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Abstract 
Progressive type-II censoring scheme is a very popular scheme adopted by contributors 

in the fields of reliability and life-testing. In this paper, we consider a problem when this scheme 

is applied to a life-testing experiment in which each unit under test is a series system and the 

investigator is interested in obtaining reliability estimates of individual components. Assuming 

the components lifetimes to be Rayleigh distribution, we present maximum likelihood and 

Bayesian approaches to estimate the reliability measures of individual components using 

masked system lifetime data. The Bayes estimates are evaluated using Lindley’s approximation 

and Gibbs Sampler. The results are illustrated with the help of simulation study. 

 

Key Words: Bayesian Estimation, Competing Risk,  Gibbs  Sampler, Masked Data, 

Maximum Likelihood Estimation, Rayleigh Distribution. 

1. Introduction 
The progressive type-II censoring scheme is a generalized censoring scheme 

which provides flexibility of withdrawal of units during the test and gives fixed number 

of failures after the termination of the test. The type-II censoring scheme is a special 

case of this scheme. This scheme has been considered by many authors for reliability 

estimation. Balakrishnan and Aggarwala (2000) provides a detailed literature and 

methodology for this scheme. See also Balakrishnan et. al. (2003), Balakrishnan (2007), 

Soliman (2005) and Ng et. al. (2005) for some citations.  

 

The progressive type-II censoring scheme is described as follows. Let the 

random variable X denotes the lifetime of a unit. Suppose that n identical units are put 

to test and non-negative integers mRRR ...,,, 21  are fixed in advance satisfying 

mnRRR m −=+++ ....21 . At the time of first failure, 1R  of the remaining 1−n  units 

are randomly removed. At the time of second failure, 2R  units out of the remaining 

12 Rn −−  units are randomly removed and so on. Finally, at the time of thm  failure the 

experiment is terminated by removing all remaining 121 .... −+++−−= mm RRRmnR  

units. 
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In case of life testing experiments designed for multi-component systems, investigators 

often face the problem of estimation of the reliability measures of individual 

components using system lifetime data.  If the system is a series system, it fails as soon 

as any one of its components fail. Therefore, the observed data may consist of failure 

times of systems as well as an indicator denoting the component which causes the 

failure of the system. Such data can be analyzed using competing risk model in order to 

estimate the component reliabilities, mean life etc. Many authors have considered such 

problems in reliability and survival analysis [see Lawless (2003) and Sinha (1986) for 

some citations]. However, due to some unavoidable reasons such as lack of time, 

scarcity of funds etc., the cause of failure for some of the failed systems may not be 

observed. For example, suppose a system under life test caught fire and after its failure 

it is not possible to identify the exact cause of failure. The data, in such situation, 

remain incomplete since cause of failure of some of the systems is missing. Such data 

are also termed as ‘masked data’. 

 

The analysis of masked data under competing risk model is considered by 

many authors by assuming different lifetime distribution for component lifetimes. 

Miyakawa (1984) obtained the Maximum likelihood estimators (MLEs) for two-

component series systems of exponential components when some of the sample 

observations are masked. Usher and Hodgson (1988) derived MLEs for three-

component systems by taking into consideration the phenomena of exact and partial 

masking. Sarhan and El-Gohary (2003) derived the MLEs and Bayes estimates of 

reliability functions of components when system components have Pareto life data. In 

presence of masked data Reiser et. al. (1995) provided Bayesian solution for three 

component series systems having independent exponential components. Mukhopadhyay 

and Basu(1997) and Kuo and Yang (1999) presented the analysis of masked data when 

lifetimes of components follow Weibull distribution. They used Gibbs sampler and EM 

algorithm for computation. Tan (2007) studied the problem of estimating the reliability 

functions of the components of series and parallel systems. Xu and Tang (2009) 

performed Bayesian analysis of masked data assuming the Pareto reliability model as 

component lifetime. Singh and Tomer (2011) and Tomer et. al. (2013), respectively, 

derived the ML and Bayesian estimates of component reliabilities when component 

lifetimes follows a family of life time distributions. 

 

In this paper, we discuss the analysis of progressively type-II censored masked 

system lifetime data under competing risk model. Assuming the lifetimes of the 

components to be Rayleigh distribution, we provide ML and Bayes estimates lifetime 

parameters, mean lives and reliability functions. Rest of the paper is organized as 

follows of components. In Section 2, we present the likelihood function and derive 

MLEs of parameters, mean life and reliability function. In Section 3, we give 

procedures to obtain Bayes estimates of these parametric functions using Lindley’s 

approximation and Gibbs sampler. Finally, In Section 4, we carry out simulation study 

and conclude the findings.  

 

2. Maximum Likelihood Estimation 

Suppose that each system has J components in series and the lifetime of 

)...,,2,1(, Jjj th =  component follows the Rayleigh distribution with parameter jλ  

having probability density function (pdf) given by 



Bayesian Estimation of Component Reliability using…                                                               39 

 

 

 .0,0;
2

exp)|(
2

2

2
≥≥














−= j

jj

j x
xx

xf λ
λλ

λ                                          (2.1) 

The reliability function, hazard rate function and mean time to failure of thj  

component for the model (2.1), at a specified mission time t (>0), are given, 

respectively, by 
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Suppose that in an experiment n identical systems are put to test and the progressively 

type-II censoring scheme described in Section 1, is followed. After the termination of 

test, lifetimes of m failed systems m:mm:m: X...,,X,X 21 , along with their cause of 

failures, are observed. That is, the data miSX imi ....,,2,1),,( : =  (denoted by d 

henceforth) are obtained, where iS denotes the set of system’s components which 

contain the corresponding cause of failure. Throughout the rest part of the paper, we use 

notation iX  instead of m:iX .  With these notations, we write the likelihood function of 

the data as follows. 
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It may be noted that for thi  system if the set iS  is a singleton, we say that the cause of 

failure is exactly detected otherwise it is masked.  

 

Since the analysis of the problem becomes very complicated for large number 

of components, we now assume that each system consists of two components. To 

proceed with this case, let out of m  failures, 1m  and 2m , respectively denote the 

number of failures occur due to the failure of component 1 and component 2. Further, 

12m  are the number of failed systems for which the cause of failure is masked. It is 

evident that mmmm =++ 1221 . With these notations, the likelihood function (2.4) can 

be expressed as follows. 
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Using (2.1) and (2.2), we obtain from (2.5), that 
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Taking the logarithm of both sides of (2.6), differentiating it partially with respect to 

1λ  and 2λ  and solving the likelihood equations, we obtain the expressions for MLEs 

of λ1 and λ2 given by 
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Remarks: Using the invariance property of MLE, the MLE of reliability function of j
th

 

component, at time t, can be obtain as follows 
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3. Bayesian Estimation 

In Bayesian paradigm, we consider ),j(j 21=λ to be a random variable. Let 

the prior density of jλ  with parameters ),( jj βα , be given by 
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Now, assuming sj 'λ  to be independent, the joint prior distribution of 1λ  and 2λ can 

be written by )()( 21 λλ pp . Combining this joint prior with likelihood function (2.6), via 

Bayes theorem, the joint posterior density of 1λ and 2λ comes out to be 
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where )1(
1

2 += ∑
=

i

n

i
i RxT and K is the normalizing constant given by  
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From (3.2), we observe that the marginal distributions of  1λ  and 2λ  cannot be 

obtained in closed form, which is essential in order to obtain Bayes estimates of 

individual parameters or parametric functions. Therefore, for further analysis, we 

proceed with (i) Lindley approximation and (ii) Gibbs Sampler. 

 

3.1 Bayesian Estimation Using Lindley’s Approximation 
According to Lindley’s (1980) approximation, the posterior expectation of any 

parametric function ),()( 21 λλωλω =  which is a ratio of two integrals given by  
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can be obtained in the form of the following expression. 

[ ] ,AAClClBlBlA)(ˆ~
2121212121121221031230

2

1
ρρλωω +++++++=     (3.3) 

where 

)Llog(l = , ∑ ∑=
= =

2

1

2

1i
ij

j
ijA σω ,  ξη

ξη

ηξ
λλ 21 ∂∂

∂
=

+ l
l ,      

 

.,j,ifor;,,,& 2133210 ==+= ξηξη  

i
i λ

ρ
ρ

∂
∂

= ,    
i

i λ
ω

ω
∂
∂

= ,     
ji

ij λλ
ω

ω
∂∂

∂
=

2

,    where jiforand),(log ≠= 21 λλπρ  

 jijiiiijA σωσω += ,   iiijjiiiij )(B σσωσω += ,   and  

)(C ijjjiijijiiiij
223 σσσωσσω ++= . 

 Here ijσ  is the th)j,i(  element in the inverse of the matrix { } ,,j,i;lij 21=− such that

ji
ij

l
l

λλ ∂∂
∂

=
2

. Let
N

I
and

N

G
,

N

H
−==== 21122211 σσσσ , where 2IGHN −= . 

With these notations, using the expression given by Nassar and Eissa (2004), (3.3) can 

be written as follows,  
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Using the fact that the Bayes estimator of any parameter, under squared error loss 

function, is its posterior mean, we obtain the Bayes estimates of 21 ,λλ  and component 

reliabilities R1(t), and R2(t) by using (3.4) as follows. 

 

(i) Bayes estimate of �� 

When 1λω = , we have 0,1 21 == ωω  and .0=φ  Substituting these values in 

(3.4), the Bayes estimator of 1λ , is given by 
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 (ii) Bayes estimate of �� 

When 2λω = , we have 1,0 21 == ωω  and .0=φ   With these values we obtain 

the following Bayes estimator of 2λ , form (3.4) 
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(iv)  Bayes estimate of R2(t), 
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3.2 Bayesian Estimation using Gibbs sampler  
Here, we use Gibbs sampling simulation procedure to get samples from the 

marginal posterior distributions. For implementing Gibbs sampling algorithm, the full 

conditionals of 1λ  and 2λ  obtained from (3.2) are given, respectively, by. 
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Using (3.7) and (3.8), we generate the Gibbs sequence ),( 0
2

0
1 λλ

, 
),( 1

2
1
1 λλ

,….,
),( 21

hh λλ   

as follows. 

 

(1). Choose an initial value of 1λ , say 0
1λ , 

(2). Generate ��
� via )d,|( 0

12 λλπ  

(3). Generate ��
� via )d,|( 0

21 λλπ  

(4). Generate 1
2λ  via )d,|( 0

12 λλπ  and so on. 

For a sufficiently large value of h, λh
 becomes a sample observation form marginal ofλ. 

After the burn-in-process we obtain the samples from posterior distributions of 1λ
 
and 

2λ . With these generated samples, we can evaluate the Bayes estimate of parameters or 

any parametric function. 

 

5. Simulation study 
In this section, we present a simulation study to observe the performance of 

estimators. With the parametric values 21 =λ  and 222 .=λ , we generate n 

observations for each component from Rayleigh distribution through inverse 

transformation technique. As the system under consideration is a series system, the time 

to failure of the system xi becomes the minimum of the simulated failure times of 

components. The component corresponding to minimum failure time is considered to 

be the cause of failure. From these observations, we draw a sample of m observations 

using progressive type-II censoring scheme. In this sample we mask the cause of failure 

of 30% observations and get the final form of the competing risk data with missing 

cause of failure. For such simulated data sets, we obtain ML estimates of parameters for 

different patterns of removals of observations in considered progressive type-II 
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censoring scheme. For the computations purpose, the considered removal patterns and 

their notations which are used in tables, are as follows: 

 

 C
nmS : :no unit is removed during the test; )1(

:nmS :all (n-m) unites are removed at m
th 

 

failure; )2(
:nmS :all (n-m) unites are removed at first failure; )3(

:nmS , )3(
:nmS

 
and )3(

:nmS
 
indicates 

various possible patterns of removals  that are scattered throughout the test. 

 
For Bayesian study, we have chosen the values of prior parameters to be 

21 =α  ,21 =β 32 =α  and 32 =β . For these values, the Bayes estimates are 

evaluated using Lindley’s approximation and Gibbs Sampler. We provide the average 

values of MLEs as well as Bayes estimates along with their mean square error mean 

(MSE’s) based on 2000 repeated samples. The estimates of parameters are given in 

Tables 1 & 2, component reliabilities in Tables 3 & 4 and that of mean time to failure in 

Tables 5 & 6. From all the tables, we observe that the MSE of estimates increases as the 

number of failures m in the sample decreases. The MSE of Bayes estimates is less than 

the ML estimates. The Bayes estimates obtained through Lindleys approximation 

exhibit greater MSE than Bayes estimate obtained through Gibbs Sampler.  

 

We also consider the analysis of a simulated data set to show how one can 

apply the results, obtained in the previous sections, to a real life problem.  The data is 

simulated from the considered Rayleigh population by taking  21 =λ  and ..222 =λ We 

generated masked data under progressive type-II censoring schemes with five different 

patterns. This data is given in Table 7. For this data set the estimated values of 

parameters and mean time to failure are presented in Table 8. We also plotted reliability 

functions of individual components in Figures 1 and 2 for the considered two schemes. 

 

               Schemes   

 

MLE 

Bayes Estimate 

Lindley MCMC 

1λ̂  2λ̂  1

~
λ  2

~
λ  1

~
λ  2

~
λ  

CS 50:50  
0*50 

2.016 

(0.048) 

2.221 

(0.076) 

1.976 

(0.043) 

2.195 

(0.068) 

1.971 

(0.016) 

2.124 

(0.025) 

)1(
50:40S  

0*39, 10 

2.020 

(0.062) 

2.233 

(0.098) 

1.969 

(0.053) 

2.199 

(0.085) 

1.961 

(0.017) 

2.114 

(0.027) 

)2(
50:40S  

10, 0*39  

1.899 

(0.068) 

2.102 

(0.099) 

1.854 

(0.071) 

2.074 

(0.094) 

1.888 

(0.030) 

2.039 

(0.047) 

)3(
50:40S  0*15, 1*10, 0*15 

2.021 

(0.064) 

2.224 

(0.099) 

1.971 

(0.055) 

2.191 

(0.086) 

1.964 

(0.018) 

2.108 

(0.029) 

)4(
50:40S  

0*10, (0,1)*10, 

0*10 

1.912 

(0.064) 

2.102 

(0.097) 

1.866 

(0.066) 

2.074 

(0.093) 

1.896 

(0.028) 

2.040 

(0.046) 

)5(
50:40S  (0,0,0,1)*10 

1.946 

(0.062) 

2.147 

(0.094) 

1.898 

(0.060) 

2.117 

(0.088) 

1.917 

(0.023) 

2.065 

(0.039) 

)1(
50:30S  

0*29, 20 

2.024 

(0.082) 

2.232 

(0.135) 

1.955 

(0.067) 

2.186 

(0.111) 

1.951 

(0.019) 

2.089 

(0.033) 

)2(
50:30S  

20, 0*29 

1.807 

(0.107) 

2.007 

(0.149) 

1.751 

(0.118) 

1.973 

(0.144) 

1.829 

(0.048) 

1.972 

(0.075) 

)3(
50:30S  0*5, 1*20, 0*5 

2.034 

(0.086) 

2.244 

(0.139) 

1.963 

(0.068) 

2.197 

(0.112) 

1.952 

(0.019) 

2.096 

(0.030) 
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)4(
50:30S  

0*5, (0,2)*10, 

0*5 

1.815 

(0.105) 

2.022 

(0.147) 

1.758 

(0.115) 

1.987 

(0.141) 

1.834 

(0.047) 

1.979 

(0.073) 

)5(
50:30S  (0,1,1)*10 

1.870 

(0.092) 

2.069 

(0.137) 

1.810 

(0.096) 

2.031 

(0.128) 

1.864 

(0.037) 

2.006 

(0.060) 

)1(
50:20S  

0*19, 30 

2.042 

(0.131) 

2.270 

(0.214) 

1.931 

(0.092) 

2.191 

(0.151) 

1.933 

(0.021) 

2.067 

(0.037) 

)2(
50:20S  

30, 0*19 

1.734 

(0.180) 

1.908 

(0.249) 

1.650 

(0.196) 

1.861 

(0.235) 

1.787 

(0.067) 

1.912 

(0.110) 

)3(
50:20S  0*5, 3*10, 0*5 

2.037 

(0.132) 

2.262 

(0.218) 

1.926 

(0.093) 

2.184 

(0.155) 

1.931 

(0.021) 

2.067 

(0.038) 

)4(
50:20S  0*4, (0,5)*6, 0*4 

1.759 

(0.166) 

1.972 

(0.240) 

1.674 

(0.180) 

1.917 

(0.213) 

1.801 

(0.060) 

1.937 

(0.096) 

)5(
50:20S  (1,2)*10 

1.817 

(0.146) 

2.023 

(0.211) 

1.726 

(0.151) 

1.964 

(0.185) 

1.829 

(0.049) 

1.962 

(0.080) 

)1(
50:10S  

0*9, 40 

2.060 

(0.267) 

2.311 

(0.431) 

1.798 

(0.142) 

2.108 

(0.188) 

1.895 

(0.025) 

2.019 

(0.050) 

)2(
50:10S  

40, 0*9 

1.780 

(0.278) 

1.993 

(0.412) 

1.568 

(0.271) 

1.847 

(0.281) 

1.806 

(0.056) 

1.925 

(0.098) 

)3(
50:10S  0, 5*8, 0 

2.053 

(0.270) 

2.304 

(0.432) 

1.791 

(0.148) 

2.100 

(0.193) 

1.894 

(0.026) 

2.018 

(0.052) 

)4(
50:10S  0, (0, 10)*4, 0 

1.850 

(0.267) 

2.056 

(0.393) 

1.622 

(0.232) 

1.901 

(0.250) 

1.828 

(0.047) 

1.945 

(0.087) 

)5(
50:10S  4*10 

1.827 

(0.262) 

2.045 

(0.401) 

1.607 

(0.239) 

1.890 

(0.258) 

1.824 

(0.048) 

1.939 

(0.091) 

 

Table 1: Average values of point estimates of 1λ  and 2λ along their MSEs (in 

Brackets) for n=50. 

 

              Schemes 

MLE 

Bayes Estimate 

Lindley MCMC 

1λ̂  2λ̂  1

~
λ  2

~
λ  1

~
λ  2

~
λ  

CS 100:100  0*100 

2.008 

(0.024) 

2.210 

(0.036) 

1.989 

(0.022) 

2.198 

(0.034) 

1.987 

(0.012) 

2.157 

(0.018) 

)1(
100:80S  

0*79,20 

2.010 

(0.028) 

2.210 

(0.044) 

1.986 

(0.026) 

2.195 

(0.042) 

1.983 

(0.013) 

2.146 

(0.020) 

)2(
100:80S  

20,0*79 

1.878 

(0.041) 

2.077 

(0.054) 

1.857 

(0.045) 

2.064 

(0.055) 

1.883 

(0.028) 

2.050 

(0.040) 

)3(
100:80S  0*30, 1*20, 0*30 

2.008 

(0.029) 

2.215 

(0.045) 

1.984 

(0.027) 

2.199 

(0.042) 

1.981 

(0.014) 

2.148 

(0.019) 

)4(
100:80S  

0*10, (0,0,1)*20, 

0*10 

1.894 

(0.038) 

2.093 

(0.052) 

1.872 

(0.041) 

2.080 

(0.053) 

1.895 

(0.025) 

2.062 

(0.036) 

)5(
100:80S  (0, 0, 0, 1)*20 

1.919 

(0.034) 

2.116 

(0.049) 

1.897 

(0.036) 

2.103 

(0.050) 

1.914 

(0.021) 

2.079 

(0.033) 

)1(
100:60S  

0*59,40 

2.011 

(0.039) 

2.227 

(0.063) 

1.979 

(0.035) 

2.206 

(0.058) 

1.975 

(0.015) 

2.139 

(0.022) 

)2(
100:60S  

40,0*59 

1.784 

(0.080) 

1.970 

(0.104) 

1.758 

(0.089) 

1.955 

(0.107) 

1.811 

(0.052) 

1.967 

(0.075) 

)3(
100:60S  0*10, 1*40, 0*10 

2.012 

(0.038) 

2.222 

(0.063) 

1.980 

(0.035) 

2.201 

(0.057) 

1.974 

(0.015) 

2.135 

(0.023) 
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)4(
100:60S  

0*5, (0,0,4)*10, 

0*5 

1.800 

(0.073) 

1.991 

(0.094) 

1.773 

(0.081) 

1.976 

(0.097) 

1.823 

(0.047) 

1.982 

(0.068) 

)5(
100:60S  (0,1,1)*20 

1.831 

(0.061) 

2.022 

(0.083) 

1.804 

(0.068) 

2.006 

(0.085) 

1.847 

(0.039) 

2.003 

(0.059) 

)1(
100:40S  

0*39,60 

2.011 

(0.061) 

2.240 

(0.102) 

1.961 

(0.053) 

2.206 

(0.088) 

1.958 

(0.018) 

2.115 

(0.027) 

)2(
100:40S  

60,0*39 

1.730 

(0.122) 

1.915 

(0.157) 

1.692 

(0.137) 

1.895 

(0.160) 

1.777 

(0.069) 

1.925 

(0.100) 

)3(
100:40S  0*5, 2*30, 0*5 

2.019 

(0.061) 

2.232 

(0.096) 

1.969 

(0.053) 

2.199 

(0.084) 

1.960 

(0.017) 

2.111 

(0.027) 

)4(
100:40S  0*5, (0,4)*15, 0*5 

1.737 

(0.119) 

1.926 

(0.150) 

1.699 

(0.133) 

1.905 

(0.153) 

1.782 

(0.067) 

1.931 

(0.096) 

)5(
100:40S  (1, 2)*20 

1.779 

(0.097) 

1.965 

(0.132) 

1.739 

(0.109) 

1.943 

(0.134) 

1.811 

(0.054) 

1.956 

(0.082) 

)1(
100:20S  

0*19,80 

2.037 

(0.133) 

2.263 

(0.216) 

1.926 

(0.094) 

2.185 

(0.153) 

1.932 

(0.021) 

2.066 

(0.038) 

)2(
100:20S  

80,0*19 

1.649 

(0.230) 

1.845 

(0.294) 

1.574 

(0.253) 

1.803 

(0.278) 

1.744 

(0.090) 

1.879 

(0.132) 

)3(
100:20S  0*5, 8*10, 0*5 

2.047 

(0.143) 

2.261 

(0.213) 

1.934 

(0.097) 

2.183 

(0.151) 

1.931 

(0.022) 

2.064 

(0.038) 

)4(
100:20S  0*2, 5*16, 0*2 

1.719 

(0.187) 

1.907 

(0.256) 

1.637 

(0.206) 

1.859 

(0.238) 

1.779 

(0.071) 

1.909 

(0.110) 

)5(
100:20S  4*20 

1.759 

(0.162) 

1.941 

(0.236) 

1.673 

(0.178) 

1.890 

(0.217) 

1.799 

(0.060) 

1.926 

(0.100) 

Note: Here, a*b stand for a, a, a…, b times.  

Table 2: Average values of Point estimates of 1λ  and 2λ along with their MSEs 

(in Brackets) for  n=100. 

 

              Schemes MLE 

Bayes Estimate 

Lindley MCMC 

    1R̂  2R̂  1

~
R  2

~
R  1

~
R  2

~
R  

CS 50:50  
0*50 

0.544 

(0.005) 

0.603 

(0.005) 

0.526 

(0.005) 

0.589 

(0.005) 

0.530 

(0.002) 

0.578 

(0.002) 

)1(
50:40S  

0*39, 10 

0.544 

(0.006) 

0.604 

(0.006) 

0.520 

(0.006) 

0.586 

(0.006) 

0.527 

(0.002) 

0.574 

(0.003) 

)2(
50:40S  

10, 0*39  

0.502 

(0.009) 

0.567 

(0.009) 

0.479 

(0.011) 

0.549 

(0.010) 

0.500 

(0.005) 

0.551 

(0.005) 

)3(
50:40S  

0*15, 1*10, 

0*15 

0.544 

(0.006) 

0.602 

(0.007) 

0.521 

(0.006) 

0.584 

(0.006) 

0.527 

(0.002) 

0.572 

(0.003) 

)4(
50:40S  

0*10, (0,1)*10, 
0*10 

0.507 

(0.008) 

0.567 

(0.009) 

0.484 

(0.010) 

0.549 

(0.010) 

0.503 

(0.004) 

0.551 

(0.005) 

)5(
50:40S  (0,0,0,1)*10 

0.519 

(0.007) 

0.580 

(0.008) 

0.496 

(0.008) 

0.562 

(0.008) 

0.511 

(0.003) 

0.559 

(0.004) 

)1(
50:30S  

0*29, 20 

0.546 

(0.008) 

0.604 

(0.008) 

0.514 

(0.008) 

0.579 

(0.008) 

0.523 

(0.003) 

0.568 

(0.003) 

)2(
50:30S  

20, 0*29 

0.466 

(0.016) 

0.533 

(0.016) 

0.436 

(0.020) 

0.511 

(0.018) 

0.477 

(0.008) 

0.527 

(0.009) 

)3(
50:30S  

0*5, 1*20, 

0*5 

0.543 

(0.008) 

0.600 

(0.009) 

0.511 

(0.008) 

0.576 

(0.008) 

0.522 

90.003) 

0.566 

(0.004) 
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)4(
50:30S  

0*5, (0,2)*10, 

0*5 

0.469 

(0.016) 

0.538 

(0.015) 

0.439 

(0.019) 

0.515 

(0.017) 

0.479 

(0.007) 

0.529 

(0.009) 

)5(
50:30S  (0,1,1)*10 

0.489 

(0.013) 

0.553 

(0.013) 

0.459 

(0.015) 

0.530 

(0.015) 

0.490 

(0.006) 

0.539 

(0.007) 

)1(
50:20S  

0*19, 30 

0.543 

(0.012) 

0.603 

(0.012) 

0.495 

(0.012) 

0.566 

(0.011) 

0.515 

(0.003) 

0.558 

(0.004) 

)2(
50:20S  

30, 0*19 

0.431 

(0.029) 

0.492 

(0.030) 

0.388 

(0.036) 

0.461 

(0.034) 

0.459 

(0.011) 

0.504 

(0.014) 

)3(
50:20S  

0*5, 3*10, 

0*5 

0.541 

(0.012) 

0.601 

(0.013) 

0.494 

(0.012) 

0.564 

(0.012) 

0.514 

(0.003) 

0.558 

(0.004) 

)4(
50:20S  

0*4, (0,5)*6, 

0*4 

0.442 

(0.026) 

0.512 

(0.026) 

0.398 

(0.033) 

0.479 

(0.029) 

0.465 

(0.010) 

0.513 

(0.012) 

)5(
50:20S  (1,2)*10 

0.464 

(0.021) 

0.531 

(0.021) 

0.419 

(0.027) 

0.496 

(0.024) 

0.476 

(0.008) 

0.522 

(0.010) 

)1(
50:10S  

0*9, 40 

0.533 

(0.022) 

0.595 

(0.023) 

0.438 

(0.026) 

0.520 

(0.022) 

0.500 

(0.004) 

0.541 

(0.006) 

)2(
50:10S  

40, 0*9 

0.435 

(0.040) 

0.500 

(0.042) 

0.346 

(0.054) 

0.434 

(0.046) 

0.466 

(0.010) 

0.507 

(0.013) 

)3(
50:10S  0, 5*8, 0 

0.530 

(0.023) 

0.592 

(0.024) 

0.435 

(0.027) 

0.517 

(0.023) 

0.500 

(0.004) 

0.541 

(0.007) 

)4(
50:10S  0, (0, 10)*4, 0 

0.461 

(0.034) 

0.521 

(0.036) 

0.369 

(0.046) 

0.453 

(0.039) 

0.474 

(0.008) 

0.515 

(0.011) 

)5(
50:10S  4*10 

0.453 

(0.035) 

0.517 

(0.038) 

0.362 

0.048 

0.449 

(0.041) 

0.473 

(0.008) 

0.513 

(0.012) 

 

Table 3: Average estimates of Reliabilities of component 1 and component 2 and 

their MSEs (in Brackets) for n=50. 

 

MLEs 

Bayes Estimate 

Lindley MCMC 

  Schemes  1R̂  2R̂  1

~
R  2

~
R  1

~
R  2

~
R  

CS 100:100  0*100 

0.545 

(0.002) 

0.605 

(0.003) 

0.536 

(0.002) 

0.598 

(0.003) 

0.538 

(0.001) 

0.590 

(0.002) 

)1(
100:80S  

0*79,20 

0.545 

(0.003) 

0.604 

(0.003) 

0.534 

(0.003) 

0.595 

(0.003) 

0.536 

(0.002) 

0.586 

(0.002) 

)2(
100:80S  

20,0*79 

0.499 

(0.006) 

0.565 

(0.005) 

0.488 

(0.007) 

0.556 

(0.006) 

0.500 

(0.004) 

0.556 

(0.004) 

)3(
100:80S  0*30, 1*20, 0*30 

0.544 

(0.003) 

0.605 

(0.003) 

0.533 

(0.003) 

0.596 

(0.003) 

0.535 

(0.002) 

0.586 

(0.002) 

)4(
100:80S  

0*10, (0,0,1)*20, 

0*10 

0.505 

(0.005) 

0.570 

(0.005) 

0.494 

(0.006) 

0.561 

(0.005) 

0.505 

(0.003) 

0.560 

(0.004) 

)5(
100:80S  (0, 0, 0, 1)*20 

0.514 

(0.004) 

0.577 

(0.004) 

0.503 

(0.005) 

0.568 

(0.005) 

0.512 

(0.003) 

0.565 

(0.003) 

)1(
100:60S  

0*59,40 

0.544 

(0.004) 

0.607 

(0.004) 

0.529 

(0.004) 

0.594 

(0.004) 

0.532 

(0.002) 

0.583 

(0.002) 

)2(
100:60S  

40,0*59 

0.462 

(0.012) 

0.529 

(0.011) 

0.447 

(0.014) 

0.517 

(0.013) 

0.472 

(0.008) 

0.528 

(0.009) 

)3(
100:60S  0*10, 1*40, 0*10 

0.545 

(0.004) 

0.605 

(0.004) 

0.529 

(0.004) 

0.593 

(0.004) 

0.532 

(0.002) 

0.582 

(0.002) 
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)4(
100:60S  

0*5, (0,0,4)*10, 

0*5 

0.468 

(0.011) 

0.536 

(0.010) 

0.454 

(0.013) 

0.525 

(0.012) 

0.477 

(0.007) 

0.533 

(0.008) 

)5(
100:60S  (0,1,1)*20 

0.481 

(0.009) 

0.546 

(0.009) 

0.466 

(0.011) 

0.535 

(0.010) 

0.486 

(0.006) 

0.540 

(0.007) 

)1(
100:40S  

0*39,60 

0.544 

(0.006) 

0.604 

(0.006) 

0.520 

(0.006) 

0.586 

(0.006) 

0.526 

(0.002) 

0.573 

(0.003) 

)2(
100:40S  

60,0*39 

0.438 

(0.020) 

0.506 

(0.019) 

0.416 

(0.024) 

0.490 

(0.021) 

0.457 

(0.011) 

0.511 

(0.012) 

)3(
100:40S  0*5, 2*30, 0*5 

0.541 

(0.006) 

0.606 

(0.006) 

0.518 

(0.006) 

0.587 

(0.006) 

0.525 

(0.002) 

0.575 

(0.003) 

)4(
100:40S  0*5, (0,4)*15, 0*5 

0.440 

(0.019) 

0.510 

(0.018) 

0.419 

(0.023) 

0.494 

(0.020) 

0.459 

(0.011) 

0.514 

(0.012) 

)5(
100:40S  (1, 2)*20 

0.458 

(0.015) 

0.523 

(0.015) 

0.436 

(0.018) 

0.507 

(0.017) 

0.471 

(0.008) 

0.523 

(0.010) 

)1(
100:20S  

0*19,80 

0.541 

(0.012) 

0.601 

(0.013) 

0.494 

(0.012) 

0.564 

(0.012) 

0.515 

(0.003) 

0.558 

(0.004) 

)2(
100:20S  

80,0*19 

0.396 

(0.039) 

0.468 

(0.038) 

0.356 

(0.048) 

0.439 

(0.042) 

0.441 

(0.015) 

0.491 

(0.017) 

)3(
100:20S  0*5, 8*10, 0*5 

0.543 

(0.012) 

0.601 

(0.012) 

0.496 

(0.012) 

0.564 

(0.012) 

0.514 

(0.003) 

0.557 

(0.005) 

)4(
100:20S  0*2, 5*16, 0*2 

0.425 

(0.031) 

0.491 

(0.031) 

0.383 

(0.038) 

0.460 

(0.034) 

0.456 

(0.012) 

0.503 

(0.014) 

)5(
100:20S  4*20 

0.442 

(0.025) 

0.504 

(0.027) 

0.398 

(0.033) 

0.472 

(0.030) 

0.464 

(0.010) 

0.509 

(0.013) 

 

Table 4: Average estimates of Reliabilities of component 1 and component 2 and 

their MSEs (in Brackets) for n=100. 

 

Schemes 

 

MLE 

 

Bayes Estimate 

Lindley MCMC 

1µ̂  2µ̂  1
~µ  2

~µ  1
~µ  2

~µ  

CS 50:50  
0*50 

2.526 

(0.076) 

2.783 

(0.119) 

2.477 

(0.068) 

2.751 

(0.107) 

2.470 

(0.026) 

2.662 

(0.039) 

)1(
50:40S  

0*39, 10 

2.532 

(0.097) 

2.798 

(0.154) 

2.468 

(0.083) 

2.756 

(0.134) 

2.458 

(0.027) 

2.650 

(0.042) 

)2(
50:40S  

10, 0*39 

2.380 

(0.107) 

2.635 

(0.155) 

2.323 

(0.111) 

2.600 

(0.148) 

2.367 

(0.047) 

2.555 

(0.074) 

)3(
50:40S  0*15, 1*10, 0*15 

2.533 

(0.100) 

2.788 

(0.155) 

2.470 

(0.086) 

2.746 

(0.136) 

2.461 

(0.028) 

2.642 

(0.045) 

)4(
50:40S  

0*10, (0,1)*10, 

0*10 

2.396 

(0.100) 

2.634 

(0.152) 

2.339 

(0.103) 

2.599 

(0.146) 

2.377 

(0.043) 

2.557 

(0.073) 

)5(
50:40S  (0,0,0,1)*10 

2.439 

(0.097) 

2.690 

(0.148 ) 

2.379 

(0.094) 

2.653 

(0.138) 

2.403 

(0.036) 

2.588 

(0.061) 

)1(
50:30S  

0*29, 20 

2.537 

(0.129) 

2.797 

(0.211) 

2.451 

(0.106) 

2.740 

(0.175) 

2.446 

(0.029) 

2.627 

(0.048) 

)2(
50:30S  

20, 0*29 

2.264 

(0.169) 

2.213 

(0.234) 

2.194 

(0.186) 

2.473 

(0.227) 

2.292 

(0.076) 

2.472 

(0.117) 

)3(
50:30S  0*5, 1*20, 0*5 

2.549 

(0.135) 

2.813 

(0.218) 

2.461 

(0.107) 

2.753 

(0.177) 

2.445 

(0.030) 

2.618 

(0.051) 
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)4(
50:30S  

0*5, (0,2)*10,  

0*5 

2.274 

(0.165) 

2.534 

(0.230) 

2.203 

( .181) 

2.490 

(0.221) 

2.298 

(0.073) 

2.480 

(0.114) 

)5(
50:30S  (0,1,1)*10 

2.344 

(0.144) 

2.593 

(0.215) 

2.268 

(0.151) 

2.546 

(0.201) 

2.336 

(0.058) 

2.514 

(0.095) 

)1(
50:20S  

0*19, 30 

2.559 

(0.205) 

2.845 

(0.336) 

2.420 

(0.145) 

2.746 

(0.237) 

2.422 

(0.032) 

2.591 

(0.058) 

)2(
50:20S  

30, 0*19 

2.174 

(0.282) 

2.392 

(0.391) 

2.068 

(0.308) 

2.333 

(0.369) 

2.240 

(0.105) 

2.396 

(0.173) 

)3(
50:20S  0*5, 3*10, 0*5 

2.553 

(0.208) 

2.835 

(0.342) 

2.414 

(0.146) 

2.737 

(0.244) 

2.420 

(0.033) 

2.590 

(0.059) 

)4(
50:20S  0*4, (0,5)*6, 0*4 

2.205 

(0.260) 

2.472 

(0.376) 

2.098 

(0.282) 

2.402 

(0.335) 

2.258 

(0.095) 

2.427 

(0.150) 

)5(
50:20S  (1,2)*10 

2.277 

(0.229) 

2.535 

(0.332) 

2.163 

(0.237) 

2.462 

(0.291) 

2.292 

(0.077) 

2.459 

(0.126) 

)1(
50:10S  

0*9, 40 

2.582 

(0.419) 

2.897 

(0.676) 

2.253 

(0.224) 

2.642 

(0.295) 

2.376 

(0.040) 

2.531 

(0.079) 

)2(
50:10S  

40, 0*9 

2.231 

(0.436) 

2.498 

(0.647) 

1.965 

(0.426) 

2.315 

(0.442) 

2.264 

(0.088) 

2.413 

(0.091) 

)3(
50:10S  0, 5*8, 0 

2.573 

(0.425) 

2.888 

(0.679) 

2.245 

(0.233) 

2.632 

(0.303) 

2.374 

(0.041) 

2.529 

(0.082) 

)4(
50:10S  0, (0, 10)*4, 0 

2.318 

(0.420) 

2.577 

(0.618) 

2.033 

(0.364) 

2.382 

(0.392) 

2.291 

(0.074) 

2.438 

(0.137) 

)5(
50:10S  4*10 

2.290 

(0.411) 

2.563 

(0.630) 

2.014 

(0.376) 

2.369 

(0.405) 

2.285 

(0.075) 

2.430 

(0.143) 

 

Table 5: Average estimates of Mean Time to Failures of component 1 and 

component 2 and their MSEs (in Brackets)  for n=50. 

 

  

        Schemes 

  

MLE 

Bayes Estimate 

Lindley MCMC 

1µ̂  2µ̂  1
~µ  2

~µ  1
~µ  2

~µ  

CS 100:100  0*100 

2.516 

(0.037) 

2.770 

(0.056) 

2.492 

(0.035) 

2.754 

(0.054) 

2.490 

(0.019) 

2.703 

(0.027) 

)1(
100:80S  

0*79,20 

2.519 

(0.044) 

2.770 

(0.069) 

2.489 

(0.042) 

2.751 

(0.065) 

2.485 

(0.021) 

2.690 

(0.031) 

)2(
100:80S  

20,0*79 

2.354 

(0.065) 

2.603 

(0.085) 

2.327 

(0.071) 

2.587 

(0.087) 

2.360 

(0.043) 

2.570 

(0.062) 

)3(
100:80S  0*30, 1*20, 0*30 

2.516 

(0.046) 

2.776 

(0.070) 

2.486 

(0.043) 

2.756 

(0.066) 

2.482 

(0.021) 

2.692 

(0.030) 

)4(
100:80S  

0*10, (0,0,1)*20, 

0*10 

2.374 

(0.059) 

2.623 

(0.081) 

2.347 

(0.064) 

2.607 

(0.083) 

2.375 

(0.039) 

2.584 

(0.057) 

)5(
100:80S  (0, 0, 0, 1)*20 

2.405 

(0.053) 

2.652 

(0.078) 

2.378 

(0.056) 

2.635 

(0.078) 

2.399 

(0.033) 

2.605 

(0.051) 

)1(
100:60S  

0*59,40 

2.521 

(0.061) 

2.792 

(0.099) 

2.480 

(0.055) 

2.765 

(0.090) 

2.475 

(0.024) 

2.681 

(0.035) 

)2(
100:60S  

40,0*59 

2.235 

(0.126) 

2.468 

(0.163) 

2.203 

(0.140) 

2.450 

(0.168) 

2.270 

(0.082) 

2.465 

(0.117) 

)3(
100:60S  0*10, 1*40, 0*10 

2.522 

(0.060) 

2.785 

(0.098) 

2.481 

(0.055) 

2.758 

(0.090) 

2.474 

(0.024) 

2.676 

(0.036) 
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)4(
100:60S  0*5, (0,0,4)*10, 0*5 

2.256 

(0.115) 

2.495 

(0.148) 

2.222 

(0.128) 

2.476 

(0.152) 

2.285 

(0.074) 

2.484 

(0.106) 

)5(
100:60S  (0,1,1)*20 

2.295 

(0.096) 

2.534 

(0.131) 

2.261 

(0.107) 

2.514 

(0.134) 

2.314 

(0.061) 

2.511 

(0.092) 

)1(
100:40S  

0*39,60 

2.520 

(0.096) 

2.807 

(0.160) 

2.458 

(0.084) 

2.765 

(0.138) 

2.453 

(0.028) 

2.651 

(0.043) 

)2(
100:40S  

60,0*39 

2.168 

(0.192) 

2.400 

(0.246) 

2.121 

(0.215) 

2.375 

(0.252) 

2.228 

(0.108) 

2.413 

(0.157) 

)3(
100:40S  0*5, 2*30, 0*5 

2.531 

(0.096) 

2.798 

(0.151) 

2.467 

(0.083) 

2.756 

(0.131) 

2.456 

(0.027) 

2.646 

(0.043) 

)4(
100:40S  0*5, (0,4)*15, 0*5 

2.177 

(0.187) 

2.414 

(0.236) 

2.129 

(0.209) 

2.388 

(0.241) 

2.233 

(0.106) 

2.421 

(0.151) 

)5(
100:40S  (1, 2)*20 

2.229 

(0.152) 

2.463 

(0.207) 

2.179 

(0.172) 

2.435 

(0.210) 

2.269 

(0.084) 

2.452 

(0.128) 

)1(
100:20S  

0*19,80 

2.553 

(0.209) 

2.837 

(0.339) 

2.414 

(0.148) 

2.738 

(0.241) 

2.421 

(0.033) 

2.589 

(0.059) 

)2(
100:20S  

80,0*19 

2.067 

(0.361) 

2.313 

(0.462) 

1.973 

(0.397) 

2.259 

(0.437) 

2.185 

(0.141) 

2.355 

(0.207) 

)3(
100:20S  0*5, 8*10, 0*5 

2.565 

(0.224) 

2.834 

(0.334) 

2.423 

(0.153) 

2.736 

(0.237) 

2.420 

(0.034) 

2.587 

(0.060) 

)4(
100:20S  0*2, 5*16, 0*2 

2.154 

(0.294) 

2.390 

(0.402) 

2.052 

(0.323) 

2.330 

(0.373) 

2.230 

(0.111) 

2.393 

(0.173) 

)5(
100:20S  4*20 

2.204 

(0.255) 

2.433 

(0.371) 

2.097 

(0.280) 

2.369 

(0.341) 

2.255 

(0.095) 

2.414 

(0.157) 

Table 6: Average estimates of Mean Time to Failures of component 1 and 

component 2 and their MSEs (in Brackets) for n=100. 
Schemes Components lifetimes  

 
CS 30:30

 

 

0*30 

X1 0.15, 0.50, 0.73, 0.75, 1.06, 1.46, 1.86, 1.86, 2.24, 2.42, 2.48, 

2.71, 2.99. 

X2 0.73, 1.18, 1.54, 1.58, 1.67, 1.78, 3.93, 4.49. 

X12 3.52, 1.67, 1.93, 2.32, 4.21, 0.89, 1.02, 1.92, 2.31. 

 
)(
:S

1
3020

 

 

0*19, 10 

X1 0.15, 0.50, 1.06, 1.46, 1.67, 1.86, 1.93, 2.24. 

X2 1.02, 1.18, 1.58, 1.67, 1.78, 1.92. 

X12 0.73, 0.75, 1.54, 0.89, 1.86, 0.73. 

 
)(

:S
2

3020

 

 

10, 0*19 

X1 0.15, 1.06, 1.46, 2.31, 2.32, 2.42, 2.48, 2.71, 2.99. 

X2 0.89, 1.67, 1.78, 3.93, 4.49. 

X12 1.93, 1.54, 4.21, 0.73, 0.50, 1.92. 

 
)(

:S
3

3020

 

 

0*5, 1*10, 

0*5 

X1 0.73, 0.75, 1.86, 1.86, 1.93, 2.32, 2.48, 2.99. 

X2 0.73, 0.89, 1.02, 1.18, 1.78, 1.92. 

X12 2.42, 1.06, 0.50, 2.24, 0.15, 1.67. 

 
)(

:S
4

3020

 

 

0*5, 0,2)*5,  

0*5 

X1 0.15, 0.50, 0.73, 1.06, 1.86, 2.24, 2.48. 

X2 0.73, 0.89, 1.02, 1.54, 1.58, 1.67, 1.78. 

X12 1.92, 1.93, 1.18, 0.75, 2.42, 2.32. 

 
)(

:S
5

3020

 

 

(0, 1)*10 

X1 0.15, 0.50, 0.75, 1.86, 1.93, 2.31, 2.71 

X2 0.89, 1.02, 1.18, 1.54, 1.58, 1.67, 1.92. 

X12 0.73, 2.24, 1.78, 2.32, 1.06, 1.86. 

Table 7: Generated data with 30% masking for different schemes when n=30 & 

m=20. 

 



Bayesian Estimation of Component Reliability using…                                                               51 

 

 

Table 8: Est. values of 21 ,λλ  & Mean Time to failure of components (n=30 & m=20 

 

 

 Fig. 1: Component Reliability curves under scheme )(
:S

1
3020

.  

 

 

 Fig. 2: Component Reliability curves under scheme
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Sche-

mes 

 

                MLE’s 

                          Bayes Estimate 

               Lindley                   MCMC 

 

1λ̂  

2λ̂

 

  

1µ̂  

  

2µ̂  1

~
λ  2

~
λ  

  

1
~µ  

 

2
~µ  1

~
λ  2

~
λ  

 

1
~µ  

 

2
~µ  

CS 30:30  
1.98 2.53 2.4 3.17 1.93 2.4 2.42 3.09 1.95 2.27 2.45 2.84 

)(
:S

1
3020  

2.00 2.31 2.51 2.90 1.91 2.24 2.40 2.81 1.94 2.08 2.43 2.61 

)(
:S

2
3020  

2.10 2.80 2.63 3.53 2.01 2.69 2.52 3.37 2.0 2.34 2.54 2.93 

)(
:S

3
3020  

1.90 2.19 2.38 2.75 1.82 2.13 2.28 2.68 1.87 2.01 2.35 2.51 

)(
:S

4
3020  

1.92 1.92 2.41 2.41 1.83 1.89 2.29 2.37 1.87 2.01 2.34 2.51 

)(
:S

5
3020  

2.03 2.03 2.55 2.55 1.93 1.99 2.42 2.50 1.86 1.83 2.34 2.29 
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