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Abstract 
A comparative study presented in this article for two different asymmetric loss 

functions is based on simulation. Two-parameter Rayleigh model is considered here as the 

underline model for evaluating the properties of Bayes estimators under progressive first failure 

censored data. Known and unknown both cases of location parameter are considered here for 

Bayes estimation of scale parameter. 
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1. Introduction 
The probability density function and distribution function of two - parameter 

Rayleigh distribution are given as 
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Here, the parameter θ  is known as scale parameter and parameter σ  is called 

as location parameter (Bain and Engelhardt (1992)). The considered model is useful in 

life testing experiments, in which age with time as its failure rate is a linear function of 

time. The present distribution also plays an important role in communication 

engineering and electro vacuum devices. 

 

The Rayleigh distribution is often used in physics related fields to model 

processes such as sound and light radiation, wave heights, and wind speed, as well as in 

communication theory to describe hourly median and instantaneous peak power of 

received radio signals. It has been used to model the frequency of different wind speeds 

over a year at wind turbine sites and daily average wind speed.  

 

In the present paper, our focus is on presenting a comparative study on Bayes 

estimation under two different asymmetric loss functions based on Progressive first 

failure censored Rayleigh data. Known and unknown both cases of location parameter 
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are considered here for Bayes estimation of scale parameter. For evaluation of 

performances of the proposed procedures, a simulation study has been carried out.  

 

A good deal of literature is available on Rayleigh model under different 

criteria. A few of them are Sinha (1990), Fernandez (2000), Raqab and Madi (2002), 

Ali – Mousa and Al - Sagheer (2005), Wu et al. (2006), Abd - Elfattah et al. (2006), 

Kim and Han (2009) and Prakash and Prasad (2010).  

 

 Soliman et al. (2005) presents some estimators for finite mixture of Rayleigh 

model based on progressively censored data. Dey and Maiti (2012) have presented  

Bayes estimation for Rayleigh parameter under extended Jeffrey’s prior. Bayes 

estimation based on Rayleigh progressive Type - II censored data with binomial 

removals was discussed by Azimi and Yaghmaei (2013). Some Bayesian analysis under 

Rayleigh model is also discussed recently by Ahmed et al. (2013).  

 

2. The progressive first failure censoring  
 In many industrial experiments involving lifetimes of machines or units, 

experiments have to be terminated early and the number of failures must be limited for 

various reasons. The planning of experiments with aim of reducing total duration of 

experiment or the number of failures leads naturally to Type - I and Type - II censoring 

schemes.  

 

 If an experimenter desires to remove surviving units at points other than the 

final termination point of the life test, these two traditional censoring schemes will not 

be of use to the experimenter. The allowance of removing surviving units from the test 

before the final termination point is desirable, as in the case of studies of wear, in which 

the study of the actual aging process requires units to be fully disassembled at different 

stages of the experiment. In addition, when a compromise between the reduced time of 

experimentation and the observation of at least some extreme lifetimes is sought, such 

an allowance is also desirable. These reasons lead us into the area of progressive 

censoring.  

 

 It is well known that one of the primary goals of progressive censoring is to 

save some live units for other tests, which is particularly useful when units being tested 

are very expensive. Johnson (1964) described a life test in which the experimenter 

might decide to group the test units into several sets, each as an assembly of test units, 

and then run all the test units simultaneously until occurrence the first failure in each 

group. Such a censoring scheme is called first failure censoring. The first failure 

censoring scheme is terminated when first failure in each set is observed. If an 

experimenter desires to remove some sets of test units before observing first failures in 

these sets this life test plan is called a Progressive first failure censoring scheme which 

is recently introduced by Wu and Kus (2009). 

 

 The Progressive first failure censoring scheme is described as follows: 

  

 Suppose that n  independent groups with k items within each group are put in 

a life test, 
1

R groups and the group in which first failure is observed are randomly 

removed from the test as soon as first failure (say 
R

k:n:m:1
X ) has occurred, 

2
R groups and 
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the group in which the first failure is observed are randomly removed from the test 

when second failure (say 
R

k:n:m:2
X ) has occurred, and finally n)(mR

m
≤ groups and the 

group in which the first failure is observed are randomly removed from the test as soon 

as the thm  failure (say 
R

k:n:m:m
X ) has occurred. Here

R

k:n:m:m

R

k:n:m:2

R

k:n:m:1
X...XX <<<  are 

known as Progressive first failure censored order statistics with progressive censoring 

scheme ,R
1
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 If failure times of kn ∗ items originally in the test are from model (1.1), then 

joint probability density function for order statistics 
R
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where )(⋅f and )(⋅F  are given respectively by (1.1) and (1.2) and 
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Subtitling (1.1) and (1.2) in (2.1), the joint probability density function is obtained as:
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Remarks: 

 

(1). It is noted that when location parameter is zero ; 0)σ (i.e., = ( )∀ 2θx 22

(i)

n,2,..., 1,i =  is distributed Exponential with mean two and distribution of ∑
=

m

1i

2

(i)
x

1)(R
i
+ is Gamma with shape parameter m  and scale parameter two. 

(2). For 1,k =  first failure Progressive censoring criterion is converted into 

conventional Progressive Type - II right censoring criterion. 

(3). For 1m1,2,...,i  0R
i

−=∀= and 1,k = Progressively Type-II right censoring 

scheme reduces to usual Type - II censoring scheme and for ,1 i  0R 1,k
i

=∀==

m,2,..., the censoring reduces to complete sample case. 
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3. Bayes estimation when location parameter is known 
 In present section, the scale parameter θ  is considered as a random variable 

with known location parameter σ . A conjugate family of prior density for θ is 

considered as an inverted Gamma having probability density function  
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1
 exp θθ) ( g
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>>
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(3.1) 

 

 There is clearly no way in which one can say that one prior is better than other. 

It is more frequently the case that, we select to restrict attention to a given flexible 

family of priors, and we choose one from that family, which seems to match best with 

our personal beliefs. The prior (3.1) has advantages over many other distributions 

because of its analytical tractability, richness and easy interpretability.  

 

Following Kundu (2008), the posterior density is defined as  
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Using (2.2) and (3.1) in (3.2), the posterior density is obtain as 
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After simplification
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 The selection of loss function may be crucial in Bayesian analysis. It has 

always been recognized that the most commonly used loss function, squared error loss 

function (SELF) is inappropriate in many situations. If SELF is taken as a measure of 

inaccuracy then the resulting risk is often too sensitive to the assumptions about the 

behavior of tail of the probability distribution. To overcome this difficulty, a useful 

asymmetric loss function based on SELF is known as invariant squared error loss 

function (ISELF). Following Prakash (2014), ISELF is defined for any estimate θ̂ 

corresponding to parameter θ  as 

( ) θ.θ̂  ; θθ),θ̂( L
2 1 −=∂∂= −

        (3.4) 

 

The Bayes estimator corresponding to parameter θ under ISELF is obtained as  
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 When positive and negative errors have different consequences, the use of 

SELF in Bayesian estimation may not be appropriate. In addition, in some estimation 

problems overestimation is more serious than the underestimation, or vice-versa. To 

deal with such cases, a useful and flexible class of asymmetric loss function, LINEX 

loss function (LLF) is given as 

( ). θ 0, a ;  1 ae)( L 1 a ∂=∂≠−∂−=∂ −∗∗∂∗ ∗

  

 

 The shape parameter of LLF is denoted by a'' . Positive (negative) value of ,a''  

gives more weight to overestimation (underestimation) and its magnitude reflects the 

degree of asymmetry. It is also seen that, for 1,a =  the function is quite asymmetric 

with overestimation being more costly than underestimation. For small values of |,a|

the LLF is almost symmetric and is not far from SELF. 

 

Bayes estimator 
L1

θ̂  of θ under LLF is obtained by simplifying following equality 

dθ σ),x|(θ πθe dθ σ),x|(θ π
θ

θ̂
aexp θ

θ

1 a

θ

L11 ∫∫ ⋅=⋅









−−

      (3.6) 

. 
σ),x(T̂

2
 )2αΓ(m 

2

e
dθ θ 

2θ

σ),x(T̂

θ

θ̂
a exp 

)2α(m

1

a

1)α2(m

θ

2

L1

1−++

−++−














++=













−⇒ ∫
pf

pf  

 

The close form of Bayes estimator 
L1

θ̂ does not exist. A numerical method is applied 

here for obtaining the values of the estimates. 

 

4.  Bayes estimation when location parameter is unknown 
 The joint probability density function under Progressive first failure censoring 

criterion is given in equation (2.2). It is clear from equation (2.2) that, the function

σ),x(H
m

 and σ),x(T
pf

both depend upon location parameter σ.  Hence, when both 

parameters are considered as random variables, the joint prior density for parameter θ  

and σ is defined as 
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Thus the joint posterior density function is now obtained as 
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 On similar lines, the Bayes estimator corresponding to the parameter θ under 

ISELF and LLF are obtained by solving following equality 
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 The close forms of Bayes estimators 
I2

θ̂ and 
L2

θ̂ do not exist. A numerical 

method is applied here for obtaining the values of its estimates. 

 

5.  Numerical illustration  
 In the present section, we carry out a comparative analysis based on Bayes 

estimators under both risk criteria in terms of Relative Efficiency. If 
(I)

R  and 
(L)

R  are 

the Bayes risks corresponding to ISELF and LLF risk criteria respectively for the Bayes 

estimators. Then, the Relative Efficiency under ISELF and LLF for both Bayes 

estimators are defined as 

( )
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Li(I)
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( ) . 2 1,  i ; 
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5.1. When location parameter is known 
(1).  For pre assumed values of the prior parameter α, the random values of θ is 

generated from prior density (3.1). 
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(2). We take 1,k = thus without loss of generality the first failure progressive 

censoring criterion is converted into Progressive Type - II censoring criterion. 

Single group size is considered here only for convenience. 

(3). Using generated values of θ obtained in steps (1), generates progressively Type - 

II censored Rayleigh data, for known location parameter σ, of size m for a given 

censoring scheme m,1,2,...,i;R
i

=  according to an algorithm proposed by 

Balakrishnan and Aggarwala (2000). The censoring scheme for different values 

of m is presented in Table 1. 

(4). The RE’s under both risk criteria are calculated form 1,00,000 generated future 

ordered samples each of size 30N = from Rayleigh model.  

(5). The selected values of location parameter and prior parameter are 0.50,ασ ==
5,10 1.00, . The value of shape parameter of LLF is taken as a 0.25,0.50, 1.00= . 

RE’s under ISELF and LLF are presented in the Tables 2 - 3 respectively only 

for 10) 0.50,(α = . 

 

Case m  m1,2,...,i ; R
i

=  

1 10 1 2 1 0 0 1 2 0 0 0 

2 10 1 0 0 3 0 0 1 0 0 1 

3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0 

 

Table 1: Censoring Scheme for Different Values of m  

 

 

30N =  →←σ  

↓α  ↓a  ↓m  0.50 1.00 5.00 10.00 

0.50 

0.25 

10 1.2282 1.3620 1.6749 1.5104 

10 1.3083 1.4509 1.7844 1.6090 

20 1.3573 1.5052 1.8512 1.6693 

0.50 

10 1.4860 1.6479 2.0264 1.8274 

10 1.5829 1.7554 2.1589 1.9467 

20 1.6422 1.8211 2.2397 2.0196 

1.00 

10 1.2039 1.3350 1.6419 1.4805 

10 1.2744 1.4133 1.7380 1.5673 

20 1.3247 1.4690 1.8067 1.6291 

10 

0.25 

10 1.1969 1.3273 1.6322 1.4719 

10 1.2749 1.4139 1.7389 1.5680 

20 1.3227 1.4668 1.8040 1.6267 

0.50 

10 1.4481 1.6059 1.9747 1.7808 

10 1.5425 1.7107 2.1039 1.8971 

20 1.6003 1.7747 2.1826 1.9681 

1.00 

10 1.1732 1.3010 1.6000 1.4428 

10 1.2419 1.3773 1.6937 1.5273 

20 1.2909 1.4316 1.7606 1.5876 

 

Table 2: Relative Efficiency Between 
I1

θ̂  and 
L1

θ̂ under ISELF 
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30N =  →←σ  

↓α  ↓a  ↓m  0.50 1.00 5.00 10.00 

0.50 

0.25 

10 1.4339 1.5901 1.9556 1.7634 

10 1.5179 1.6833 2.0701 1.8668 

20 1.5778 1.7497 2.1519 1.9404 

0.50 

10 1.7848 1.9792 2.4338 2.1948 

10 1.9012 2.1084 2.5930 2.3381 

20 1.9724 2.1873 2.6900 2.4257 

1.00 

10 1.4087 1.5621 1.9212 1.7323 

10 1.4912 1.6537 2.0336 1.8339 

20 1.5500 1.7189 2.1140 1.9062 

10 

0.25 

10 1.3933 1.5451 1.9003 1.7135 

10 1.4749 1.6357 2.0115 1.8140 

20 1.5331 1.7002 2.0910 1.8855 

0.50 

10 1.7066 1.8925 2.3271 2.0986 

10 1.8179 2.0160 2.4793 2.2356 

20 1.8859 2.0914 2.5721 2.3194 

1.00 

10 1.3321 1.4771 1.8167 1.6381 

10 1.4101 1.5638 1.9230 1.7342 

20 1.4657 1.6254 1.9990 1.8025 

 

Table 3: Relative Efficiency Between 
I1

θ̂  and 
L1

θ̂ under LLF 

 

 It is observed from the tables that the relative efficiency increases when σ  

increase (for 5σ ≤ ) and decreases for higher values of σ . Similar behavior has been 

seen when α  increases. However, the difference in magnitude of the relative efficiency 

is least. It is noted also that when censoring scheme m  increases, the relative 

efficiency also increases. The relative efficiency increases when shape parameter a''  

increases (for 50.0a ≤ ) and decreases for 1.00.a =  

 

 Similar behavior has seen under both risk criteria. However, magnitude of the 

relative efficiency is higher under LLF as compared to ISELF. On basis of the relative 

efficiency, one may say that the Bayes estimator 
L1

θ̂ performs uniformly better than 

Bayes estimator 
I1

θ̂ for all selected parametric values under Progressive first failure 

censoring criterion for single group case. 

 

5.2. When location parameter is unknown  
 In case, when both parameters are considered to be random variables, the 

relative efficiencies are obtained as follows: 

 

(1) Generate location parameter σ  from (4.3) for pre-assumed prior values of 

parameter 5,10)0.50,1.00,( β = . With the help of generated values of σ,

generate the values of parameter θ from (4.2). 
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30N =  →← β  

↓α  ↓a  ↓m  0.50 1.00 5.00 10.00 

0.50 

0.25 

10 1.4178 1.5723 1.9335 1.7436 

10 1.5103 1.6749 2.0599 1.8574 

20 1.5668 1.7376 2.1370 1.9270 

0.50 

10 1.6813 1.8645 2.2927 2.0676 

10 1.7910 1.9861 2.4427 2.2026 

20 1.8580 2.0605 2.5341 2.2851 

1.00 

10 1.3391 1.4849 1.8263 1.6468 

10 1.4175 1.5720 1.9332 1.7433 

20 1.4735 1.6340 2.0096 1.8121 

10 

0.25 

10 1.3565 1.5043 1.8499 1.6682 

10 1.4450 1.6025 1.9709 1.7771 

20 1.4991 1.6625 2.0446 1.8437 

0.50 

10 1.5918 1.7653 2.1707 1.9576 

10 1.6957 1.8804 2.3127 2.0854 

20 1.7591 1.9508 2.3992 2.1635 

1.00 

10 1.2202 1.3531 1.6642 1.5006 

10 1.2917 1.4325 1.7616 1.5885 

20 1.3427 1.4890 1.8312 1.6512 

 

Table 4: Relative Efficiency Between 
I2

θ̂  and 
L2

θ̂ under ISELF 

(2) Following Steps (2) to (5) of subsection (5.1), the relative efficiencies 
I2

θ̂ with 

respect to 
L2

θ̂ under both risks criteria have been obtained and presented in 

Tables 4 and 5 respectively only for 0.50,10).(α =  

 

 All the properties are seen to be similar as compared to known case of location 

parameter. However, the gains in magnitude in RE’s are widesr. Again, on basis of 

relative efficiency, one may say that the Bayes estimator 
L2

θ̂ performs uniformly better 

than Bayes estimator 
I2

θ̂ for all selected parametric values under Progressive first 

failure censored data. 

 

30N =  →← β  

↓α  ↓a  ↓m  0.50 1.00 5.00 10.00 

0.50 

0.25 

10 1.8471 2.0484 2.5189 2.2715 

10 1.9676 2.1820 2.6836 2.4198 

20 2.0412 2.2637 2.7841 2.5105 

0.50 

10 2.1399 2.3731 2.9181 2.6316 

10 2.2796 2.5279 3.1090 2.8034 

20 2.3648 2.6226 3.2254 2.9084 

1.00 

10 1.6488 1.8283 2.2487 2.0277 

10 1.7453 1.9356 2.3803 2.1465 

20 1.8143 2.0119 2.4744 2.2312 
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10 

0.25 

10 1.8103 2.0076 2.4688 2.2263 

10 1.9285 2.1386 2.6302 2.3717 

20 2.0006 2.2187 2.7287 2.4605 

0.50 

10 2.0351 2.2569 2.7752 2.5027 

10 2.1680 2.4041 2.9568 2.6661 

20 2.2490 2.4942 3.0675 2.7660 

1.00 

10 1.5221 1.6878 2.0758 1.8718 

10 1.6111 1.7868 2.1973 1.9815 

20 1.6748 1.8572 2.2842 2.0597 

 

Table 5: Relative Efficiency Between 
I2

θ̂  and 
L2

θ̂ under LLF 
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