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Abstract 
 In this paper, we study the compound Poisson distribution as the shared frailty 

distribution and two different baseline distributions namely Pareto and linear failure rate 

distributions for modeling survival data. We are using the Markov Chain Monte Carlo (MCMC) 

technique to estimate parameters of the proposed models by introducing the Bayesian estimation 

procedure. In the present study, a simulation is done to compare the true values of parameters 

with the estimated values. We try to fit the proposed models to a real life bivariate survival data 

set of McGrilchrist and Aisbett (1991) related to kidney infection. Also, we present a comparison 

study for the same data by using model selection criterion, and suggest a better frailty model out 

of two proposed frailty models. 

 

Key Words: Bayesian Estimation, Compound Poisson Frailty, Markov Chain Monte Carlo, 

Shared Frailty. 

 

1. Introduction  
Frailty is a random component designed to account for heterogeneity caused 

by unobserved individual-level factors that are otherwise neglected by the other 

predictors in the model. Vaupel et al. (1979) suggested frailty models to account for the 

variations due to unobserved covariates. Several distributions like gamma, inverse 

Gaussian, positive stable distribution, power variance function, Weibull, compound 

Poisson are used as frailty models for heterogeneity in the populations. 

 

A class of random effect models which proved useful in the survival analysis 

of related individuals is a class of frailty models which are based on the modifying the 

hazard function of individuals by introducing multiplicative effect on the baseline 

hazard function. Thus the frailty model is a random effect model for time to event data 

which is an extension of the Cox's proportional hazards model. Vaupel (1979), Keyfitz 

and Littman (1979) showed that ignoring individual heterogeneity lead to an incorrect 

conclusions. 

 

Let � be a survival time with an absolutely continuous distribution. A non-

negative random variable �  is called ‘frailty’ if the conditional hazard function given � = �  is given by ℎ��|�	 = �ℎ
��	  ;  t>0                                         (1.1) 
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where ℎ
��	  is called the baseline hazard function. Then the conditional survival 

function is given by, 

                      ���|�	 = �����	    ; t >0                  (1.2) 

where ���	 = � ℎ
��	���
   is the cumulative baseline hazard. 

 

And the marginal survival function ���	 = �[���|�	] = �������	� = ������		      ; t >0                               (1.3) 

where ���. 	 is the Laplace transform of the frailty distribution. 

 

In this paper, we consider the shared frailty model with the compound Poisson 

distribution as a frailty distribution and the Pareto and linear failure rate distributions as 

baseline distributions. The remainder of the paper is organized as follows. In Section 2, 

we give the properties of the general shared frailty models. In Section 3, we introduce 

the shared compound Poisson frailty model. The baseline distributions are given in 

Section 4. In Section 5, we propose two different compound Poisson frailty models. In 

Section 6, we discuss Bayesian method which is used to estimate the parameters of the 

proposed models. We discuss the different model selection criterion by Bayesian 

approach in Section 7. In Section 8, we present the simulation study. We present 

analysis of kidney infection data set and suggest a better model from these two 

proposed models in Section 9. Finally in Section 10, we discuss the conclusion of the 

study. 

 

2. General shared frailty model 
Shared frailty models explain correlations within groups (family, litter or 

clinic) or for recurrent events facing the same individual. i.e. the different events within 

each community share a common frailty, shared by each individual within the 

community, each unit belongs to precisely one category. The shared gamma frailty 

model was suggested by Clayton (1978) for the analysis of the correlation between 

clustered survival times in genetic epidemiology. 

 

Bivariate survival data arise when each subject under study experiences two 

events. For e.g., failure times of paired organs like kidneys, eyes, ears or any other 

paired organs of an individual, recurrences of a given disease. Both monozygotic and 

dizygotic twins share date of birth and common pre-birth environment. In industrial 

applications, the breakdown times of dual generators in a power plant or failure times 

of two engines in a two-engine airplane are the illustrations of bivariate survival data 

with the shared frailty. 

 

In order to build the shared frailty model for such kind of the data it is 

assumed that survival times are conditionally independent, for given shared frailty. i.e. 

there is an association between survival times only due to frailty. 

 

Let a bivariate random variable (��� , � �) be the survival time of i
th

 ( i =1, 2) 

component of the j
th 

individual ( j=1,2,..,n). Given the unobserved ��  the hazard function 

for the (��� , � �) is given by, 

                                   ℎ!"�!�#�� , $�% = ��ℎ
!��!�	exp	�$� ′*		,   + = 1,2                  (2.1)                                  
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where �� represent frailty acting as multiplicative effect at an individual level,  ℎ
!"�!�%	 
is the baseline hazard at time �!� > 0 and *	 is the vector of regression coefficients with 

k components and $� is the vector of observed covariates having k components.  

 

Integrating the hazard function	ℎ!"�!�#�� , $�% we get, the conditional 

cumulative hazard function for the j
th

 individual at the  i
th

 component survival time �!� > 0  for the given frailty �� = �� is, 

                                      �!"�!�#�� , $�% = ���
!��!�	0�                                 (2.2)

        

where 0� = exp	�$� ′*		  and �
!��!�	 is the cumulative baseline hazard function at time �!�> 0. The conditional survival function for the j
th 

individual at the i
th

  component 

survival time �!� > 0 for the given frailty �� = �� is, �"�!�#�� , $�% = ��1"�12#�2,32% 
                                                                = ��2�41��12	52                           (2.3) 

 

When ��� and � � for j=1,2,..,n are independent, the bivariate conditional survival 

function of (��� , � �) for the given frailty �� = �� is 

    �"��� , � �#�� , $�% = ��2"	�46"�62%7�48��82	%52   (2.4)           

       

where	�
�����	 and �
 �� �	 be the cumulative baseline hazard functions of the first 

and the second components at ��� > 0	 and � �> 0 respectively. 

 

Integrate out the bivariate conditional survival function of (��� , � �) over the 

frailty variable �� having the probability function	9���	, for the j
th 

individual in order to 

obtain the unconditional bivariate survival function at time �!�> 0. 

�"��� , � �#	$�% = : ��2"	�46"�62%7�48��82	%52�2 	9"��%	��� 
                         = ��2 ;<�
�"���% + �
 "� �%> 0�?                        

(2.5) 

where ��2�. 		is the Laplace transform of frailty the variable of �� for the j
th

 individual. 

 

3. Shared compound Poisson frailty model 
Aalen (1988, 1992) introduced compound Poisson distribution as a mixing 

distribution in survival models. In many situations hazard rates or intensities are raising 

at the start, reaching a maximum value and then declining, that’s why the intensity has 

a unimodal shape with finite mode. For e.g., death rates for cancer patients, divorce 

rates, etc. The reason to start decline in the population intensity is that the high risk 

individuals have already died or been divorced in case of above examples. 

 

Also in is often seen that the total integral under the intensity or hazard rate is 

to be finite. It occurs due to the distribution is defective. It means that some individuals 

have zero susceptibility; they will survive forever. In the case of above examples some 

patients survive their cancer, some people never marry, some marriages are not prone to 
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be dissolved. In such kind of data compound Poisson distribution plays an important 

role of mixing distribution.  The distribution arises as a sum of a random number of 

independent gamma variables, where the number of terms in the sum is Poisson 

distributed.  

 

 The Compound Poisson variable �  is defined as  � = @ $� + $ +⋯+ $B						; 	D > 0				0																																					; 	D = 0				E 
where D is Poisson distributed with mean F while $�, $ , … , $B are independent 

gamma distributed with scale parameter  H  and shape parameter  I . 

 

 The distribution of � can be partitioned  into two parts, one a discrete part 

corresponding to the probability of zero susceptibility, and second is due to continuous 

part on the positive real line. 

The discrete part is given by   J�� = 0	 = exp	�−F	 
which decreases as  F  increases. 

 

The distribution of the continuous part is given by                                                                                                       9��	 =
Lexp	[−�F + H�	] �� 	∑ NO�P�	OQ

Γ�RS	R! 								 ; � > 0, F > 0, H > 0	, I > 0	∞RU�0																																															; 										V�ℎ�WX+Y�. E			       
(3.1)                                                                                                

The expectation and variance of � are  

 ���	 = FI H⁄ 	and   [\W��	 = ] = FI�I + 1	 H .⁄  

 

The Laplace transformation of � is given by, 

    ���Y	 = ���^�	 = �"�^�367387⋯73_	% 

     = ���3�Y	B	 
     = �B <−`a"�3�Y	%> 

     = �bc @−F + F d PP7^eSf                            
where �3�Y	 = d PP7^eS. 

    … 

In order to solve the non-identifiability problem, we take ���	 = 1 which 

leads to H = FI	 and 	[\W��	 = ] = �I + 1	 FI⁄ . Thus, we have the following form 

of  Laplace transformation.  

                                      ���Y	 = �bc @−F + F d NSNS7^eSf          

         = �bc @−F + F d PP7^eSf                                                 
                                                   = �bc @−F g1 − <1 + N̂S>Shf         

                                       (3.2)                                     

The unconditional bivariate survival function for the jth individual at the time 

t1j > 0 and t2j > 0 using equations (2.5) and (3.2), we have,   
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�"���,� �% = �bc L−F i1 − j1 + <�46"�62%7�48"�82%>52NS kSlm                 (3.3) 

 

In this paper, we consider the two baseline distributions namely Pareto and 

linear failure rate distribution which yield two compound Poisson frailty models. 

 
4. Baseline distributions 

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes 

used to model the distribution of incomes. This distribution is not limited to describing 

wealth or income, but to many situations in which an equilibrium is found in the 

distribution of the "small" to the "large". 

 

The first baseline distribution is the Pareto distribution (Deshpande and 

Purohit, 2005 ). A continuous random variable � is said to follow the Pareto 

distribution with the scale parameter n and the shape parameter o if its survival 

function is, 

               �
��	 = @�n� + 1	p					; 	� > 0, n > 0, o > 00																					; 														V�ℎ�WX+Y� E                                (4.1)

  

and  the hazard function and the cumulative hazard function as      

                            ℎ
��	 = q p	r��7r	�	 					 ; 				� > 0, n > 0, o > 0												0										; 					V�ℎ�WX+Y�																		E                         (4.2)

                         

                           �
��	 = @					o	log	�n	� + 1				; 				� > 0, n > 0, o > 0			0														; 					V�ℎ�WX+Y� E                (4.3) 

 

Observe that ℎ
��	 decreases with	�	; 	n > 0, o > 0	. Hence this distribution belongs to  

the decreasing failure rate class. 

 

The exponential and Rayleigh are the two most commonly used distributions 

for analyzing lifetime data. These distributions have several desirable properties and 

nice physical interpretations. Unfortunately the exponential distribution only has 

constant failure rate and the Rayleigh distribution has increasing failure rate. The linear 

failure rate distribution generalizes both these distributions. We consider this is the 

second baseline distribution. 

 

The linear failure rate distribution of a continuous random variable � with the 

parameters o > 0 and n> 0, will be denoted by LFRD (o, n	) has the following survival 

function  

               �
��	 = qexp	�−o� − r � 						; 	� > 0, o > 0, n > 00																											; 										V�ℎ�WX+Y� E                                (4.4) 

 

It is easily observed that the exponential distribution (ED (o)) and the 

Rayleigh distribution (RD (n)) can be obtained from LFRD (a, b) by putting n = 0 and o = 0 respectively. Moreover, the probability density function (PDF) of the LFRD (o,n) 

can be decreasing or unimodal but the failure rate function is either constant or 
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increasing only. See for example Bain (1974), Sen and Bhattacharya (1995), Lin et al. 

(2006), Ghitany and Kotz (2007) and the references cited therein in this connection.  

The hazard function and the cumulative hazard function of linear failure rate 

distribution are respectively as stated below: 

                     ℎ
��	 = @ o + n	�					; 				� > 0, o > 0, n > 0												0										; 					V�ℎ�WX+Y�																		E                                 (4.5)                                                                  

                                                 

        �
��	 = q					o	� + n �8 			 ; 				� > 0, o > 0, n > 0			0														; 					V�ℎ�WX+Y� E                   (4.6) 

 

5. Proposed models 
 Here we present the two compound Poisson frailty models say Model I and 

Model II by putting respectively the cumulative hazard function of the baseline 

distributions namely Pareto and linear failure rate distribution in the unconditional 

survival function of bivariate random variable (��� , � �) given in equations (4.3) and 

(4.6). 

�"���,� �% = �bc v−F w1 − x1 + <o�	`Vy"n���� + 1% + o 	`Vy"n � � + 1%> 0�FI zS{| 

       ; 		��� > 0, � � > 0     

                                                                                                          (5.1) 

�"���,� �% = �bc
}~�
~�−F

���
���1 −

�
���1 + �jo���� + n� ��� 2 k + jo � � + n � � 2 k�0�FI �

���
S

���
���
�~�
~�

 

                                               ; 	��� > 0, � � > 0	    
                                                                                                                                     (5.2) 

Here onwards, equations (5.1) and (5.2) as Model I and Model II which 

correspond to compound Poisson frailty models with baseline Pareto and linear failure 

rate distributions respectively. 

 

6. Estimation of parameters by Bayesian approach 
For the bivariate life time distribution, we use the bivariate censoring scheme 

given by Hanagal and Dabade (2013).  

 

Suppose that there are n independent pairs of components under study and the 

j
th

 pair of the component have lifetimes �	���, 		� �	  i.e. there are n individuals with a 

pair of components having lifetimes �	��� , 		� �	 for j=1, 2,… , n. The life time times 

associated with j
th 

individual is given by, 

"��� , � �% =
}~�
~�		"��� 	, � �%						; 				��� <	���	, � � <	� � 	"���	, � �%						; 			��� <	���	, � � >	� �"��� 	, � �%						; 			��� >	���	, � � <	� �"��� 	, � �%						; 			��� >	���	, � � >	� �

E 
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where ���	 and � � be the observed censoring times for j
th 

individual (j = 1, 2, …, n) with  

a pair of components respectively. We assume that the lifetimes and censoring times are 

independently distributed. 

 

 Now the likelihood of the sample of size n is given by, ��	�, *, ] 	
= x�9�����	, � �R6

�U� 	zx�9 "���	, � �%	R8
�U� zx�9�"��� 	, � �%	R�

�U� zx�9�"��� 	, � �%	R�
�U� z 

           (6.1) 

 

where �, *, ]  are the vector of parameters of the baseline distributions, the vector of 

regression coefficients and the frailty parameter respectively. Let the counts	a�,	a , a�and a� be the number of individuals for which the first and the second components 

failure times "���	, � �% lie in the ranges		��� <	���	, � � <	� �	; 		��� <	���	, � � >	� �	; 			��� >	���	, � � <	� � and 			��� > ���			� � >	� �	 respectively and  

					9�"��� , � �% = � �����, � �	������ � = ℎ
�"���%	ℎ
 "� �%	�"���, � �%	��"��� , � �%	0� "����� , � �	% 7S  

                        							9 "��� , � �% = −��"��� , � �%���� = ℎ
�"���%	�"���, � �%	0�	������ , � �	��7S  

9�"��� , � �% = −��"��� , � �%�� � = ℎ
 "� �%	�"��� , � �%	0� 	������ , � �	��7S  

                           9�"��� , � �% = 	�"��� , � �% 

            (6.2) 

where 

�"\! , ��% = 1 + <�
�"���% + �
 "� �%> 0�FI  

and  ��"\! , ��% = 1<�"\! , ��%>S +
1 + IIF  

Thus, we get the two likelihood functions for the two proposed compound 

Poisson frailty models namely Model I, Model II by substituting the corresponding 

hazard functions and cumulative hazard functions in the likelihood function given by 

equation (6.1) with  ����� , � �	 stated in equation (5.1) and (5.2). 

The likelihood function is obtained for the Model I as: 

 

																																								9�"��� , � �% = o�n��1 + n����	 o n �1 + n � �	 	�"���, � �%	��"���, � �%	0� "����� , � �	% 7S  
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9 "���, � �% = o�n��1 + n����	 	�"���, � �%	0�	������, � �	��7S  

	9�"��� , � �% = o n �1 + n � �	 	�"��� , � �%	0�	������ , � �	��7S  

                                    			9�"��� , � �% = 	�"��� , � �%.                                                                

  (6.3) 

For Model II as:  																																								9�"���, � �%= �o� + n����	�o + n � �		�"���, � �%	��"���, � �%	0� "����� , � �	% 7S  

					9 "���, � �% = 	�o� + n����		�"���, � �%	0�	������, � �	��7S  

					9�"��� , � �% = �o + n � �		�"��� , � �%	0� 	������ , � �	��7S  

             			9�"��� , � �% = 	�"��� , � �%.                       

(6.4) 

Each of the proposed models consists of eleven parameters, computing the 

maximum likelihood estimators (MLEs) involve solving a eleven dimensional 

optimization problem in these models. As the method of maximum likelihood fails to 

estimate the several parameters due to convergence problem in the iterative procedure, 

so we use the Bayesian approach. The traditional maximum likelihood approach to 

estimation is commonly used in survival analysis, but it can encounter difficulties with 

frailty models. Moreover, standard maximum likelihood based inference methods may 

not be suitable for small sample sizes or situations in which there is heavy censoring 

(see Kheiri et al. (2007)). Thus, in our problem a Bayesian approach, which does not 

suffer from these difficulties, is a natural one, even though it is relatively 

computationally intensive. 

 

Several authors have discussed Bayesian approach for the estimation of 

parameters of the frailty models. Some of them are, Ibrahim et al.(2001) and references 

theirin, Santos and Achcar (2010). Santos and Achcar (2010) considered the parametric 

models with Weibull and the generalized gamma distribution as the baseline 

distributions and gamma and log-normal as frailty distributions. Ibrahim et al. (2001) 

considered Weibull model and the piecewise exponential model with gamma frailty. 

Therefore we proposed Bayesian inferential approach in this study to estimate the 

parameters of the model, which is a popularly used method, because, computation of 

the Bayesian analysis becomes feasible due to advances in computing technology.  

 

To apply Markov chain monte carlo (MCMC) methods, we assume that, 

conditional on observed covariates and on the entire set of parameters, observations are 

independent and prior distributions for all parameters are mutually independent. We 

used the Metropolis-Hastings algorithm within Gibbs sampler technique which is the 

most basic MCMC method used in Bayesian Inference. Convergence of Markov chain 
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to a stationary distribution is observed by the trace plots, the coupling from the past 

plots, the Gelman-Rubin convergence statistic, and the Geweke test. The trace plots are 

used to check the behavior of the chain and the coupling from the past plots can be used 

to decide the burn-in period. The Gelman-Rubin convergence statistic values are 

approximately equal to one then sample can be considered to be come from the 

stationary distribution. The Geweke test examines the convergence of a Markov chain  

… 

based on the sub parts of a chain at the end and at the beginning of the convergence 

period. The large standardized difference between ergodic averages at the beginning  

and at the end of the convergence period indicates non convergence. The sample 

autocorrelation plots can be used to decide the autocorrelation lag.  

 

In Bayesian paradigm the parameters of the model are viewed as random 

variables with some distribution known as prior distribution. It enables us to combine 

both the prior information and the data at hand to update the information of parameter. 

Thus, posterior density of a parameter is the distribution of a parameter updated by 

combining its prior distribution and the likelihood function. We assume that, 

conditional on explanatory variables and on the entire set of parameters, observations 

are independent and prior distributions for all parameters are mutually independent 

while applying MCMC methods. 

 ���|�	 be the likelihood function and c��	 be the prior density of a parameter 

then posterior density function of a parameter	���|�	  is given by,  

                                       ���|�	 ∝ ���|�	c��	                                                          (6.5) 

 

In our case the joint posterior density function of a parameter for given failure times �	���, � �	 is � <	� = �o�, n�, o , n , ] , *	 �	��� , 		� �	> as � <	� = �o�, n�, o , n , ] , *	 �	���, 		� �	> ∝ � <� = �o�, n�, o , n , ] , *	 �	��� , 		� �	> ∗ "y��o�		y �n�		y��o 		y��n 		y¢�] 	%
∗�c!�*!£

!U� 	  

                                   (6.6) 

where y!�	. 		for + = 1, 2, ..,5 denotes the prior density function with known hyper 

parameters of corresponding argument for baseline parameters and frailty variance; c!�*!	 is the prior density function for regression coefficients *! for  + = 1, 2, ..,	¤; and 

the likelihood function ��	. 	 is given by equation (6.1). 

 

Algorithm consists of successively obtaining a sample from the conditional 

distribution of each of the parameter given all other parameters of the model. These 

distributions are known as full conditional distributions. Since the full conditional 

distributions are not easy to integrate out therefore full conditional distributions are  

obtained by considering that they are proportional to the joint distribution of the param-

eters of the model. The samples are then obtained from these full conditional 

distributions. 
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7. Model selection criterion by Bayesian approach 
Bayesian model comparison is commonly performed by computing posterior 

model probabilities. In order to compare proposed models we use the Akaike 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Deviance 

Information Criterion (DIC), and  the Bayes factor. These are the most common 

methods of Bayesian model assessment.  

 

Akaike (1973) suggested that, given a class of competing models for a data 

set, one choose the model that minimizes 

    ¥¦§	 = 	¨"�©% + 	2	c	                                  (7.1)	
 

where c represents number of parameters of the model. ¨"�©% represents an estimate of 

the deviance evaluated at the posterior mean, �© = �"�	#�\�\	. The deviance is given 

by, "�	% = −2	 log	 ���		 , where � is a vector of unknown parameters of the model and 	 ���			is the likelihood function of the model.  

 

Bayesian information criterion (BIC) was suggested by Schwarz (1978). 

Shibata (1976) and Katz (1981) have shown that the AIC tends to overestimate the 

number of parameters needed, even asymptotically. The Schwarz criterion indicates 

that the model with the highest posterior probability is the one that minimizes 

  ª¦§	 = 	¨"�©% + 	c log 	�a	                    (7.2) 

where a is the number of observations, or equivalently, the sample size. 

 

DIC, a generalization of AIC, is introduced by Spiegelhalter et al. (2002) and is defined 

as; 

               ¨¦§	 = 	¨"�©% + 2	c«                     (7.3) 

where c« is the difference between the posterior mean of the deviance and the deviance 

of the posterior mean of parameters of interest, that is, c« = ¨ − ¨"�©%	and ¨ =��¨"�%|�\�\	. 
Models with smaller values of the AIC, BIC and DIC are preferred. 

 

Kadane and Lazar (2004) reviewed model selection from Bayesian and 

frequent perspectives. The Bayes factor ª�£ 	for a model ¬� against ¬£for given data ¨	 = 	 "���; 	� �%;	  = 1,2, … , a	  is  

                                                       

                                                  ª�£ 	= ®�«|¯2		®�«|¯°				                                                (7.4)                                                                       

where J�¨|¬£ 		 = � J�¨|¬£ , �£	���£|¬£		��£± , 	�£ is the parameter vector under 

model ¬£ and 	���£|¬£	 is prior density and � is the support of the parameter
k
θ . 

Raftery (1994), following Jeffreys (1961), proposes the rules of thumb for interpreting 

twice the logarithm of the Bayes factor. For two models of substantive interest, ¬� 
and	¬£, twice the log of the Bayes factor is approximately equal to the difference in 

their BIC approximations.  	
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To compute Bayes factor, we need to obtain		¦£ = J�¨|¬£	. By considering 

one of the approaches given in Kass and Raftery (1995), we obtain the following 

MCMC estimate of ¦£ which is given by, 

   ¦£ = @∑ ®�«|²�1		³6_1´6 B f�                    (7.5) 

which is harmonic mean of the likelihood values. Here D represents the posterior 

sample size and { ��!	, + = 1, 2	, . . . , D } is the sample from the prior distribution. 

 

8. Simulation study 
A simulation study is done to evaluate the performance of the Bayesian 

estimation procedure. For the simulation purpose we have considered only one 

covariate X1 and we assume that it follows normal distribution. The frailty variable Z is 

assumed to have compound Poisson distribution with variance 3.6. Life times (T1j , 

T2j) for the j
th

 individual are conditionally independent for the given frailty Zj = zj . We 

considered that Tij (i = 1, 2; j = 1, 2, … , n) follows one of the baseline distributions, 

namely, Pareto (Model-I) or linear failure rate (Model-II) distribution respectively. As 

the Bayesian methods are time consuming, we generate only twenty, fourty and sixty 

pairs of lifetimes using inverse transform technique. Here we have generated different 

random samples of size n = 20, 40 and 60 for lifetimes T1j and T2j. But here we are 

giving procedure for sample generation of only one sample size, say, n = 20. Samples 

are generated using the following procedure: 

 

1. Generate a random sample of size 20 from the compound Poisson distribution with 

shape H and the scale parameter I as the shared frailties (zj) for the j
th

 (j = 1, 2, …, 20) 

individual. 

To generate random observation from compound Poisson distribution, we firstly 

generate a random observation D = a from Poisson distribution with mean F. 

Then we consider the following two cases: 

(i) If	a = 0; take frailty � = 0. 

(ii) If n > 0 ; generate a gamma variates say $�, $ , … , $B and then frailty is taken as  � = $� + $ +⋯+ $B. 

2. Generate 20 covariate values for X1 from the normal distribution. 

3. Compute 	0 = 	 �36µ  with the regression coefficient * = 0.5. 

4. Generate 20 pairs of the lifetimes (t1j , t2j) for the given frailty (zj) using the following 

generators, for Model-I and Model-II respectively,  ��� = �r6 <�bc <¶62p6 > − 1>        ,        � � = �r8 <�bc <¶82p8 > − 1>   

                       (8.1) ��� = �r6 j−o� − ·o� − 4<r6 > ¥��k          � � = �r6 j−o� − ·o� − 4<r6 > ¥��k 

                                    (8.2) 

where	¥�� =  ¹º» ¼6�252  and ¥ � =  ¹º» ¼8�252   and W!�  i=1,2 are random sample from U(0,1). 

5. Generate the censoring times (c�¾	and	c ¾) from the exponential distribution. 

6. Observe the i
th

 survival time 	tÀ¾ = min (	tÀ¾ ,cÀ¾) and the censoring indicator Á!�	for the 

j
th

 individual (i = 1; 2 and j = 1, 2, …., 20), where 
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 Á!� = @ 	1						; 		 										tÀ¾ 	< 	 cÀ¾							0						; 												V�ℎ�WX+Y�E 
Thus we have data consists of 20 pairs of the survival times (	t�¾;		t ¾) and the censoring 

indicators Á!� . 
 

We run two parallel chains for the proposed model with the different starting 

points using Metropolis-Hastings algorithm within Gibbs sampler based on normal 

transition kernels. 

We iterate both the chains for 95,000 times.  In our study we use non-informative prior  

for the frailty parameter ] 	and the regression coefficient	*�. Since we do not have any 

prior information about baseline parameters,	o�, n�, o  and	n , prior distributions are 

assumed to be flat. A widely used prior for frailty parameter ]  is the gamma 

distribution with mean one and large variance, G (�,�) say with a small choice of � 

and for the regression coefficients *! i=1, 2, .., k, we use the normal prior with mean 

zero and large variance  Â . Similar types of prior distributions are used in Ibrahim et 

al. (2001), Sahu et al. (1997) and Santos and Achcar (2010). We set hyper-parameters � = 0.0001, Â =1000. We consider the non informative prior distribution for baseline 

parameters as the Gamma (1, 0.0001). 

 

For both the chains the results were somewhat similar so we present here the 

analysis for only one chain (i.e. chain 1). Also due to lack of space we are not providing 

graphs. Simulated values of the parameters have the autocorrelation of lag k, so every 

k
th

 iteration is selected as a sample from posterior distribution. The posterior mean and 

standard error with credible intervals for different sample sizes are reported in Table 1 

and 2 for Model-I, Model-II respectively. From these Tables, it can be observed that the 

estimated values of the parameters are close to the true values of the parameters and the 

standard errors decrease as the sample size increases.  

 

parameter o� n� o  	n  F I *� 

True 

values 

3.2 1.1 3.2 1.1 4.5 1.5 0.5 

sample size=20 

burn in period = 750                                                           autocorrelation lag= 10 

estimates 3.2569 

 

1.10123 

 

3.2442 

 

1.10395 

 

4.5020 

 

1.47995 

 

0.49655 

 
S. E.  0.2253 

 

0.23108 

 

0.2239 0.23030 

 

0.2272 0.22740 

 

0.16230 

L.C.L. 2.8311 0.72174 

 

2.8299 

 

0.72154 4.1218 

 

1.11922 

 

0.22007 

 
U.C.L. 3.5853 1.47830 

 

3.5836 

 

1.48025 

 

4.8785 1.87523 

 

0.78130 

 sample size=40 

burn in period=780                                                                autocorrelation lag=7 

estimates 3.2338

38 

1.09978 

 

3.1595

9 

1.10617

2 

4.5100

9 

1.47827

4 

0.49872

5 S.E. 0.2249 

 

0.22946 

 

0.2226 0.22670 

 

0.2258 

 

0.22594 0.16153 

 L.C.L. 2.8287 

 

0.72022 

 

2.8179 

 

0.72304 

 

4.1244 

 

1.11917 

 

0.22028 

 
U.C.L. 3.5816 

 

1.48192 3.5697 

 

1.47860 

 

4.8798 

 

1.87495 

 

0.77905 
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sample size=60 

burn in period = 580                                                              autocorrelation lag=7 

estimates 3.2108

46 

1.09906

3 

3.1859

1 

1.09807

4 

4.4957

6 

1.47044

1 

0.50077

0 S.E. 0.2212 0.22800 0.2218 

 

0.22587 0.2250 

 

0.22471 

 

0.16334 

 
L.C.L. 2.8261 

 

0.72132 

 

2.8221 

 

0.72240 

 

4.1239 

 

1.11797 

 

0.22018 

 
L.C.L. 3.5787 

 

1.47971 

 

3.5720 1.47970 

 

4.8761 1.87431 0.78089 

  

Table 1: Posterior summary for simulation study of Model-I. 

 

S.E. – Standard error;     L.C.L. – Lower credible limit;     U.C.L. – Upper credible limit 

 

 
parameter o� n� o  	n  F I *� 

True 

values 

2.5 2.1 2.1 2.5 2.1 5.5 0.5 

sample size=20 

burn in period = 520                                                           autocorrelation lag= 7 

estimates 2.4938 

 

2.09359 

 

2.52369 

 

2.12208 

 

2.11617 

 

5.49133 

 

0.49827 

 S.E. 0.2251 

 

0.22494 

 

0.22413 0.22165 0.21996 

 

0.22365 

 

0.16199 

 
L.C.L. 2.1216 

 

1.72143 

 

2.12833 

 

1.72966 

 

1.72703 

 

5.12215 

 

0.22038 

 
L.C.L. 2.8766 

 

2.47516 2.87985 2.47994 

 

2.47824 

 

5.87457 0.78080 

sample size=40 

burn in period=400                                                                autocorrelation lag=9 

estimates 2.4749 

 

2.07149 

 

2.49050 

 

2.08436 

 

2.18290 

 

5.49683 

 

0.49741 

 S.E. 0.2228 

 

0.22183 

 

0.22266 

 

0.21914 

 

0.20789 

 

0.21923 

 

0.16074 

 
L.C.L. 2.1194 

 

1.71871 

 

2.12103 

 

1.72054 

 

1.75204 

 

5.12292 

 

0.21994 

 L.C.L. 2.8704 

 

2.47217 

 

2.87352 

 

2.47210 

 

2.48550 5.87374 

 

0.77857 

 sample size=60 

burn in period = 1800                                                              autocorrelation lag=11 

estimates 2.4830 

 

2.08799 

 

2.46551 

  

2.06507 

 

2.20391 

 

5.49060 

 

0.49954 

 S.E. 0.2218 

 

0.22291 

 

0.22108 0.22028 

 

0.20060 

 

0.22032 

 

0.16193 

L.C.L. 2.1217 

 

1.72137 

 

2.12033 

 

1.71908 

 

1.76875 

 

5.12248 

 

0.21906 

 L.C.L. 2.8733 

 

2.47332 

 

2.87195 

 

2.46895 

 

2.48563 

 

5.87301 

 

0.77909 

 
 

Table 2: Posterior summary for simulation study of Model-II. 

 

S.E. – Standard error;     L.C.L. – Lower credible limit;     U.C.L. – Upper credible limit 
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9.  Analysis of kidney infection data 
To study the Bayesian estimation procedure we use kidney infection data of 

McGilchrist and Aisbett (1991). The data is regarding recurrence times to infection at 

point of insertion of the catheter for 38 kidney patients using portable dialysis 

equipment. For each patient, the first and the second recurrence times (in days) of 

infection from the time of insertion of the catheter until it has to be removed owing to 

infection is recorded. The catheter may have to be removed for reasons other than 

kidney infection and this regard as censoring. So the survival time for a patient given 

may be first or second infection time or censoring time. After the occurrence or 

censoring of the first infection sufficient (ten weeks interval) time was allowed for the 

infection to be cured before the second time the catheter was inserted. So the first and 

second recurrence times are taken to be independent apart from the common frailty 

component. The data consists of three risk variables age, sex and disease type GN, AN 

and PKD where GN, AN and PKD are short forms of Glomerulo Neptiritis, Acute 

Neptiritis and Polycyatic Kidney Disease. 

 

 Let T1 and T2 be represents first and second recurrence time to infection. Five 

covariates age, sex and presence or absence of disease type GN, AN and PKD are 

denoted by X1, X2, X3, X4, and X5. First we check goodness of fit of the T1 and T2. If 

marginal distributions of T1 and T2 for two proposed distributions fit well then the 

bivariate distribution of T1 and T2 may be fit well for the same. We used Kolmogorov-

Smirnov Goodness-of-Fit Test. Thus from p-values of K-S test we can say that there is 

no statistical evidence to reject the hypothesis that data are from proposed models in the 

univariate case and we assume that the models also fit for the bivariate case. The Table 

3 gives the p-values of Kolmogorov-Smirnov test for the proposed models. Figure 1 

shows the parametric versus non-parametric plots. 

 

 
Model K-S statistic p-value 

 T1                          T2 T1                          T2 

Model I 0.1085134              0.1144341 0.8482             0.80126 

 Model II 0.1445132              0.159587 0.53265           0.40831 

  

Table 3: Goodness-of-Fit Test: p-values K-S statistic for kidney infection data. 
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Figure1:  Survival function plots for (K-M survival and parametric 

survival) 

 

 To analyze kidney data set, various models have been applied by different 

researchers. Some of them are, McGilchrist and Aisbett (1991), McGilchrist (1993), 

Sahu et al. (1997), Boneg (2001), Yu (2006) and Santos and Achcar (2010). 

McGilchrist and Aisbett (1991) considered semi-parametric Cox proportional hazards 

model with log-normal frailty distribution and applied Newton-Raphson iterative 

procedure to estimate the parameters of the model. McGilchrist (1993) and Yu (2006) 

both considered the same model as in McGilchrist and Aisbett(1991) but McGilchrist 

(1993) estimated the parameters of the model using BLUP, ML and REML methods 

and Yu (2006) proposed modified EM algorithm and penalized partial likelihood 
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method. Santos and Achcar (2010) used MCMC method to estimate the parameters of 

parametric regression model with Weibull and generalized gamma distribution as 

baseline and gamma and log-normal as frailty distributions. Boneg (2001) considered 

Cox proportional hazards model and also parametric frailty models. In parametric 

frailty models he considered Weibull distribution as the baseline and log-normal, 

Weibull as frailty distributions. He applied MHL and RMHL methods to estimate the 

parameters of the models. 

 

We run two parallel chains for both models using two sets of prior 

distributions with the different starting points using Metropolis-Hastings algorithm and 

Gibbs sampler based on normal transition kernels. On the similar line of simulation, 

here also we assume same set of prior distributions. We iterate both the chains for 

95000 times. We present here the analysis for only one chain with G (a1; a2) as prior 

for baseline parameters, for both the proposed models. Due to lack of space we are 

presenting trace plots, coupling from the past plots and sample autocorrelation plots for 

the parameters of Model I only as shown in Figure 2-4. Gelman-Rubin convergence 

statistic values are nearly equal to one and Geweke test statistic values are quite small 

and corresponding p-values are large enough to say the chains attain stationary 

distribution. Simulated values of parameters have autocorrelation of lag k, so every k
th

 

iteration is selected as sample. The posterior mean and standard error with 95% credible 

intervals for baseline parameters, frailty parameter and regression coefficients are 

presented in Table 4. The AIC, BIC and DIC values for both the models are given in 

Table 5. The Bayes factor for the proposed models is also computed. 

… 

From the Table 4, we can observe that for these two models, the value zero is 

not a credible value for the credible interval of the regression coefficient $ ,   that is, 

sex variable is significant. Negative value of  *  indicates that the female patients have 

a slightly lower risk of infection. The covariate  $� , age is insignificant for both the 

models. It is also observed that $¢ i.e. disease type PKD is significant for Model I and 

insignificant in Model II. The covariate $�	i.e. disease type GN and covariate 	$� i.e. 

disease type AN are insignificant for both the Models. 

 

The estimate of ]  for Model I and Model II are 0.0067 and 0.8116 

respectively. The estimate of ] 	from Model II shows that there is a strong evidence of 

high degree of heterogeneity in the population of patients. Some patients are expected 

to be very prone to infection compared to others with same covariate value. This is not 

surprising, as seen in the data set there is a male patient with infection time 8 and 16, 

and there is also male patient with infection time 152 and 562. 

 

The comparison between two proposed models is done using AIC, BIC and 

DIC values given in Table 5. It is observed that both Model I and Model II have AIC, 

BIC except DIC values are near about same. An alternative way to take the decision 

about the best model between the proposed Model I and Model II, we use the Bayes 

factor which is defined as, 

 ¬!� = 2	`Vy ;Ã1Ã2?                (9.1) 

Where ¦!  is as defined as in equation (7.5). Using Equation (9.1) we computed Bayes 

factor ¬� 	which is 3.31550 for our proposed models. 
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We can observe that the Bayes factor of Model I vs Model II is 3.31550 

implies that, there is positive evidence against Model-II, so Model-I is better than 

Model-II. Thus, Model I is best model of the proposed compound Poisson frailty 

models. Now, we are in a position to say that, we have suggested a new shared 

compound Poisson frailty model with Pareto distribution as the baseline distribution is 

best for modeling of kidney infection data. For simulation study and to analysis the 

kidney infection data we used R software. 

 

 

parameter estimates Standard 

errors 

        Credible Intervals 

Lower                   Upper                    

Model-I 

burn in period =4200 ;    autocorrelation lag = 280 

o� 22.94962 

 

0.591966 22.05117 

 

23.93646 n� 0.001675696 

 

0.0004387207 0.001038241 0.00261299 o  18.43275 0.5489014 

 

17.50093 

 

19.35814 	n  0.001421859 

 

0.0003851145 

 

0.0007945032 

 

0.002169576 

 F 509.9641 

 

0.4618561 509.1203 

 

510.8436 

 I 0.4148859 

 

0.04469093 0.3359841 

 

0.5011177 

 *� 0.00307309 

 

0.00471257 

 

-0.005322972 

 

0.01244158 *  -1.7413 

 

0.2948506 -2.308226 

 

-1.19979 

 *� -0.0586276 

 

0.3759451 -0.7994152 

 

0.618691 

 *� 0.4188102 

 

0.3505457 -0.2530626 

 

1.101939 

 *¢ -1.426814 0.5169103 -2.467788 

 

-0.5105207 

 Model-II 

burn in period = 4200 ;   autocorrelation lag = 320 

 o� 0.02870925 

 

0.008430826 0.01755664 

 

0.05003709 

 n� 0.0001891125 

 

5.170476e-05 

 

0.0001079208 

 

0.0002929388 o  0.006640035 

 

0.001476604 

 

0.00355642 

 

0.008814052 

 	n  0.0002226568 

 

4.880152e-05 

 

0.0001180898 

 

0.0002981948 

 F 24.05729 

 

1.25025 

 

21.71634 

 

26.57135 

 I 0.05403221 

 

0.0141685 

 

0.02843128 

 

0.08225272 

 *� 0.008055036 

 

0.006446512 

 

-0.004089688 

 

0.01867487 

 *  -2.090539 

 

0.4304029 

 

-2.881527 

 

-1.237484 

 *� 0.2705803 

 

0.3413715 

 

-0.377473 

 

0.9121983 

 *� 0.909617 0.5441327 

 

-0.02651981 

 

1.918116 

 *¢ -0.5736833 

 

0.7265549 

 

-2.109769 

 

0.7390602 

  

Table 4: Posterior summary for kidney infection data 
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Model  Distribution AIC values BIC values DIC values 

I Pareto 683.0215 701.035 673.8789 

II linear failure rate  686.7364 704.7499 675.5379 

Table 5: AIC, BIC and DIC values for kidney infection data. 

 

 
 

 
Figure2:  Trace  plo t  (Chain  I )  for  Mode l  I  
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Figure3:  Coupl ing  from the  past  p lo ts  for  Mode l  I  
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Figure4:  Autocorre la t ion  Graphs  for  Model  I  

 

 

 

10. Conclusions 
In the present study we discuss results for the two proposed models of 

compound Poisson frailty namely Pareto, linear failure rate distribution as the baseline 

distributions. Our aim is to find the model which fit best between proposed models. For 

maximum likelihood estimate, likelihood equations do not converge and method of 

maximum likelihood fails to estimate the parameters so we use Bayesian approach. 

Using the Bayesian approach we perform simulation study and analyze kidney infection 

data. The estimate of frailty variance from Model II shows that there is a strong 

evidence of high degree of heterogeneity in the population of patients. The covariate 
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sex is significant for both models. Negative value of the regression coefficient (* ) of 

covariate sex indicates that the female patients have a slightly lower the risk of 

infection. Negative value of the regression coefficient (*¢) of covariate, the disease type 

PKD indicates that the patient with the absence of this diseases have a slightly lower 

the risk of infection in Model I only. On the basis of AIC, BIC, DIC and Bayes factor, 

the Model I, the shared compound Poisson frailty with Pareto distribution is best model 

for kidney infection. 
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