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Abstract 
 In this paper, reliability measures of a system of two non-identical units operating 
under normal and abnormal weather conditions are obtained in steady state using semi-Markov 
process and regenerative point technique. Initially, one original unit (called main unit) is 
operative while the other substandard unit (called duplicate unit) is taken as spare in cold standby. 
Each unit has direct complete failure from normal mode. There is a single server who visits the 
system immediately to carry out repair of the failed unit. However, repair of the failed unit is not 
allowed in abnormal weather while system remains operative. Priority is given to operation and 
repair of main unit over duplicate unit. The distributions for failure times of the units and time to 
change of weather conditions are taken as negative exponential while that of repair time of the 
units are arbitrary. All random variables are statistically independent. The results for some 
important reliability measures have been analyzed graphically for arbitrary values of various 
parameters and costs.    
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1. Introduction 

        A lot of research work on reliability modeling of maintained systems has been 
carried out by the researchers in the field of reliability by considering identical units 
and static environmental conditions. Osaki and Asakura, (1970),  Goel and Sharma 
(1989) and Kadyan et al.(2012) investigated reliability models of such systems with 
different repair policies. But, sometimes it is very difficult to afford a high cost 
identical unit in spare. In such a situation, a substandard unit might be taken as spare in 
cold standby not only to protect operation of the system but also to minimize the 
operating cost. Kishan and Jain (2012) and Mokkadis et al. (1989) discussed standby 
systems of non-identical units with different sets of assumptions on failure and repair. 
Further, the performance of repairable systems can be improved by giving priority in 
repair disciplines. Kadian et al.(2004) introduced the concept of priority while 
analyzing a system of non-identical units. Furthermore, it is very difficult to keep the 
environmental conditions under control which may fluctuate due to changing climate 
and other natural catastrophic. Therefore, Goel and Sharma(1985), Gupta and 
Goel(1991), Gupta et al. (2010) have obtained reliability measures of cold standby 
repairable systems operating under different weather conditions.  
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While considering above facts and practical situations in mind, here reliability 
measures of a system of non-identical units operating under different weather 
conditions- normal and abnormal are obtained using semi-Markov process and 
regenerative point technique. Initially, one original unit (called main unit) is operative 
while the other substandard unit (called duplicate unit) is taken as spare in cold standby. 
Each unit has direct complete failure from normal mode. A single server is available 
immediately for repairing the failed unit. Priority is given to operation and repair of 
main unit over duplicate unit. Repair activities are not allowed in abnormal weather 
whereas system remains operative. The distributions of failure time of the units and 
time to change of weather conditions are taken as negative exponential while the 
distributions for repair time of the units are arbitrary with different probability density 
functions. The expressions for some measures of system effectiveness such as transition 
probabilities, mean sojourn times, mean time to system failure (MTSF), availability, 
busy period of the server and profit function are derived in steady state. The graphs for 
MTSF, availability and profit have been drawn with respect to normal weather rate for 
arbitrary values of various parameters and costs. 
 
2. System description and assumptions 

(i) There is a system of two non-identical units- one original unit (called 
        main unit) and the other substandard unit(called duplicate unit). 
(ii) The main unit is initially operative and the duplicate unit is taken as 

               spare in cold standby. 
(iii)  A single repair facility is provided immediately as and when required. 
(iv)  There are two weather conditions-normal and abnormal. 
(v)  Priority is given to operation and repair of the main unit over duplicate 
        unit. 
(vi)  Repair activities are not allowed in abnormal weather. 
(vii)  System remains operative in both abnormal and normal weather 
        conditions. 

       (viii)The random variables are statistically independent. 
        (ix) The unit works as new after repair. 

(x) Switch devices are perfect. 
(xi) The distributions of failure time of the units and time to change of 
       weather conditions are taken as negative exponential while the  
       distributions for repair time of the units are arbitrary with different  
        probability density functions. 

 

3. Notations 

E                             :  The set of regenerative states 
MO/DO       :  Main/Duplicate unit is good and operative 

MO  / DO              :  Main/Duplicate unit is good and operative in abnormal  

                                    weather  

 DCs/ DCs               :  Duplicate unit is in cold standby in normal weather/  

                                    abnormal weather 
λ/ λ1                                        :  Constant failure rate of Main /Duplicate unit 

β / β1                         
:  Constant rate of change of weather from normal to  

                                    abnormal/abnormal to normal weather             
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MFur/DFur               :  Main/duplicate unit failed and under repair 
MFUR/DFUR           :  Main/duplicate unit failed and under repair continuously  
                                     from previous state 
MFwr/DFwr             :  Main/duplicate unit failed and waiting for repair 
MFWR/DFWR         :  Main/duplicate unit failed and waiting for repair  
                                     continuously from  previous state 

MFwr  / DFwr       :  Main/Duplicate unit failed and waiting for repair due to  

                                     abnormal weather 

MFWR  / DFWR   :  Main/Duplicate unit failed and waiting for repair continuously 

from   
                                     previous state due to abnormal weather 
g(t)/G(t)                     :  pdf/cdf of repair time of Main  unit 
g1(t)/ G1(t)                 :  pdf/cdf of repair time of Duplicate unit 
qij (t)/Qij (t)                :  pdf/cdf of passage time from regenerative state i to a  
                                      regenerative state j or to a failed state j without visiting  
                                      any other regenerative state in (0,t] 
qij.kr (t)/ Qij.kr (t)         :   pdf/cdf of direct transition time from regenerative state i  
                                      to a regenerative state j or to a failed state j visiting state  
                                      k,r once in (0,t] 
qij.k,(r,s)

n(t)/Qij.k,(r,s)
n(t)  :  pdf/cdf of direct transition time from regenerative state i  

                                      to a regenerative state j or to a failed state j visiting state  
                                      k once and n times through states r and s. 
Mi(t)                  :  Probability that the system is up initially in regenerative  
                                      state Si at time t without visiting to any other egenerative  
                                      state 
Wi(t)         : Probability that the server is busy in state Si up to time t  
                                      without making any transition to any other regenerative  
                                      state or returning to the same via one or more non- 
                                      regenerative states  
mij         : The contribution to mean sojourn time in regenerative  
                                       state Si when system is to make transition in to  
                                       regenerative state Sj. Mathematically, it can be written  
                                       as  

                                       
0

( ) [ ( )] (0)ijij ij ijTm E td Q t q
∞ ′∗
∫= = = − , where  

                                       ijT  is the transition time from state Si  to Sj; Si , Sj ε E. 

iµ          :  The mean Sojourn time in state Si this is gven by  

                                       
0

( ) ( )ii i ij
j

TE P T t dt mµ
∞

∑∫= = > = , where iT  is  

                                       the sojourn time in state Si  
Ⓢ//©n                                 :  Symbol for Laplace Stieltjes convolution/Laplace  
                                      convolution/ Laplace convolution n times    
~ / *                     :  Symbol for Laplace Steiltjes Transform (LST)/ Laplace  
                                      Transform (LT)  
The following are the possible transition states of the system 
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S0 = (MO, DCs), S1 = (MFur, DO), S2 = ( MO  , DCs  ), S3= ( MFwr  , DO  ), 

S4= (MFUR,DFwr),S5=( MFWR  , DFwr  ), S6=( MFwr  , DFWR  ), S7=(MO,DFur), 

S8= (MFur,DFWR),S9=( MO  , DFwr  ),S10=(MFur,DFwr) 

The statesS0, S1, S2, S3, S7, S9, S10 are regenerative while the states S4, S5, S6, S8 
are non regenerative as shown in figure1                   

                                          

State transition diagram 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

4. Transition probabilities and mean sojourn times 

Simple probabilistic considerations yield the following expressions for the non-zero 

elements:      pij= lim ( )ij
t
Q t

→∞
=∫qij(t)dt.  The transition probabilities are as follows:

  

Fig.1 
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( ) ( )
01 02( ) , ( )t tdQ t e dt dQ t e dtβ λ β λλ β− + − += =

sim ilarly w e can obtain o ther d ifferen tial transition probabilities.

T he transiton probab ilities betw een states can be determ ined by using

Lap lace transfo rm T echnique. W e have

and

  

p01=
λ

β λ+
 , p02=

β
β λ+

 , p10=g*(β+λ1), p46=1-g*(β), p86=1-g*(β), 

p13=
1

β
β λ+

(1-g*( β+λ1)),  p14=
1

1

λ
β λ+

(1-g*( β+λ1)), p47=g*(β) , p58=1, 

 p20=
1

1

β
β λ+

, p23=
1

λ
β λ+

,p31=
1

1 1

β
β λ+

,p35=
1

1 1

λ
β λ+

, p68=1,p70=g1*(β+λ),p79 =

β
β λ+

(1-g1*(β+λ)),p7,10=
λ

β λ+
( 1-g1*(β+λ)), p87=g*(β), p10,6=1-g*(β), 

p96=
1

λ
β λ+

,p97=
1

1

β
β λ+

, p10,7=g*(β)                        (1)                                   

It can be easily verified that 
p01+p02=p10+p13+p14=p20+p23=p31+p35=p46+p47 = p58=1 
p68=p70+p79+p7,10=p86+p87=p96+p97=p10,1+p10,5=1                                                     (2)                                     
 
The mean sojourn times (µi) in the state Si are 

µ0=
1

β λ+
 ,µ1=

1

1

β λ+
(1-g*(β+λ1)) ,µ2 =

1

1

β λ+
,µ3=

1 1

1

β λ+
,µ4=

1

β
(1-g*(β), 

µ5=
1

1

β
,µ6=

1

1

β
,µ7=

1

β λ+
(1-g1*(β+λ)),µ8=

1

β
(1-g*(β)),  

µ9=
1

1

β λ+
 ,µ10=

1

β
(1-g*(β))                                                                                  (3) 

 
Also 
 m01+m02= µ0 ,m10+m13+m14=µ1 ,m20+m23=µ2,m31+m35=µ3,  m46+m47=µ4,   
 m58=µ5,m68=µ6,m70+m79+m7,10=µ7,m86+m87=µ8,m96+m97=µ9 ,m10,1+m10,5=µ10         (4)                                                                 
and 
µ'1=m10+m13+m17.4+m17.4,(6,8)

n,µ3’=m31+m37.58+m37.58(6,8)
n, 

µ'9=m97+m97.(6,8)
n, µ10=m10,7+m10,7.(6,8)

n                                                                       (5)                                 
                                 

5. Reliability and mean time to system failure (MTSF)   
 Let φ i(t) be the cdf of first passage time from regenerative state Si to a failed state. 

Regarding the failed state as absorbing state, we have the following recursive relations 
for φ i(t): 
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φ 0(t) = Q01 (t)Ⓢφ 1(t) + Q02(t)Ⓢφ 2(t)  

φ 1(t) = Q10(t)Ⓢφ 0(t)+Q13(t)Ⓢφ 3(t)+Q14(t)  

φ 2(t)= Q20(t)Ⓢφ 0(t) +Q23(t)Ⓢφ 3(t),  φ 3(t) =Q31(t)Ⓢφ 1(t)+Q35(t)                  (6) 

Taking LST of above relations (6) and solving for )(
~

0 sφ
 
We have  

                                         R*(s) =
s

s)(
~

1 0φ−

                                                    (7)
 

The reliability of the system model can be obtained by taking inverse Laplace transform 
of  (7).  
The mean time to system failure (MTSF) is given by 

                   MTSF =
s

s

os

)(
~

1
lim 0φ−
→

= 1

1

N

D
 , where                       (8) 

N1= (1-p13p31)(p02µ2+µ0)+p01(µ1+p13µ1)+p02p23(µ1p31+µ3) 
D1= (1-p13p31) (1-p02p20)-p10(p01+p02p23p31)                                                      (9) 
 
6. Steady state availability 

Let Ai(t) be the probability that the system is in up-state at instant ‘t’ given that 

the system entered regenerative state Si at t = 0.The recursive relations for ( )iA t  are 

given as 
A0(t) =M0(t) +q01(t) © A1(t) + q02(t) © A2(t) 
A1(t) =M1(t) +q10(t)©A0(t)+ q13(t) © A3(t) +(q17.4(t)+q17.4,(6,8)

n(t)) ©A7(t) 
A2(t) 
=M2(t)+q20(t)©A0(t)+q23(t)©A3(t),A3(t)=M3(t)+q31(t)©A1(t)+(q37.58(t)+q37.5,(8,6)n)©A7(t) 
A7(t) =M7(t)+q70(t)©A0(t)+q79(t)©A9(t)+q7,10(t)©A10(t)                                                          
A9(t)=M9(t)+(q97(t)+q97.(6,8)

n)(t)©A7(t),A10(t)=(q10,7(t)+q10,7.(6,8)
n)©A7(t)          (10) 

where  

M0(t)=e-(β+λ)t,M1(t)=e-(β+λ
1

)t G(t)  ,  M2(t)=e-(β
1

+λ)t  , M3(t) =  e-(β
1

+λ
1

)t  , 

M7(t)=  e-(β+λ)t G1(t)  , M9(t)=e-(β
1

+λ)t                                                                 (11) 

 
 Taking LT of above relations (10) and solving for A0*(s). The steady state 
availability is given by  

                         

*
0 00
( ) lim ( )

s
A sA s

→
∞ = 2

2

N

D
=

                                                 (12)

 

where  
N2= ((µ0+µ2p02)((1-p13p31)+µ3(p02p23+p01p13)+µ1(p01+p02p23p31))p70 
          +(p14(p01+p02p23p31)+p35(p02p23+p01p13))(µ7+p79µ9)   
D2= ((µ0+µ2p02)((1-p13p31)+µ3'(p02p23+p01p13)+µ1'(p01+p02p23p31))p70 
        +(p14(p01+p02p23p31)+p35(p02p23+p01p13))(µ7+p79µ9'+p7,10µ10'                     (13)
  
7. Busy period analysis for server 

Let Bi(t)  be the probability that the server is busy in repairing the unit at an 
instant‘t’ given that the system entered regenerative state Si at t=0.The recursive 
relations for Bi(t)  are as follows: 
B0(t) =q01(t) © B1(t) + q02(t) © B2(t) 
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B1(t) =W1(t) +q10(t)©B0(t)+ q13(t) © B3(t) +(q17.4(t)+q17.4,(6,8)
n(t)) ©B7(t) 

B2(t) =q20(t)©B0(t)+q23(t)©B3(t),B3(t)=q31(t)©B1(t)+(q37.58(t)+q37.5,(8,6)n)©B7(t) 
B7(t) =W7(t)+q70(t)©B0(t)+q79(t)©B9(t)+q7,10(t)©B10(t)                                                          
B9(t) =(q97(t)+q97.(6,8)

n)(t)©B7(t),B10(t)=W10(t)+(q10,7(t)+q10,7.(6,8)
n  )(t) ©B7(t)                                       

                                                                                                                          (14)                                                                                                           
where  

W1(t)=e-(β+λ
1

)t G(t)  +(λ1e
-(β+λ

1
)t©1) G(t)  ,

 

( )
7 1( ) ( )tW t e G tβ λ− +=   

W10(t)=e-βt G(t)  +(βe-βt©1) G(t)                                                                     (15)                       

Taking LT of above relations (14) and solving for *
0B (s). The time for which server is 

busy due to repair is given by 

                    B0*(∞)= lim�→� �	0
*(s) = 3

2

N

D                                                  (16)

 

where 
N3=(W7*(0)+p7,10W10*(0))(p14(p01+p02p23p31)+p35(p01p13+p02p23))+p70W1*(0)(p01+p02p23

p31), 
* * *1

1 7 10
1 1

1 1
(0) , (0) , (0)

( ) ( )
W W W

α λ
α α β λ α β λ α

+
= = =

+ + + +
   and D2  is 

already mentioned. 
 
8. Expected number of visits by the server 

       Let Ni(t) be the expected number of visits by the server in (0,t] given that  the 
system entered the regenerative state Si at t=0. The recursive relations for Ni(t)  are 
given as  
N0(t) =Q01(t)Ⓢ(1+N1(t)) + Q02(t) ⓈN2(t) 
N1(t) =Q10(t)ⓈN0(t)+ Q13(t) ⓈN3(t) +Q17.4(t) ⓈN7(t)+Q17.4,(6,8)

n(t))Ⓢ(1+N7(t)) 
N2(t)=Q20(t)ⓈN0(t)+Q23(t)ⓈN3(t),N3(t)=Q31(t)Ⓢ(1+N1(t))+(Q37.58(t)+Q37.5,(8,6)n)Ⓢ(1+
N7(t)) 
N7(t) =Q70(t)ⓈN0(t)+Q79(t)ⓈN9(t)+Q7,10(t)ⓈN10(t)                                                          
N9(t)=(Q97(t)+Q97.(6,8)

n(t))Ⓢ(1+N7(t)),N10(t)=Q10,7(t) ⓈN7(t)+Q10,7.(6,8)
n)(t)Ⓢ(1+N7(t))                                                                     

         (17) 

Taking LST of relations (16) and solving for 0 ( )N sɶ . The expected numbers of visits 

per unit time by the server are given by  

                               
0 00
( ) lim ( )

s
N sN s

→
∞ = ɶ = 4

2

N

D
                               (18)      

where                                                                     
N4=p70p01(1-p13p31)-p14(p70p47+1-p77.10)(p01+p02p23p31)+( p70+p35)(p02p23+p01p13) 
and D2 is already specified. 
 
9. Profit analysis 

The profit incurred to the system model in steady state can be obtained as 
Pi=K0A0-K1B0-K2N0 
where 
K0=Revenue per unit up-time of the system 
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K1=Cost per unit for which server is busy 
K2= Cost per unit visit by the server and A0, B0, N0 are already defined. 
 
 
 

 
Fig. 2: MTSF vs. Normal Weather Rate (β1) 

 
 
 
 

 

Fig. 3: Availability vs. Normal Weather Rate (β1) 
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Fig. 4: Profit vs. Normal Weather Rate (β1) 

 
 

10. Conclusion 
    Considering g(t) =αe-αt  and g1(t)=α1e

-α
1

t , it is analyzed from figures 
2, 3 and 4 that MTSF, availability and profit keep on moving up with the increase of 
normal weather rate (β1) and repair rate (α) of the main unit. Also, there is an upward 
trend in availability and profit when repair rate (α1) of duplicate unit increases. The 
values of these measures go on decline with the increase of abnormal weather rate (β) 
and failure rates (λ and λ1). Thus, the study reveals that a system of two non-identical 
units operating in different weather conditions can be made more profitable and reliable 
to use by giving priority for operation and repair to main unit in case repair activities 
are allowed in abnormal weather.  
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