  .......  ....... 

1k1)-(nu +  21)k-(nu +   
i1)k-(nu +   

Nnu  

 

Table 1: Possible Samples using Circular Systematic Sampling 

    From these N possible samples, a sample of size n is selected randomly to observe Y 

and X. 
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        The present problem aims to give some contribution on this subject. For this 

purpose, taking motivation from Sahai and Ray (1980), Koyunsu and Kadilar (2010), 

Singh and Solanki (2013) and Singh and Malik (2014), three modified classes of 

estimators are suggested for the population mean using auxiliary information in circular 

systematic sampling design, following this we have  also studied the effect of non-

response (present in study variable y ) on suggested estimators.  

 

2. Processing and notations used in circular systematic sampling 

        Let us suppose that 
*U  be a finite population consists of N distinct labelled 

units i.e. )U...........U,U(U N21

* =  and n be a fixed sample size.  

         Also, let Y and X be study and auxiliary variables taking values ijy  and 

ijx )n,.....,2,1(j),N,.....,2,1(i == .  

The CSS sample means n/yy
n

1j

ijCSS ∑
−

=  and n/xx
n

1j

ijCSS ∑
−

= are unbiased 

estimates of population means N/yY
N

1j
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−

=  and N/XX
N

1j

ijCSS ∑
−

=  

respectively. 

The variance of CSSy  and CSSx  under CSS design is written as- 
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where ),( xy ρρ represents intraclass correlation coefficients between pairs of units 

within the CSS for variable Y and X, respectively. 

Also,  
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3. Estimators in literature 
          It is well known that regression estimators are always more efficient then usual 

mean and ratio estimators, at least asymptotically, thus we consider linear regression 

estimators based on CSS as standard result for making comparison with our suggested 

class of estimators. 

The linear regression estimator of the population mean Y based on CSS with known 

X is defined as 

               ),xX(ˆy)c(y CSSyxCSSrl −β+=                                                            (1) 

where 
2

x

yx

yx
s
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ˆ =β is an estimator for population regression coefficient yxβ  with         
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The asymptotic variance of )c(y lr is respectively given by 
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          When population mean X is unknown, double sampling scheme is used. 

Under double sampling scheme, first we divide the population into N clusters of size n, 

each according to CSS, and select randomly m distinct clusters (1< m <k) to estimate 

X only. In second phase, a cluster is selected randomly from m CSSs to estimate Y . 

Hence, the expression for )c(y rl ,  with unknown X , is given as 

                 ),x'x(ˆy)c('y CSSCSSyxCSSrl −β+=                                                     (3) 
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The asymptotic variance of )c('y lr is given by 
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4. Suggested family of estimators 
           Much literature has been written on sampling from finite populations to 

address the issue of the efficient estimation of the mean (or total) of a survey variable 

when auxiliary variables are available. Our analysis refers to simple random sampling 

without replacement (SRSWOR) and circular systematic sampling (CSS) considers, for 

brevity, the case when only a single auxiliary variable is used. 

 

         In this section, we have suggested three modified class of estimators for 

estimating Y  using prior knowledge on x, based on SRSWOR and circular systematic 

sampling. The suggested modified classes are motivated from Singh and Solanki 

(2013), Singh and Malik (2014), Sahai and Ray (1980) and Koyuncu and Kadilar 

(2010]). After observing theoretical and empirical results, we infer that the suggested 

estimators performs better than usual linear regression estimators in both SRSWOR and 

CSS design, which demonstrate the superiority of suggested estimators. Also, we 

observed that CSS design is more convenient and efficient then SROWOR design.  

 

4.1 Difference-type class of estimator 
        Motivated from Singh and Solanki (2013) and Koyuncu and Kadilar (2010), 

we propose the following difference-type class of estimators for estimating population 

mean Y  of a survey variable under CSS assuming X is known 
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where ),( 21 κκ  are suitably choosen scalars to be properly determined for minimum 

mean square error (MSE) of suggested estimators, λ+η= CSS

*

CSS xx , 

λ+η= XX *
 with ),( λη  are either constants or function of some known 

population parameters and α  being constants which take finite values for designing the 

different estimators (see Singh and Kumar(2011)). 

 

To obtain the bias and MSE expressions of the proposed class of estimators 1T , we 

define               
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The expressions for asymptotic bias and asymptotic variance of the suggested estimator 

1T using CSS are given respectively as 
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Now suppose X is unknown, the analogue of 1T becomes 
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where,  the notations used here are already defined earlier. 
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The expressions for asymptotic bias and asymptotic variance of the suggested estimator 
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4.2 Exponential- ratio type class of estimators 
Motivated by Sahai and Ray(1980)and Singh and Malik (2014), the following 

modified class of estimators has been suggested for the population mean Y  assuming 

that X  is known 
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The expressions for asymptotic bias and asymptotic variance of the suggested estimator 

2T using CSS are given as 

( ) { }











−φ−φ+κ+











 γτ

−φ+κ= 1C
~

C
~

1
2

C
~

C
~

1YTAB yx5

2

x42

yx22

x312
    (15) 

and 

( ) 2 2 2
2 1 21 2 22 1 23 2 24 1 2 252 2 2AV T Y N N N N Nκ κ κ κ κ κ = + − − + 

                    (16)         

Minimisation of ( )2TAV is achieved for the optimum choice of constants 1κ and 2κ  










−

−
=κ

2

252221

25242322*

1
NNN

NNNN
 and 









−

−
=κ

2

252221

25232421*

2
NNN

NNNN
 

where 












γτ−









φ+
τγ

++= yx2

2

x3

2

2

2

2

y21 C
~

2C
~

2
4

C
~

1N , 

{ }[ ]yx5

2

x45

2

y22 C
~

4C
~

2C
~

1N φ−φ+φ++= ,  











 γτ
−φ+=

2

C
~

C
~

1N
yx22

x323 , [ ]yx5

2

x424 C
~

C
~

1N φ−φ+=  



Some improved estimators in circular systematic sampling …                                                 123 

 

 

 












φ+

φγτ
+βτ−φ−φ++= 2

x3

2

x52

yx2yx5

2

x4

2

y25 C
~

2

C
~

C
~

C
~

2C
~

C
~

1N  

Such that,  

ν+µ

µ
=τ

X

X
2

,







 τγ
+

γτ
=φ

84

2

2

22

2

3
, 








 −ββ
−

γβτ
+

τγ
+

γτ
=φ

2

)1(

284

2

2

2

22

2

4
  

and β+
γτ

=φ
2

2

5
. 

Now assuming that X  is unknown, then the analogue of 2T becomes 
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The asymptotic bias and variance of 
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4.3 Generalised exponential-ratio type estimators 
Motivated by Sahai and Ray (1980)and Koyuncu and Kadilar (2010), the 

following modified class of estimators has been defined for the population mean Y  

assuming that X  is known 
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where ( 1κ , 2κ , 1β ) are defined earlier and ),( 11 λη being constants, which take finite 

real values or faction of known parameters for designing the different family of 

proposed estimators. 

The expressions for asymptotic bias and asymptotic variance of the suggested estimator 

3T using CSS are given as 
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Now assuming that X  is unknown, then the analogue of 3T becomes 
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where ( )11121 ,,,, ληβκκ  are already defined earlier. 

Then the asymptotic bias and variance of 
'

3T  can be the same like 3T . Because the 

difference between 3T and 
'

3T will be the same like the difference which is in 1T  and 
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There are many ways to construct the classes of proposed estimators 1T , 2T  and 3T . 

Many authors have discussed different family of estimators using known parameters 

and it is observed that, it increases the efficiency of the estimators. Thus we have given 

some members of the classes ( 1T , 2T , 3T ) using known population parameters. 
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Table 2.1: Some Members of Classes of Estimator 1T  
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Table 2.2: Some Members of Classes of Estimator 2T  
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Table 2.3: Some Members of Classes of Estimator 3T  

 

Note: Here lowercase ‘C’ stands for CSS (circular systematic sampling) 

 

4.5 Efficiency comparison 
  In order to compare the performance of the proposed classes of estimators 

based on CSS with the estimators based on SRSWOR, we can use the following 

estimators (
'

lrlr y,y,y  ) in SRSWOR 
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Note: Here using SRSWOR design, at first phase a large sample s´ of size n´ (n´< N) is 

selected randomly to estimate X  only. In second phase, a sub-sample s of size n form 

n´ units is drawn randomly to estimate Y  where n´=m n. 

 

         It is not easy to make analytical comparison of the proposed classes of 

estimators. Now we can get numerical results of variance and minimum AV of the 

considered estimators in CSS along with the variance and minimum AV of the 

estimators in SRSWOR. For this purpose, we use population data set as earlier 

considered by Koyuncu and Kadilar (2009) and Singh and Solanki (2013). The data 

concerns primary and secondary schools of 923 districts of Turkey in 2007. The 

description of variables is given below 

 

y = number of teachers in both primary and secondary school; 

x = number of students in both primary and secondary school. 

N =923   'n =360     n =180      m =2        X =11440.5        Y =436.43         

yS =749.94     xS =21331.13     yxρ =0.9543     yρ =-0.00255      xρ =-0.00316 

          

For two-phases, one can select 1 < m < 5 (as we mentioned earlier 1 < m < k). 

All possible values of m are considered and numerical results are provided only for m = 

2. Because it is observed that for m = 2, all the considered estimators are more efficient 

in CSS than SRSWOR. For m = 3 and m= 4, the estimators under SRSWOR perform a 

little better than CSS. So in this numerical example m = 2 can be the best choice among 

others. 

 

          Following is the description of the considered estimators in Table 3. The 

estimators )t,y,y( lr •  are based on SRSWOR and )T,y,y( '

lrCSS •  on CSS, further 

these estimators are also considered for two phase sampling. 

 

Estimators V/AV under single phase V/ AV under Two phase 

CSS SRSWOR CSS SRSWOR 

y  2515.17 1698.75 2515.17 1698.75 

lry  224.62 151.71 1092.44 925.23 

11T  169.71 135.90 1076.78 919.80 

12T  188.12 141.38 1079.56 921.75 

13T  153.95 131.49 1087.49 922.96 
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14T  218.17 149.58 1089.95 923.91 

21T  110.46 108.967 1074.097 922.43 

22T  108.012 107.1573 1072.78 922.26 

23T  110.44 108.96 1089.814 921.82 

24T  123.63 113.37 1077.198 922.82 

31T  206.54 141.184 1092.302 923.86 

32T  205.57 141.176 1092.23 923.863 

33T  203.69 141.134 1092.08 923.87 

34T  201.826 141.0869 1091.90 923.87 

 

Table 3: Minimum Asymptotic variance of considered estimators under single and 

two phase sampling 

         

          In Table 3, it can be seen that the variance of CSSy is smaller than the variance 

of y . Also, the asymptotic variance of considered estimator under CSS is smaller then 

under SRSWOR. Hence, we conclude that the estimators based on CSS are more 

efficient than the estimator based on SRSWOR. Note that yρ  and xρ  both are less 

than
)1N(

1

−
−  . It is also observed that all the considered estimators (.)3(.)2(.)1 T,T,T  

are more efficient than the regression estimator lry . Furthermore, in first phase 

sampling the estimator 13T  in class 1T , 22T  in class 2T  and 34T  in class 3T  provides 

minimum asymptotic variance among others but in two phase sampling 11T  in 

class 1T , 23T  in class 2T  and 31T  in class 3T  provides efficient result.  Henceforth, 

the estimator 22T (in 1
st
 phase) and 11T (in two phase), results the best one in terms of 

efficiency among all considered estimators. Hence, from Table 3, we can conclude that 

the class 2T  in case of single-phase and 1T  for two-phase may be the best choice 

among others.   

 

5. Non-response problem under CSS 
When a sample of size n is selected from N circular systematic samples to 

collect information of Y, then incomplete or missing information might be present. The 

reasons non-response problem occurrence may vary in different situations. For instance, 

the reasons of non-response in the data set considered in previous the section may be 

due to strikes, holidays etc. 
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When non-response occurs in a CSS, we can follow the well-known Hansen 

and Hurwitz (1946) non-respondents sub-sampling technique. Suppose that 1n  units 

out of n can supply information on Y and remaining 12 nnn −= units are taken as 

non-respondents. Following the technique of Hansen and Hurwitz (1946), a sub sample 

of size )1l(,
l

n
n 2

r >= is selected by SRSWOR from 2n  non-respondent units. 

Assume that all  rn  units show full response on second call (of course nr must be an 

integer and if it isn’t so, it is necessary to round). The population is said to be divided 

into two groups 1U  and 2U  of sizes 1N  and 2N , where 1U  is a group of 

respondents that would give response on the first call and 2U  is non-respondents 

group which could respond on the second call. Obviously 1N  and 2N  are unknown 

quantities. 

 

The estimator proposed by Hansen and Hurwitz (1946) is given by- 
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The linear regression estimator defined in (1), in case of non-response in Y, can be 

written as 
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                                          (24) 

The asymptotic variance of )c(y lr

Ο
 is given by 
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When there is a non response in Y and X is unknown, then (3) becomes 
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5.1 Suggested estimators under non-response  

Now the suggested classes ( )TT,T( 3,21  in presence of non response in Y, 

could be expressed as 
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The asymptotic bias of ( )ΟΟΟ
321 T,T,T   will be same of )TT,T( 3,21 . The minimum 

asymptotic variance of ( )ΟΟΟ
321 T,T,T  under non response is respectively given by 
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5.2  Efficiency comparison  
  To compare the performance of the suggested estimators based on CSS with 

the estimators based on SRSWOR in the presence of non response in Y, we can use the 

following estimators (
ΟΟΟ
lrlr 'y,y,y  ) in SRSWOR 
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       We take all the possibilities for weights of the missing values (10%, 20%, 

30%, 40%) etc and observe that the relative efficiency of the considered estimators is 

not affected by different weights of missing values. Although numerical results are 

different for different weights, the behaviour of results is similar in all cases. Hence, 

numerical results are provided only for 10% weight of missing values and consider last 

92 values as non-respondents. 

                       80.522Y2 =  ,  42.876S )2(y = ,   92N 2 = ,   2l =  

       Due to presence of non-response, extra variability is introduced in estimators. 

As expected, the variability of all considered estimators with incomplete information 

(see Table 4) is higher than the estimators with complete response (Table 4). Moreover, 

as expected, for l > 2, the asymptotic variance of the estimators become higher, that’s 

why we are taking only the case when l=2.  

  Following is the description of the considered estimators in Table 4. The 

estimators )t,y,y( lr

Ο
•  are based on SRSWOR and )T,y,y( '

lrCSS

Ο
•  on CSS, further 

these estimators are also considered for two phase sampling. 

 

Estimators V/AV under single phase V/ AV under Two phase 

CSS SRSWOR CSS SRSWOR 
Οy  2940.51 2124.09 2940.51 2124.09 

Ο
lry  649.96 577.05 1517.78 1350.57 

Ο
11T  595.385 562.17 1496.95 1346.33 

Ο
12T  614.900 568.25 1506.421 1348.60 

Ο
13T  639.042 574.60 1513.933 1349.59 

Ο
14T  644.75 576.33 1516.70 1350.23 

Ο
21T  558.138 547.83 1508.41 1344.73 

Ο
22T  553.233 546.31 1507.41 1344.53 

Ο
23T  558.123 547.83 1508.414 1350.65 

Ο
24T  569.94 551.53 1510.747 1350.51 

Ο
31T  640.865 573.34 1518.804 1348.88 
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Ο
32T  640.098 573.32 1518.895 1348.90 

Ο
33T  638.609 573.28 1519.028 1348.93 

Ο
34T  637.1094 573.24 1519.115 1348.95 

 

Table 4: The minimum V/AV of the considered estimators 

                                                                                

From Table 4 we can see that (
Ο
•

Ο
•

Ο
• 321 T,T,T ) are more efficient than the 

regression estimator
Ο
lry . Furthermore, among all the classes of estimators 

Ο
22T  is most 

efficient (both in single and two phase sampling). 

 

6. Conclusion 
In the present study, some improved estimators are proposed and their 

properties are studied under circular systematic sampling. The problem is also extended 

to the case of non response in CSS. From Tables 3 and 4, it has been observed that the 

proposed estimators are more efficient in CSS than SRSWOR for single-phase and two-

phase sampling.  
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Appendix  
In this section, we have given the complete procedure for obtaining the 

asymptotic bias and asymptotic variance of the suggested estimators ( 1T , 2T , 3T ). 

From equation (6), 1T  in terms of s'iδ , could be expressed as 

 

{ }[ ] { }
{ }
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                                                                                                                                      (33) 

On retaining only the terms up to the second degree of s'iδ , we have 
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After taking expectation both sides of equation (34), we get the asymptotic bias of 1T as 
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Squaring and taking expectations of both sides of equation (34), we have the required 

asymptotic variance of 1T , respectively given by equation (9).   

Now from equation (14), 2T  in terms of s'iδ , could be expressed as 

( ) ( )
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                                        (35) 

After expanding equation (35), we have 
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Subtracting Y and taking expectations both sides of above equation (36), we get the 

requires bias of 2T  as 
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Subtracting and squaring and than taking expectations of both sides of equation (36), 

we have the required asymptotic variance of 2T , respectively given by equation (16).   

Now from equation (18), 3T  in terms of s'iδ , could be expressed as 

( ) { }
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After expanding equation (37), we have 
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Subtracting Y and taking expectations both sides of above equation (38), we get the 

requires bias of 3T  as 
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Subtracting and squaring and than taking expectations of both sides of equation (38), 

we have the required asymptotic variance of 3T , respectively given by equation (20).   

Note: The optimum values of 21 and κκ can be obtained by differentiating their 

respective AV (T) partially w.r.t. to 21 and κκ an equate it to zero as  

0
)T(AV

1

=
κ∂

∂
 and 0

)T(AV

2

=
κ∂

∂
                                                                             (39) 

After solving (39) for 21 and κκ , we get the required optimum values for 1 2&κ κ . 

 


