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Abstract 
 In this paper we propose a discrete analogue of Burr-type III distribution using a 

general approach of Discretizing a continuous distribution. It may be worth exploring the 

possibility of developing a discrete version of two parameter Burr-type III distribution, so that 

same can be used for modeling a discrete data. Discrete Burr-type III distribution is suggested as 

a suitable reliability model to fit a range of discrete life time data, as it is shown that hazard rate 

function can attain monotonic increasing (decreasing) shape for certain values of parameters. The 

equivalence of discrete Burr-type III (DBD-III) and continuous Burr-type III (BD-III) 

distributions has been established. Various theorems relating Burr Type III distribution with other 

statistical distributions have also been proved. 
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1. Introduction 
             In reliability theory a plethora of continuous life models is now available in the 

subject to portray the survival behavior of a component or a system. Many continuous 

life distributions have been studied in details (see for example Kapur and Lamberson 

(1997), Lawless (1982) and Sinha (1986). However, it is sometimes impossible or 

inconvenient in life testing experiments to measure the life length of a device on a 

continuous scale. E.g. the lifetime of an on/off switching device is a discrete random 

variable, or life length of a device receiving a number of shocks it sustain before it fails 

is also a discrete random variable. In the recent past special roles of discrete distribution 

are getting recognition from survival analysts. Many continuous distributions have been 

discretised, e.g. the Geometric and Negative binomial distributions are the discrete 

versions of Exponential and Gamma distributions. Nakagawa (1975) discretised the 

Weibull distribution. The discrete versions of the normal and rayleigh distributions 

were also proposed by Dilip Roy (2003,2004). Discrete analogues of maxwell, two 

parameter Burr XII and Pareto distributions were also proposed by Krishna and punder 

(2007,2009). Recently inverse Weibull distribution were also discretised by Mansour 

Aghababaei Jazi, Chin-Diew lai and Mohammad Hussein Alamatsaz (2010).  

 

                   The present paper deals with the problem of discretization of Burr-type III 

(BD-III) distribution, as there is a need to find more plausible discrete life time 

distributions to fit to various life time data. 
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2. Discretising a continuous distribution 
Roy (1993) pointed out that the univariate geometric distribution can be 

viewed as a discrete concentration of a corresponding exponential distribution in the 

following manner: 

               �	�� = �� = �	�
 − 	�		� + 1
  When x = 0, 1, 2,…..  

Where X is discrete random variable following geometric distribution with probability 

mass functions as 

 �		�
 = 	��	1 − �
    x = 0,1,2,…….  

Where s(x) represents the survival function of an exponential distribution of the form 

s(x) = exp(-λx) clearly  

 � = exp(-λ), 0 < � < 1. 

Thus, one to one correspondence between the geometric distribution and the 

exponential distribution can be established, the survival functions being of the same 

form. 

The general approach of dicretizing a continuous variable is to introduce a greatest 

integer function of X i.e., [X] (the greatest integer less than or equal to X till it reaches 

the integer), in order to introduce grouping on a time axis. 

If the underlying continuous failure time X has the survival function s(x) = p(X > x) 

and times are grouped into unit intervals, so that the discrete observed variable is dX = 

[X]. 

The probability mass function of dX can be written as  

            �	�
 = �	�� = �
 = �	� ≤ � < � + 1
 = ∅	� + 1
 − ∅	�
 																					= �	�
 − 	�	� + 1
,     x = 0,1,2…… ∅	�
 being the cumulative distribution function of rv X.  

 

In reliability theory, many classification properties and measures are directly 

related to the functional form of the survival function. The increasing failure rate (IFR), 

decreasing failure rate (DFR), Increasing failure rate average (IFRA), decreasing failure 

rate average (DFRA), new better than used (NBU), new worse than used (NWU), new 

better (worse) than used in expectation NBUE (NWUE) and increasing (decreasing) 

mean residual lifetime IMRL (DMRL) etc. are examples of such class properties as 

may be seen from Barlow and Proschan (1975). If discretization of a continuous life 

distribution can retain the same functional form of the survival function then many 

reliability measures and class properties will remain unchanged. In this sense, we 

consider the discrete concentration concept as a simple approach that can generate a 

discrete life distribution model. 

 

Thus given any continuous life variable with survival function s(x) we define a 

discrete lifetime variables x with probability mass function p(x) given by  

 �	�
 = �	�
 − 	�	� + 1
     x = 0, 1, 2….  

We would like to make use of this concept for the purpose of discretizing 

Burr-type III distribution. A random variable X is said to follow Burr-type III 

distribution with parameter (c, k) if its probability density function is given by 

 �	�
 = ��
����	�����
���    x > 0; c > 0; k >0 

2.1The various reliability measures of a random variable X are given by 
 (a) Survival function  

 �	�
 = 1 − � �	�
���  
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                       = 1 − � ��
����	�����
��� ���  

          = 1 − 	1 + �!�
!�   x > 0; c > 0; k > 0 

(b) The failure rate is given by 

                 "	�
 = 	 ��
�����#�����
���$	%�!	����&
��$ 

                                                                                                  x > 0; c > 0; k > 0 

(c) The second rate of failure is given by  

               '()	�
 = log - .	�

.	���
/ = log - �!	�����
��

�!	��	���
��
��/ 

                                                                                                x > 0; c > 0; k > 0 

Note that for second rate of failure  

 '()	0
 = '()	1
 ⇒ 2 = − 3-4��#4!4��5/��/�!�7894 : = ;		�<=
 
It could be seen that SRF(x) is decreasing in x if c < ; and for c >;, SRF(0) < 

SRF(1) and for all other values x > 1, SRF(x) decreases for all. 

(d) The rth moment is 

 			>	�?
 = � �?�	�
��∞  

              = @A	1 − ?
� , B + ?

�
 Where  A	<, C
 = � �D��
	���
D�E ��∞   ,  x > 0; c > 0; 

k > 0 

 

3. Discrete Burr-type III distribution  
A discrete Burr- type III variable, dX can be viewed as the discrete 

concentration of the continuous Burr- type III variable X, where the corresponding 

probability mass function of dX can be written as: 

 F	�� = �
 = �	�
 = �	�
 − �	� + 1
 
The probability mass function takes the form 

 F	�
 = G �7894																																												�H �IJK	��	���
��
 − �IJK	��	�
��
			� = 1,2,3… .P                   3.1                      

Where� = Q!�; 0<θ<1; k>0 
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Fig.1.1 and fig.1.2 gives the pmf plot of (3.1) for (c=3, θ=0.4),(c=4, θ=0.1) 

respectively. The scale parameters � completely determines the pmf (3.1) at x = 0. It 

should be also noted that the p(x) is always monotonic decreasing for x = 1,2,3,4,…. 

When RST� ≥ 7894
IJK	��4��
!7894 

P(0) < P(1) and then p(x) decreases ∀	x = 1, 2,3,… i.e., p(x) is a unimodal 

(with mode at 1). The shape parameter c has more influence on the pmf than � after x = 

0, also as the c becomes smaller, the tail of the pmf becomes longer. 

 

4. Reliability measures of discrete Burr-type III random variable dX are 

given by 
(e) Survival function 															�	�
 = �	�� ≥ �
 = 1 − �IJK		�����
         � = 0,1,2,3…. 
                                                                    2 > 0; 0 < � < 1 

 �	�
 is same for continuous Burr-type III distribution and discrete Burr-type 

III distribution at the integer points of x. 

(f) Rate of failure, r(x) is given by  

 "	�
 = Y	�

.	�
 = Z[\]		��	&��
��
!Z[\]		��&��


�!Z[\]		��&��
     			� = 0,1,2,3 …. 
                                                               2 > 0; 0 < � < 1 

(g) Second rate of failure is given by 

 '()	�
 = RST ^ �!Z[\]		��&��

�!Z[\]		��	&��
��
_   					� = 0,1,2,3… 

                                                                    2 > 0; 0 < � < 1 

It could be seen that r(x) and SRF(x) are the monotonic decreasing functions if  

 2 < −RST `2789aZ		2 − 2789aZ	
 �bcdae	 − 1f /RST2	 = ;(say) 

                               B	 > 	0	;		0 < � < 1; B = −RSTg� 	 
Fig.1.3 and fig.1.4 illustrates the second rate of failure plot for DBD-

III(1,0.05),(0.5,0.05) respectively. For c >	;; r(0) < r(1) and SRF(0) < SRF(1) and for 

all other values of x ≥ 1, r(x) and SRF(x) decreases, clearly the hazard rates of 

continuous model and the discrete modal shows the same monotonocity. 
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4.1 Moments of discrete Burr- type III distribution 

>	�?
 = ∑ �?�	�
∞�H   

            = ∑ ��? − 	� − 1
?�∞�H� �	�
 
           = ∑ ��? − 	"�i�?	−1
 + "���?!�	−1
� + "�j�?!4	−1
4 + "�k�?!l	−1
l +∞�H�																				…+ "�m� 	−1
?
� �	�
 
           ≤ ∑ "	�?!�∞�H� 	�	�
 
           = ∑ "	�?!�	1 − �IJK		�����

∞�H�    

           = ∑ "∞�H� ` �
n�������m����� + �����j

�
�����j��m������� +⋯+ �����	���

�
���m��f 

                                       

R.H.S expression is finite if c > r 

Now 

 >	�
 = ∑ �	�
∞�   

          = ∑ 	1 − �IJK		�����

∞�  

is finite if c > 1 

Similarly for the convergence of variance, c must be greater than 2. 

 

5.  Estimation of the parameters of discrete Burr type III distribution 
Estimation of the parameters based on the ML method: Let n items be put on the 

test and their lifetimes are recorded as X1,X2X3,……Xn. If these  Xi.′s are assumed to be 

iid random variables following discrete Burr-type III distribution i.e., DBD − III	c, θ
, 
their likelihood function is given by  

 

                              L	c, θ; x
 = ∏ p	n
iH1 xi) 

                                              = ∏ 	θlog	1�	xi�1
�c
 − θ
log	1�	xi
�c

n

iH1                           (5.1) 

And (4.8.1) can be rewritten as follows 

                             L	c, θ; x
 = ∏ θ
log	1�	xi
�c
	θφ	xi,c
 − 1
n

iH1                                      (5.2) 

        where φ	xi, c
 = log	�	1�	xi�1
�c

	1�xi

�c
   

Now to find the two log likelihood equations we need first to obtain the log likelihood 

function which is given by  

                 logL = ∑ �log	1 + xi
!c
logθ + log	θφ	xi,c
 − 1
�n

iH1                                  (5.3) 

Case I: (c is known and θ	is	unknown) 

 

In this case the MLE of the unknown parameter θ is θq, that is the solution of the 

following likelihood equation, with an observed sample this equation can be solved 

using an iterative numerical method. 

        
rlogL

rθ
= ∑ �log	1�xi

�c

θq + φ	xi ,c
θqφ#xi ,c5!1


θqφ#xi ,c5!1
 �n
iH1 = 0                                                     (5.4) 

 

The solution of this equation will provide the MLE of θ by using numerical 

computation. The MLE’s of the reliability, failure rate and the second rate of failure 

functions are based on the invariance property of the ML, respectively as follows  
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           s	x
 = 1 − θqlog		1�x�c

     

           r	x
 = θqlog		1�	x�1
�c
!θqlog		1�x�c

1!θqlog		1�x�c
     

      And  SRF	x
 = logs 1!θqlog		1�x�c

1!θqlog		1�	x�1
�c
t  

Case II: (c and θ are unknown) 

In this case, the solution of the following likelihood equations provide the MLE’s 

of the unknown parameters θ and c, which are denoted by  θq and cu, respectively. With 

an observed sample these equations can be solved using an iterative numerical method. 

So these, the first derivative with respect to θ and c, of the log-likelihood equation (5.2) 

are given by 

       
rlogL

rθ
= ∑ �log	1�xi

�c

θq + 	xi,c
θqφ#xi ,c5!1


θqφ#xi ,c5!1
 �n
iH1 = 0                                                        

       
rlogL

rc
= ∑ �	!xi

�cu
logθlogxi#1�xi
�cu5 + logθφ′	xi ,cu
θφ#xi ,cu5

θ
φ#xi ,cu5!1

�n
iH1 			= 0     

Where  φ′	xi, cu
 = �xi
�cuv#1�	xi�1
�cu5wlogxi!#1�	xi
�cu5log		1�xi
�{1�	xi�1
�cu}1�	xi
�cu            

            

By using numerical computation, the solution of these normal equations will 

provide the MLE of θ	and c. the MLE of the reliability, the failure rate and the second 

rate of failure functions are obtained based on the invariance property of the ML, 

respectively as follows  

           s	x
 = 1 − θqlog		1�x�c

     

           r	x
 = θqlog		1�	x�1
�c
!θqlog		1�x�c

1!θqlog		1�x�c
     

And  SRF	x
 = logs 1!θqlog		1�x�c

1!θqlog		1�	x�1
�c
t        

 

6. Some theorems related to discrete Burr-type III distribution 

Lemma 1: If X is a continuous rv with increasing (decreasing) failure rate IFR (DFR) 

distribution, then dX= [X] has a discrete increasing (decreasing) failure rate dIFR 

(dDFR). 

Proof: (See Roy and Dasgupta, 2001) 

 

Lemma 2: If X is a non-negative continuous rv and Y is a non-negative integer valued 

discrete rv, then  

 ��� ≥ z	 .⇔�	 ≥ z 

Proof: Note that, 

 	��� ≥ z
 ⊆ 	� ≥ z
 ⊆ 	��� ≥ �z�
 = 	��� ≥ z
    

Where the last equality holds since Y is integer valued.  

Therefore 	� ≥ z
 = 	��� ≥ z
 
 

Theorem 1: If X ~~� − ���	2, B
 then Y= [X] ~�~� − ���	2, �
   
Where � = Q!�; 0 < � < 1; 2 > 0; B > 0 

Proof:- Consider 

 F	z ≥ =
 = F���� ≥ =� 
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     = F�� ≥ =�                                          By lemma 2 

                  = 1 − 	1 + =!�
!� 

                                = 1 − �IJK		�����
 
Which is the survival function of a discrete Burr- type III distribution i.e., DBD-III 

(c,	�) 

 

Theorem 2: If X ~ BD-III (c, k) then z = %�log		1 + �!�
�!�/�$ 
follows discrete inverse Weibull distribution i.e., DIW (c,	�) 

 � = Q!� 	; 		0 < � < 1  
Proof:- 

 							F�z ≥ =� = F �%�log		1 + �!�
�!�/�$ ≥ =�  
        	= F%�log		1 + �!�
�!�/� ≥ =$  
         = F%� ≥ 	Q��� − 1
!�/�$ 
         = 1 − �789`���	g���!�
��/����f 
         = 1 − �IJK g��� = 1 − ����   
Which is the survival function of a discrete inverse Weibull distribution.  

Hence Y~	���	2, �
   
 

Theorem 3: If X is a non-negative rv and t is the positive number. Then�� =����~�~� − ���	 -�� , �/ ��	�~~� − ���		2, B
  
 � = Q!�; 0 < � < 1 

Proof: Let �~~� − ���	2, B
 then ∀	� = 0,1,2, … .. 
 F��� ≥ �� = F%���� ≥ �$ = F��� ≥ �� 
                  = F �� ≥ �� �� � 
                  = 1 − �IJK		�����/�
 ⇒ ��~�~� − ���	2/�, �
 
 

Theorem 4: If X ~ BD-III (c, k), then z = %{log		1 + �!�
}�/�$ follows discrete 

Weibull distribution i.e., DWD (c,	�)  � = Q!� 			0 < � < 1 , k>0 

Proof: Consider 

                   F�z ≥ =� = F �%{log		1 + �!�
}�/�$ ≥ =� 
      = 1 − F%� ≥ 	Q�� − 1
!�/�$  

      = 1 − `1 − �	1 + %	Q�� − 1
!�/�$!��!�f 
      = ��� 			 Where  � = Q!� 

Which is the survival function of a discrete weibull distribution  

                     Hence Y ~��	2, �
    
 

Theorem 5: Let X be random variable following continuous Burr-type III distribution 

with >	�?
 < ∞														∀	" = 1,2,3…. 
Then >	z?
 < 	∞ where z = ���~�~ − ���	2, B
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Proof: Proof is straight forward, since 0 ≤ ��� ≤ �	,	so clearly if 

 >	�?
 < ∞																																			∀ r = 1,2,3…… 

Then >	���?
 < ∞ 
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