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Abstract

Progressive type-II censoring scheme is a very popular scheme adopted by contributors
in the fields of reliability and life-testing. In this paper, we consider a problem when this scheme
is applied to a life-testing experiment in which each unit under test is a series system and the
investigator is interested in obtaining reliability estimates of individual components. Assuming
the components lifetimes to be Rayleigh distribution, we present maximum likelihood and
Bayesian approaches to estimate the reliability measures of individual components using
masked system lifetime data. The Bayes estimates are evaluated using Lindley’s approximation
and Gibbs Sampler. The results are illustrated with the help of simulation study.

Key Words: Bayesian Estimation, Competing Risk, Gibbs Sampler, Masked Data,
Maximum Likelihood Estimation, Rayleigh Distribution.

1. Introduction

The progressive type-II censoring scheme is a generalized censoring scheme
which provides flexibility of withdrawal of units during the test and gives fixed number
of failures after the termination of the test. The type-II censoring scheme is a special
case of this scheme. This scheme has been considered by many authors for reliability
estimation. Balakrishnan and Aggarwala (2000) provides a detailed literature and
methodology for this scheme. See also Balakrishnan et. al. (2003), Balakrishnan (2007),
Soliman (2005) and Ng et. al. (2005) for some citations.

The progressive type-II censoring scheme is described as follows. Let the
random variable X denotes the lifetime of a unit. Suppose that n identical units are put

to test and non-negative integers R|,R,,..., R, are fixed in advance satisfying
R +R, +...+ R, =n—m. At the time of first failure, R, of the remaining 7 —1 units

are randomly removed. At the time of second failure, R, units out of the remaining

n—2— R, units are randomly removed and so on. Finally, at the time of m™ failure the

experiment is terminated by removing all remaining R, =n—-m—R, + R, +...+ R, _;
units.
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In case of life testing experiments designed for multi-component systems, investigators
often face the problem of estimation of the reliability measures of individual
components using system lifetime data. If the system is a series system, it fails as soon
as any one of its components fail. Therefore, the observed data may consist of failure
times of systems as well as an indicator denoting the component which causes the
failure of the system. Such data can be analyzed using competing risk model in order to
estimate the component reliabilities, mean life etc. Many authors have considered such
problems in reliability and survival analysis [see Lawless (2003) and Sinha (1986) for
some citations]. However, due to some unavoidable reasons such as lack of time,
scarcity of funds etc., the cause of failure for some of the failed systems may not be
observed. For example, suppose a system under life test caught fire and after its failure
it is not possible to identify the exact cause of failure. The data, in such situation,
remain incomplete since cause of failure of some of the systems is missing. Such data
are also termed as ‘masked data’.

The analysis of masked data under competing risk model is considered by
many authors by assuming different lifetime distribution for component lifetimes.
Miyakawa (1984) obtained the Maximum likelihood estimators (MLEs) for two-
component series systems of exponential components when some of the sample
observations are masked. Usher and Hodgson (1988) derived MLEs for three-
component systems by taking into consideration the phenomena of exact and partial
masking. Sarhan and El-Gohary (2003) derived the MLEs and Bayes estimates of
reliability functions of components when system components have Pareto life data. In
presence of masked data Reiser et. al. (1995) provided Bayesian solution for three
component series systems having independent exponential components. Mukhopadhyay
and Basu(1997) and Kuo and Yang (1999) presented the analysis of masked data when
lifetimes of components follow Weibull distribution. They used Gibbs sampler and EM
algorithm for computation. Tan (2007) studied the problem of estimating the reliability
functions of the components of series and parallel systems. Xu and Tang (2009)
performed Bayesian analysis of masked data assuming the Pareto reliability model as
component lifetime. Singh and Tomer (2011) and Tomer et. al. (2013), respectively,
derived the ML and Bayesian estimates of component reliabilities when component
lifetimes follows a family of life time distributions.

In this paper, we discuss the analysis of progressively type-II censored masked
system lifetime data under competing risk model. Assuming the lifetimes of the
components to be Rayleigh distribution, we provide ML and Bayes estimates lifetime
parameters, mean lives and reliability functions. Rest of the paper is organized as
follows of components. In Section 2, we present the likelihood function and derive
MLEs of parameters, mean life and reliability function. In Section 3, we give
procedures to obtain Bayes estimates of these parametric functions using Lindley’s
approximation and Gibbs sampler. Finally, In Section 4, we carry out simulation study
and conclude the findings.

2. Maximum Likelihood Estimation
Suppose that each system has J components in series and the lifetime of

.th . . . . . .
J".(j=12,..,J) component follows the Rayleigh distribution with parameter A,
having probability density function (pdf) given by
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The reliability function, hazard rate function and mean time to failure of ;

component for the model (2.1), at a specified mission time ¢ (>0), are given,
respectively, by

R(|A;) = P(X >1)
= exp| — > b 2.2)
22,
Wl 2)) =,

2
/1]'

u =,1j\/§ (2.3)

Suppose that in an experiment » identical systems are put to test and the progressively
type-II censoring scheme described in Section 1, is followed. After the termination of
test, lifetimes of m failed systems X, X,.,,,... X along with their cause of

and

failures, are observed. That is, the data (X,,,S;),i=L2,...,m (denoted by d
henceforth) are obtained, where S;denotes the set of system’s components which
contain the corresponding cause of failure. Throughout the rest part of the paper, we use

notation JX; instead of X, . With these notations, we write the likelihood function of

the data as follows.
R.

i

m J J
LAl =T] 2| FGADTT RG| A0 | TTRG: |40 (2.4)
=1 Jes; k=1 k=1

h

It may be noted that for i system if the set S, is a singleton, we say that the cause of

failure is exactly detected otherwise it is masked.

Since the analysis of the problem becomes very complicated for large number
of components, we now assume that each system consists of two components. To
proceed with this case, let out of m failures, m; andm,, respectively denote the
number of failures occur due to the failure of component 1 and component 2. Further,
my, are the number of failed systems for which the cause of failure is masked. It is
evident that m, +m, + m;, = m. With these notations, the likelihood function (2.4) can
be expressed as follows.
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Using (2.1) and (2.2), we obtain from (2.5), that
1 (1 1) 11
LA, |d)=———| +— ; eXpy—— —+— xi (R, +1D;.(2.6)
DR | 2 22 [ 2\ 2 2 le
Taking the logarithm of both sides of (2.6), differentiating it partially with respect to
A, and A, and solving the likelihood equations, we obtain the expressions for MLEs

of A; and A, given by
1/2
i - (sz ® +1)J ,

2mm; o
2.7)
and
(my +m,) 1/2
A m, +m
A L2 R, +1 ) 2.8
) = (2mm2 ; 7 (R )J (2.8)

Remarks: Using the invariance property of MLE, the MLE of reliability function of jth
component, at time ¢, can be obtain as follows

A t2
R(t|A,)=exp| ——— |, j=1, 2.
(t14;) P{ Y J

J
3. Bayesian Estimation

In Bayesian paradigm, we consider 4, (j =1,2) to be a random variable. Let

the prior density of 4, with parameters («, ;) , be given by

: (2a;+1) B
A. - 4 . ALa;, B >0. 3.1

Now, assuming A /.': to be independent, the joint prior distribution of A, and A, can

be written by p(4,)p(4,) . Combining this joint prior with likelihood function (2.6), via

Bayes theorem, the joint posterior density of A, and A, comes out to be

M 2
(4. 4 | d) = 1 [iu%] exp{— Y (r+s, )},
2

2my+204+1 42my+20,+1 2
K2 2 P

n
where T = Z x,-2 (R; +1)and K is the normalizing constant given by
i=1
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From (3.2), we observe that the marginal distributions of A, and A, cannot be

obtained in closed form, which is essential in order to obtain Bayes estimates of
individual parameters or parametric functions. Therefore, for further analysis, we
proceed with (i) Lindley approximation and (ii) Gibbs Sampler.

3.1 Bayesian Estimation Using Lindley’s Approximation
According to Lindley’s (1980) approximation, the posterior expectation of any
parametric function o(4) = w( 1,4, ) which is a ratio of two integrals given by

Ll Lz (1) L(A;, 4, |d)p(A;,24,)dA,; dA,
[ ), LO20 | d)p(2y, 2r)d2, d2,

can be obtained in the form of the following expression.

(A) = E(o(2) | d) =

~ A 1
= a)(/l)+5[A + 0By + 13 By +11,Chn +15,Cyy ]+ p1dn + prdy,  (3.3)

where
el
l—lOg(L) A= ZZCU, i [ =Tz
b ij = ij né aﬂfaﬂé
n&E=0,123; n+&E=3  fori j=12.
op ow ’w .
==, O, =—0, .= , where p=logn(A,A and for i+
Pi o o Y o0, p=logn(A,A) Jori#j
Ai-=a)iaii+a)-0'ji, =(w; ”+a)jo-u)aii, and

C; =3w,0,0;+0; (0'

ii0 jj +20'y)

Here o; is the (i,j )™ element in the inverse of the matrix {— Ly }z j=1,2, such that
oY
Toa04;

With these notations, using the expression given by Nassar and Eissa (2004), (3.3) can
be written as follows,

H G I )
Letoy, =—, 0y =—and o, =0, =——, where N=GH -1".
n=y 2=y 12 21 Y,

E(o(A)|d)=a(l)+ oy, +oyw, +¢, (3.4
where

1
" :W(le -Ip, +(GH + 211, -31HL,,],  (3.5)

1 1
v =~ (Gpy-Ip, )+W[G2103 - IHly +(GH + 21%)l,, -3IGL,]  (3.6)

1
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Using the fact that the Bayes estimator of any parameter, under squared error loss
function, is its posterior mean, we obtain the Bayes estimates of 4,4, and component
reliabilities R;(?), and R,(?) by using (3.4) as follows.

(i) Bayes estimate of 1,
Whenw = 1;, we have @ =1, @, =0 and ¢ =0. Substituting these values in
(3.4), the Bayes estimator of 4, , is given by

&=k +y.

(ii) Bayes estimate of 4,
Whenw=4,, we have @, =0, w, =1 and ¢=0. With these values we obtain

the following Bayes estimator of 4, , form (3.4)

Zz = 22 + ‘//2 .
(iii) Bayes estimate of R;(?)

2
When o= exp[—thJ the Bayes estimator of R,(¢) form (3.4) comes out to be
1
RO=R®+y o +4,
where,
1 P P 2, 1
=—Hw,,, o, =—exp| ——— | and o, =— (" —347)exp| ———
¢1 IN 11 1= /1:1; p( 2/112] 11 216( l) p 2112

(iv) Bayes estimate of R,(?),

If o= exp[

2

2

] from (3.4) we get the following Bayes estimator of R, (¢)

ﬁz(t) =f32(t) tY,0) + 6,

where,
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3.2 Bayesian Estimation using Gibbs sampler

Here, we use Gibbs sampling simulation procedure to get samples from the
marginal posterior distributions. For implementing Gibbs sampling algorithm, the full
conditionals of 4, and A, obtained from (3.2) are given, respectively, by.

myy
1 1 1 1
72'(2,1 |],2,4)OC W(ﬂ_lz-i_EJ exp(—ﬂ(T+ﬁl)} (37)
and
A A,,d ! ! L™ ! T 3.8
7(4 | 2»_)“W EJFE exp —E( +/5) | (3.8)

Using (3.7) and (3.8), we generate the Gibbs sequence (/1?,/12) , (Al ,112) o (A", 1’2’)

as follows.

(1). Choose an initial value of 4, , say A,
(2). Generate A3 via (4, | A0,d)

(3). Generate A} via 7( 4, | A3,d)

(4). Generate 112 via (A, M(l), d ) and so on.

For a sufficiently large value of 4, A" becomes a sample observation form marginal ofA.
After the burn-in-process we obtain the samples from posterior distributions of A, and

A, . With these generated samples, we can evaluate the Bayes estimate of parameters or
any parametric function.

5. Simulation study
In this section, we present a simulation study to observe the performance of
estimators. With the parametric values A4, =2 andA, =22, we generate n

observations for each component from Rayleigh distribution through inverse
transformation technique. As the system under consideration is a series system, the time
to failure of the system x; becomes the minimum of the simulated failure times of
components. The component corresponding to minimum failure time is considered to
be the cause of failure. From these observations, we draw a sample of m observations
using progressive type-1I censoring scheme. In this sample we mask the cause of failure
of 30% observations and get the final form of the competing risk data with missing
cause of failure. For such simulated data sets, we obtain ML estimates of parameters for
different patterns of removals of observations in considered progressive type-II
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censoring scheme. For the computations purpose, the considered removal patterns and
their notations which are used in tables, are as follows:

S¢ no unit is removed during the test; SV :all (n-m) unites are removed at m"

n
2)

failure; S'2) :all (n-m) unites are removed at first failure; S, S$) and §) indicates

mmn > mn mn

various possible patterns of removals that are scattered throughout the test.

For Bayesian study, we have chosen the values of prior parameters to be
=2 p =2 a,=3 and f,=3. For these values, the Bayes estimates are

evaluated using Lindley’s approximation and Gibbs Sampler. We provide the average
values of MLEs as well as Bayes estimates along with their mean square error mean
(MSE’s) based on 2000 repeated samples. The estimates of parameters are given in
Tables 1 & 2, component reliabilities in Tables 3 & 4 and that of mean time to failure in
Tables 5 & 6. From all the tables, we observe that the MSE of estimates increases as the
number of failures m in the sample decreases. The MSE of Bayes estimates is less than
the ML estimates. The Bayes estimates obtained through Lindleys approximation
exhibit greater MSE than Bayes estimate obtained through Gibbs Sampler.

We also consider the analysis of a simulated data set to show how one can
apply the results, obtained in the previous sections, to a real life problem. The data is
simulated from the considered Rayleigh population by taking 4, =2 and 4, =2.2. We

generated masked data under progressive type-II censoring schemes with five different
patterns. This data is given in Table 7. For this data set the estimated values of
parameters and mean time to failure are presented in Table 8. We also plotted reliability
functions of individual components in Figures 1 and 2 for the considered two schemes.

Bayes Estimate

MLE Lindley MCMC
Schemes 4 A 4 4, A4 As
g€ 2016 2221 1976 2195 1971  2.124
050 x50 (0.048)  (0.076) (0.043) (0.068) (0.016) (0.025)
g0 2020 2233 1969 2199 1961 2.114
4050 0*39, 10 (0.062)  (0.098) (0.053) (0.085) (0.017) (0.027)
e 1.899 2102 1.854 2074 1.888  2.039
4050 10, 0%39 (0.068)  (0.099) (0.071) (0.094) (0.030) (0.047)
§0) 2.021 2224 1971 2191 1964  2.108
4050 0*15,1*%10,0%15  (0.064)  (0.099) (0.055) (0.086) (0.018) (0.029)
§@  0%10,(0,H)*10, 1912 2102 1.866 2.074  1.896  2.040
4050 0*10 (0.064)  (0.097) (0.066) (0.093) (0.028) (0.046)
$O) 1.946  2.147 1898 2117 1917  2.065
4050 (0,0,0,1)*10 (0.062)  (0.094) (0.060) (0.088) (0.023) (0.039)
g 2024 2232 1955 2186 1951  2.089
3050 0*29, 20 (0.082)  (0.135) (0.067) (0.111) (0.019) (0.033)
g 1.807  2.007 1751 1973 1.829 1972
3050 20, 0%29 (0.107)  (0.149) (0.118) (0.144) (0.048) (0.075)

) 2.034 2244 1963 2.197 1952  2.09
3050 0%5, 1%20, 0*5 (0.086)  (0.139) (0.068) (0.112) (0.019) (0.030)
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g 0%5.(0.2)*10, 1.815  2.022 1758 1987 1.834 1979
3050 0%5 (0.105) (0.147) (0.115) (0.141) (0.047) (0.073)
§O) 1.870  2.069 1810 2.031 1.864  2.006
3050 (0,1,1)*10 (0.092)  (0.137) (0.096) (0.128) (0.037) (0.060)
g 2042 2270 1931 2.191 1933  2.067
2050 0*19, 30 (0.131)  (0.214) (0.092) (0.151) (0.021) (0.037)
e 1.734 1908 1.650 1.861 1.787 1912
2050 30, 0*19 (0.180)  (0.249) (0.196) (0.235) (0.067) (0.110)

e 2037 2262 1926 2.184 1931  2.067
2050  0*5,3*10, 0*5 (0.132)  (0.218) (0.093) (0.155) (0.021) (0.038)
@ 1759 1972 1674 1917 1801 1937
2050 0%4, (0,5)%6,0%4  (0.166) (0.240) (0.180) (0.213) (0.060) (0.096)

1.817 2.023 1.726 1.964 1.829 1.962

5
Sas0 (1,2)*10 (0.146)  (0.211) (0.151) (0.185) (0.049) (0.080)
I 2060 2311 1798 2.108 1.895  2.019
1050 0*9, 40 (0.267)  (0.431) (0.142) (0.188) (0.025) (0.050)
e 1.780 1993 1568 1.847 1806  1.925
1050 40, 0%9 (0.278)  (0.412) (0.271) (0.281) (0.056) (0.098)
e 2.053 2304 1791 2.100 1.894  2.018
10:50 0, 5*8, 0 (0.270)  (0.432) (0.148) (0.193) (0.026) (0.052)
@ 1850 2056 1622 1901 1828  1.945
1:50 0, (0, 10)*4, 0 (0.267)  (0.393) (0.232) (0.250) (0.047) (0.087)
§0) 1827 2045 1607 1.890 1824 1939
10:50  4*10 (0.262)  (0.401) (0.239) (0.258) (0.048) (0.091)

Table 1: Average values of point estimates of 4, and A, along their MSEs (in
Brackets) for n=50.

Bayes Estimate

MLE Lindley MCMC
Schemes /11 /12 4 s 4 A,

c 2.008 2.210 1.989 2.198 1.987 2.157
S100:100 0*100 (0.024) (0.036) (0.022) (0.034) (0.012) (0.018)
S(l) 2.010 2.210 1.986 2.195 1.983 2.146

80:100  0*79 20 (0.028) (0.044) (0.026) (0.042) (0.013) (0.020)
S(2) 1.878 2.077 1.857 2.064 1.883 2.050

80:100  20,0%79 (0.041) (0.054) (0.045) (0.055) (0.028) (0.040)

e 2008 2215 1984 2.199 1981 2.148
80100 0*30, 1¥20,0%30  (0.029) (0.045) (0.027) (0.042) (0.014) (0.019)

§@ 0%*10, (0,0,1)*20, 1.894 2.093 1.872 2.080 1.895 2.062

80100 0*10 (0.038)  (0.052) (0.041) (0.053) (0.025) (0.036)
§O) 1919 2116  1.897  2.103 1914  2.079
80:100 (0,0, 0, 1)*20 (0.034)  (0.049) (0.036) (0.050) (0.021) (0.033)
s 2011 2227 1979 2206 1975  2.139
60:100 %59 4( (0.039)  (0.063) (0.035) (0.058) (0.015) (0.022)
§@ 1.784 1970  1.758 1955 1811  1.967
60100 40,0*59 (0.080)  (0.104) (0.089) (0.107) (0.052) (0.075)

) 2012 2222 1980 2201 1974 2.135
60100 0*10,1*40,0*10  (0.038) (0.063) (0.035) (0.057) (0.015) (0.023)
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g 0%*5, (0,0,4)*10, 1.800 1.991 1.773 1.976 1.823 1.982
60:100  0*5 (0.073)  (0.094) (0.081) (0.097) (0.047) (0.068)
e 1.831 2.022 1.804 2.006 1.847 2.003
60100  (0,1,1)*20 (0.061) (0.083) (0.068) (0.085) (0.039) (0.059)
s 2.011 2.240 1.961 2.206 1.958 2.115
40100 0*39 60 (0.061) (0.102) (0.053) (0.088) (0.018) (0.027)
s 1.730 1.915 1.692 1.895 1.777 1.925
40100 60,0*39 (0.122)  (0.157) (0.137) (0.160) (0.069) (0.100)
e 2.019 2.232 1.969 2.199 1.960 2111
40100 0*5, 2*30, 0*5 (0.061)  (0.096) (0.053) (0.084) (0.017) (0.027)
@ 1.737 1.926 1.699 1.905 1.782 1.931
40100 0*5, (0,4)*15, 0*5 (0.119)  (0.150) (0.133) (0.153) (0.067) (0.096)
e 1.779 1.965 1.739 1.943 1.811 1.956
40100 (1, 2)*20 (0.097) (0.132) (0.109) (0.134) (0.054) (0.082)
s 2.037 2.263 1.926 2.185 1.932 2.066
20:100 0*19,80 (0.133)  (0.216) (0.094) (0.153) (0.021) (0.038)
s 1.649 1.845 1.574 1.803 1.744 1.879
20100 80,0*%19 (0.230)  (0.294) (0.253) (0.278) (0.090) (0.132)
5O 2.047 2.261 1.934 2.183 1.931 2.064
20:100  0*5, 8*%10, 0*5 (0.143)  (0.213) (0.097) (0.151) (0.022) (0.038)
@ 1.719 1.907 1.637 1.859 1.779 1.909
20100 0*2, 5*16, 0*2 (0.187) (0.256) (0.206) (0.238) (0.071) (0.110)
Y6 1.759 1.941 1.673 1.890 1.799 1.926
20:100  4*20 (0.162) (0.236) (0.178) (0.217) (0.060) (0.100)

Note: Here, a*b stand for q, a, a..., b times.
Table 2: Average values of Point estimates of 4, and A, along with their MSEs

(in Brackets) for n=100.

Bayes Estimate

Schemes MLE Lindley MCMC
R kR R R K R
s¢ 0.544 0.603 0.526  0.589 0.530 0.578
3030 g*50 (0.005)  (0.005) (0.005) (0.005) (0.002) (0.002)
g 0.544 0.604 0520  0.586 0.527 0.574
4050 0%39, 10 (0.006)  (0.006) (0.006) (0.006) (0.002) (0.003)
S(2) 0.502 0.567 0.479 0.549 0.500 0.551
405010, 0%39 (0.009)  (0.009) (0.011) (0.010) (0.005) (0.005)
Rye) 0*15, 1*10, 0.544 0.602  0.521 0.584 0.527 0.572
40:50  0*15 (0.006)  (0.007) (0.006) (0.006) (0.002) (0.003)
G 040,000, 0507 0567 0484 0549 0503 0551
40:50  0*10 (0.008)  (0.009) (0.010) (0.010) (0.004)  (0.005)
S(S) 0.519 0.580 0.496 0.562 0.511 0.559
40:50  (0,0,0,1)*10 (0.007)  (0.008) (0.008) (0.008) (0.003) (0.004)
S(l) 0.546 0.604 0.514 0.579 0.523 0.568
3050 %29, 20 (0.008)  (0.008) (0.008) (0.008) (0.003) (0.003)
52 0.466 0.533 0.436 0511 0.477 0.527
3050 20, 0%29 (0.016)  (0.016) (0.020) (0.018) (0.008)  (0.009)
S(3) 0*5, 1*20, 0.543 0.600 0.511 0.576 0.522 0.566
3050 0%5 (0.008)  (0.009) (0.008) (0.008) 90.003) (0.004)
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g 0%5,(02)*10, 0469 0538 0439 0515 0479 0529
3050 0*5 (0.016)  (0.015) (0.019) (0.017) (0.007) (0.009)
§© 0489 0553 0459 0530 0490  0.539
3050 (0,1,1)*10 (0.013)  (0.013) (0.015) (0.015) (0.006) (0.007)
g 0.543 0603 0495 0566 0515  0.558
2050 0*19, 30 (0.012)  (0.012) (0.012) (0.011) (0.003) (0.004)
e 0431 0492 0388 0461 0459  0.504
2050 30,0*19 (0.029)  (0.030) (0.036) (0.034) (0.011) (0.014)
GG 0%5,3%0, 0541 0601 0494 0564 0514 0558
2050 0*5 (0.012)  (0.013) (0.012) (0.012) (0.003) (0.004)
G 0%.(05)%, 0442 0512 0398 0479 0465 0513
2050 0*4 (0.026)  (0.026) (0.033) (0.029) (0.010) (0.012)
$6) 0464 0531 0419 0496 0476 0522
2050 (1,2)*10 (0.021)  (0.021) (0.027) (0.024) (0.008) (0.010)
I 0533 0595 0438 0520 0500  0.541
1050 %9, 40 (0.022)  (0.023) (0.026) (0.022) (0.004) (0.006)
e 0435 0500 0346 0434 0466  0.507
1050 40, 0*9 (0.040)  (0.042) (0.054) (0.046) (0.010) (0.013)
e 0530 0592 0435 0517 0500  0.541
10:50 0, 5*8, 0 (0.023)  (0.024) (0.027) (0.023) (0.004) (0.007)
@ 0461 0521 0369 0453 0474 0515
1050 0,(0,10)%4,0  (0.034) (0.036) (0.046) (0.039) (0.008) (0.011)
$O) 0453 0517 0362 0449 0473 0513
1050 4*10 (0.035)  (0.038) 0.048  (0.041) (0.008) (0.012)

Table 3: Average estimates of Reliabilities of component 1 and component 2 and
their MSEs (in Brackets) for n=50.

Bayes Estimate

MLEs Lindley MCMC
Schemes R, R, R, R, R, R,

c 0545  0.605 0536 0598 0538  0.590
S100:100  0*100 (0.002)  (0.003) (0.002) (0.003) (0.001) (0.002)
s 0545  0.604 0534 0595 0536  0.586

80100 #7920 (0.003)  (0.003) (0.003) (0.003) (0.002) (0.002)
o) 0.499  0.565 0488  0.556  0.500  0.556

80:100 20 0*79 (0.006)  (0.005) (0.007) (0.006) (0.004) (0.004)
$O) 0544 0605 0533 0596 0535 0.586

80000 0*30, 1%20,0%30  (0.003)  (0.003) (0.003) (0.003) (0.002) (0.002)
<@ 0*10, (0,0,1)*20, 0.505  0.570 0494 0561  0.505  0.560

80:000  0*10 (0.005)  (0.005) (0.006) (0.005) (0.003) (0.004)
§O) 0514 0577 0503 0568 0512  0.565

80:100 (0, 0,0, 1)*20 (0.004)  (0.004) (0.005) (0.005) (0.003) (0.003)
) 0.544  0.607 0529 0594 0532  0.583

60100 (%59 40 (0.004)  (0.004) (0.004) (0.004) (0.002) (0.002)
o) 0462 0529 0447 0517 0472 0528

60100 40,0%59 (0.012)  (0.011) (0.014) (0.013) (0.008) (0.009)
e 0.545  0.605 0529 0593 0532  0.582

60100 0*10, 1*40,0*10  (0.004)  (0.004) (0.004) (0.004) (0.002) (0.002)
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@ 0%*5, (0,0,4)*10, 0.468 0.536 0.454 0.525 0.477 0.533
60:100  0*5 (0.011)  (0.010) (0.013) (0.012) (0.007) (0.008)
5O 0.481 0.546 0.466 0.535 0.486 0.540
60:100  (0,1,1)*20 (0.009)  (0.009) (0.011) (0.010) (0.006) (0.007)
s 0.544 0.604 0.520 0.586 0.526 0.573
40000 0*39,60 (0.006)  (0.006) (0.006) (0.006) (0.002) (0.003)
s 0.438 0.506 0.416 0.490 0.457 0.511
40100 60,0*39 (0.020)  (0.019) (0.024) (0.021) (0.011) (0.012)
5O 0.541 0.606 0.518 0.587 0.525 0.575
40100 0*5, 2*30, 0*5 (0.006)  (0.006) (0.006) (0.006) (0.002) (0.003)
@ 0.440 0.510 0.419 0.494 0.459 0.514
40100 0*5, (0,4)*15, 0*5 (0.019)  (0.018) (0.023) (0.020) (0.011) (0.012)
e 0.458 0.523 0.436 0.507 0.471 0.523
40100  (1,2)*20 (0.015) (0.015) (0.018) (0.017) (0.008) (0.010)
s 0.541 0.601 0.494 0.564 0.515 0.558
20100 0*19,80 (0.012)  (0.013) (0.012) (0.012) (0.003) (0.004)
s 0.396 0.468 0.356 0.439 0.441 0.491
2000 80,0*19 (0.039)  (0.038) (0.048) (0.042) (0.015) (0.017)
5O 0.543 0.601 0.496 0.564 0.514 0.557
20:00  0*5, 8*10, 0*5 (0.012)  (0.012) (0.012) (0.012) (0.003) (0.005)
@ 0.425 0.491 0.383 0.460 0.456 0.503
20100 0*2, 5*%16, 0*2 (0.031) (0.031) (0.038) (0.034) (0.012) (0.014)
O 0.442 0.504 0.398 0.472 0.464 0.509
20100  4*20 (0.025)  (0.027) (0.033) (0.030) (0.010) (0.013)

Table 4: Average estimates of Reliabilities of component 1 and component 2 and
their MSEs (in Brackets) for n=100.

Bayes Estimate

MLE
Schemes _ _ _ Lindlez _ MCME
H Hy H Ha H Hy
¢ 2.526 2.783 2.477 2.751 2.470 2.662
3030 g*50 (0.076)  (0.119)  (0.068) (0.107) (0.026)  (0.039)
s 2.532 2.798 2.468 2.756 2.458 2.650
4050 0%*39, 10 (0.097) (0.154) (0.083) (0.134) (0.027) (0.042)
§@ 2.380 2.635 2.323 2.600 2.367 2.555
40:50 10, 0*39 (0.107) (0.155) (0.111) (0.148) (0.047) (0.074)
S(S) 2.533 2.788 2.470 2.746 2.461 2.642
40:50  0*15, 1*10,0*15  (0.100) (0.155) (0.086) (0.136) (0.028) (0.045)
S(4) 0*10, (0,1)*10, 2.396 2.634 2.339 2.599 2.377 2.557
40:50  0*10 (0.100)  (0.152)  (0.103) (0.146) (0.043)  (0.073)
S(S) 2.439 2.690 2.379 2.653 2.403 2.588
40:50  (0,0,0,1)*10 (0.097) (0.148) (0.094) (0.138) (0.036) (0.061)
S(l) 2.537 2.797 2.451 2.740 2.446 2.627
3050 (%29, 20 0.129)  (0.211)  (0.106) (0.175)  (0.029)  (0.048)
S(Z) 2.264 2.213 2.194 2473 2.292 2.472
3050 20, 0*29 (0.169)  (0.234)  (0.186) (0.227) (0.076) (0.117)
S(3) 2.549 2.813 2.461 2.753 2.445 2.618
30:50  0*5, 1*%20, 0*5 (0.135) (0.218) (0.107) (0.177)  (0.030) (0.051)
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S(4) 0%*5, (0,2)*10, 2.274 2.534 2.203 2.490 2.298 2.480
3050 0*5 (0.165)  (0.230)  (.181) (0.221) (0.073) (0.114)
e 2.344 2.593 2.268 2.546 2.336 2.514
3050 (0,1,1)*10 (0.144)  (0.215) (0.151) (0.201)  (0.058)  (0.095)
S(l) 2.559 2.845 2.420 2.746 2.422 2.591
2050 0*19, 30 (0.205) (0.336) (0.145) (0.237) (0.032) (0.058)
S(Z) 2.174 2.392 2.068 2.333 2.240 2.396
2050 30, 0*19 (0.282)  (0.391)  (0.308) (0.369) (0.105) (0.173)
N 2.553 2.835 2.414 2.737 2.420 2.590
20:50  0*5,3*10, 0*5 (0.208) (0.342) (0.146) (0.244) (0.033) (0.059)
§@ 2.205 2472 2.098 2.402 2.258 2.427
2050 0*4, (0,5)%6, 0%4  (0.260) (0.376) (0.282) (0.335) (0.095) (0.150)
S(S) 2.277 2.535 2.163 2.462 2.292 2.459
2050 (1,2)*10 (0.229)  (0.332)  (0.237) (0.291)  (0.077)  (0.126)
s 2.582 2.897 2.253 2.642 2.376 2.531
1050 %9, 40 (0.419)  (0.676) (0.224) (0.295)  (0.040)  (0.079)
s® 2.231 2.498 1.965 2315 2.264 2.413
1050 40, 0*9 (0.436) (0.647) (0.426) (0.442) (0.088) (0.091)
S(3) 2.573 2.888 2.245 2.632 2.374 2.529
1050 0, 5*8, 0 (0.425)  (0.679) (0.233) (0.303)  (0.041)  (0.082)
S(4) 2.318 2.577 2.033 2.382 2.291 2.438
1050 0, (0, 10)*4, 0 (0.420)  (0.618) (0.364) (0.392) (0.074) (0.137)
e 2.290 2.563 2.014 2.369 2.285 2.430
1050 4*10 (0.411)  (0.630) (0.376) (0.405) (0.075) (0.143)
Table 5: Average estimates of Mean Time to Failures of component 1 and
component 2 and their MSEs (in Brackets) for n=50.
Bayes Estimate
Schemes _ MLI*E _ Lindlez _ MCMS
H H H H H Ho
c 2.516 2.770 2.492 2.754 2.490 2.703
S100:100  0*100 0.037)  (0.056)  (0.035) (0.054) (0.019) (0.027)
s 2.519 2.770 2.489 2.751 2.485 2.690
80:100  0*79,20 (0.044)  (0.069)  (0.042) (0.065) (0.021) (0.031)
S(Z) 2.354 2.603 2.327 2.587 2.360 2.570
80:100 20,0*79 (0.065)  (0.085)  (0.071) (0.087) (0.043) (0.062)
e 2.516 2.776 2.486 2.756 2.482 2.692
80:100  0*30, 1*20, 0*30 (0.046)  (0.070)  (0.043) (0.066) (0.021) (0.030)
S(4) 0*10, (0,0,1)*20, 2.374 2.623 2.347 2.607 2.375 2.584
80100 0*10 (0.059)  (0.081)  (0.064) (0.083) (0.039) (0.057)
S(S) 2.405 2.652 2.378 2.635 2.399 2.605
80:100 (0,0, 0, 1)*20 (0.053)  (0.078)  (0.056) (0.078) (0.033) (0.051)
S(l) 2.521 2.792 2.480 2.765 2.475 2.681
60:100 (%59 40 (0.061)  (0.099)  (0.055) (0.090) (0.024) (0.035)
§@ 2.235 2.468 2.203 2.450 2.270 2.465
60:100  40,0*59 (0.126)  (0.163)  (0.140) (0.168) (0.082) (0.117)
S(3) 2.522 2.785 2.481 2.758 2.474 2.676
60:100  0*10, 1*40, 0*10 (0.060)  (0.098)  (0.055) (0.090) (0.024) (0.036)
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@ 2256 2495 2222 2476 2285 2484
60100 0*5,(0,0,4)*10,0%5 (0.115)  (0.148)  (0.128) (0.152) (0.074) (0.106)

e 2.295 2.534 2261 2514 2314 2511
60:100  (0,1,1)*20 0.096)  (0.131)  (0.107) (0.134) (0.061) (0.092)
g 2.520 2.807 2458 2765 2453 2651
40100 0*39,60 (0.096)  (0.160)  (0.084) (0.138) (0.028) (0.043)
e 2.168 2.400 2,121 2375 2228 2413
40100 60,0*39 (0.192)  (0.246)  (0.215) (0.252) (0.108) (0.157)
e 2.531 2.798 2467 2756 2456  2.646
40100 0*5,2%30, 0*5 0.096)  (0.151)  (0.083) (0.131) (0.027) (0.043)

S 2177 2414 2129 2388 2233 2421
40100 0*5,(0,4)*15,0%5  (0.187)  (0.236)  (0.209) (0.241) (0.106) (0.151)

2.229 2.463 2.179 2.435 2.269 2.452

5
Sion00 (1,2)*20 (0.152)  (0.207)  (0.172) (0.210) (0.084) (0.128)
D 2.553 2.837 2414 2738 2421 2589
20100 (%1980 (0.209)  (0.339)  (0.148) (0.241) (0.033) (0.059)
e 2067 2313 1.973 2259 2185 2355
20100 80,0%19 (0.361)  (0.462)  (0.397) (0.437) (0.141) (0.207)
e 2565 2834 2423 2736 2420  2.587
20100 0*5, 8*10, 0%5 (0224)  (0.334)  (0.153) (0.237) (0.034) (0.060)
@ 2.154 2390 2052 2330 2230  2.393
20100 0*2, 5%16, 0%2 (0.294)  (0.402)  (0.323) (0.373) (0.111) (0.173)
) 2204 2433 2.097 2369 2255 2414
20100 4%20 (0.255)  (0.371)  (0.280) (0.341) (0.095) (0.157)

Table 6: Average estimates of Mean Time to Failures of component 1 and
component 2 and their MSEs (in Brackets) for n=100.

Schemes Components lifetimes

X,  0.15,0.50,0.73, 0.75, 1.06, 1.46, 1.86, 1.86, 2.24, 2.42, 2.48,
SC 0%30 2.71,2.99.
: X,  0.73,1.18,1.54,1.58, 1.67, 1.78, 3.93, 4.49.
X, 3.52,1.67,1.93,2.32,4.21,0.89, 1.02, 1.92,2.31.

X,  0.15,0.50, 1.06, 1.46, 1.67, 1.86, 1.93, 2.24.
SV 0%19,10 X, 1.02,1.18,1.58, 1.67, 1.78, 1.92.
20:30 X,  0.73,0.75,1.54, 0.89, 1.86, 0.73.

X, 0.15,1.06, 1.46,2.31,2.32,2.42,2.48,2.71, 2.99.
§(2) 10,019 X,  0.89,1.67,1.78,3.93,4.49.
20:30 X,  1.93,1.54,4.21,0.73,0.50, 1.92.

X,  0.73,0.75, 1.86, 1.86, 1.93,2.32, 2.48, 2.99.
§(3)  0%5,1%10, X,  0.73,0.89,1.02, 1.18, 1.78, 1.92.
2030 0%5 X,  2.42,1.06,0.50,2.24,0.15, 1.67.

X,  0.15,0.50,0.73, 1.06, 1.86, 2.24, 2.48.
g4 0%5,02)*5, X,  0.73,0.89, 1.02, 1.54, 1.58, 1.67, 1.78.
20:30 0%5 X, 1.92,1.93,1.18,0.75, 2.42, 2.32.

X, 0.15,0.50, 0.75, 1.86, 1.93, 2.31, 2.71
§(5) 0,)*10 X,  0.89,1.02,1.18, 1.54, 1.58, 1.67, 1.92.
20:30 X,  0.73,2.24,1.78,2.32, 1.06, 1.86.

Table 7: Generated data with 30% masking for different schemes when n=30 &
m=20.
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Bayes Estimate
Sche- MLE’s Lindley MCMC
mes

A

4 ,[11 ,[12 4 As H 1y 4 4, 4 H
S3C0.30 1.98 2.53 2.4 3.17 193 2.4 242 3.09 195 227 245 284

Sﬁééo 2.00 231 251 29 191 224 240 281 194 208 243 261

S%éo 2.10 2.80 263 353 201 269 252 337 20 234 254 293

Sgééo 190 219 238 275 182 213 228 2.68 187 201 235 251

Sgg_)m 192 192 241 241 183 189 229 237 187 201 234 251

S2(g_)30 2.03 2.03 255 255 193 199 242 250 186 1.83 234 229

Table 8: Est. values of 4,,1, & Mean Time to failure of components (n=30 & m=20

Component 1 Component 2
2 - 2 -
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Fig. 1: Component Reliability curves under scheme Sg(l):)m .
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Fig. 2: Component Reliability curves under scheme S5, .
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