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Abstract 

  This paper addresses the problem of estimating the proportion Sπ  of the population 

having some sensitive characteristics using stratified randomize response model based on 

Warner’s model. We have suggested a class of estimators for the population proportion Sπ  

using Searls (1965) technique. It is shown that under certain conditions the proposed class of 

estimators is more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. The 

optimum estimator in the class is investigated. It has been shown that the optimum estimator is 

more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. Since the optimum 

estimator involves the use of an unknown population parameter Sπ  it has therefore little 

practical utility. Using an estimated value of the parameter Sπ in the optimum estimator, an 

alternative estimator has been investigated for use in practice. 
 

Key Words: Randomized Response Technique. Stratified Random Sampling, Proportional 

Allocation, Optimum Allocation. 

    

1. Introduction 
In psychological surveys, a social desirability bias has been observed as a 

major cause of distortion in standardized personality measures. Survey researchers have 

similar concerns about the truth of survey results/ findings about such topics as drunk 

driving, use of marijuana, tax evasion, illicit drug use, induced abortion, shop 

lifting, child abuse, family disturbances, cheating in exams, HIV/AIDS, and sexual 

behavior. The most serious problem in studying certain social problems that are 

sensitive in nature (e.g. induced abortion, drug usage, tax evasion, etc.) is lack of 

reliable measure of their incidence or prevalence. Thus to obtain trustworthy data on 

such confidential matters, especially the sensitive ones, instead of open surveys 

alternative procedures are required. Such an alternative procedure known as 

“randomized response (RR) technique” was first introduced by Warner (1965). It 

provides the opportunity of reducing response biases due to dishonest answers to 

sensitive questions. As a result, the technique assures a considerable degree of privacy 

protection in many contexts. Warner (1965) himself pointed out how one may get a 

biased estimate in an open survey when a population consists of individuals bearing a 

stigmatizing character A or its complement
cA , which may or may not also be 

stigmatizing. Later several authors including Mangat and Singh (1990), Mangat (1994), 
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Singh and Mangat (1996), Singh and Tarray (2012, 2014 a,b,c,d,e,f,g) etc. have 

modified and suggested alternative response procedures applicable to different 

situations. 

 

Hong et al. (1994) envisaged RR technique that applied the same 

randomization device to every stratum. Stratified random sampling is generally 

obtained by dividing the population into non – overlapping groups called strata and 

selecting a simple random sample from each stratum. An RR technique using a 

stratified sampling gives the group characteristics related to each stratum estimator. 

Also, stratified samples protect a researcher from the possibility of obtaining a poor 

sample. Under Hong et al.’s (1994) proportional sampling assumption, it may cause a 

high cast because of the difficulty in obtaining a proportional sample from some 

stratum. To overcome this problem, Kim and Warde (2004) presented a stratified 

randomized response technique using an optimal allocation which is more efficient than 

a stratified randomized response technique using a proportional allocation. 

  

2.  Proposed model 
Let the population be partitioned into strata, and a sample is selected by simple 

random sampling with replacement (SRSWR) in each stratum. To get the full benefit 

from stratification, we assume that the number of units in each stratum is known. An 

individual respondent in the sample of stratum ‘i’ is instructed to use the randomization 

device Ri which consists of a sensitive question (S) card with probability Pi  and its 

negative question (
cS ) with probability (1-Pi). The respondent should answer the 

question by "Yes" or "No" without reporting which question card she or he has. A 

respondent belonging to the sample in different strata will perform different 

randomization devices, each having different pre-assigned probabilities. Let ni denote 

the number of units in the sample from stratum i and n denote the total number of units 

in samples from all stratum so that ∑
=

=
k

1i
i .nn  Under the assumption that these "Yes" 

or "No" reports are made truthfully and Pi (≠0.5) is set by the researcher, the probability 

of a "Yes" answer in a stratum i for this procedure is  

         
( )( )[ ]SiiSiii 1P1PZ π−−+π=   for ( i =1, 2 ..., k ),                                 (2.1) 

where  Zi is the proportion of “Yes” answers in a stratum i , Siπ is the proportion of 

respondents with the sensitive trait in a stratum i and Pi is the probability that a 

respondent in the sample stratum i has a sensitive question (S) card.       

 The   maximum likelihood estimate of   Siπ  is shown to be   

                 
1P2

)P1(Ẑ
ˆ

i

ii
Si −

−−
=π   , for ( i =1,2,…,k) ,                                               (2.2)                        

where iẐ  is the proportion of "Yes" answer in a sample in the stratum i since each iẐ  

is a binomial distribution )Z,n(B ii  and the selections in different strata are made 
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independently, the maximum likelihood estimate of Sπ  ∑ π=
=

k

1i
Siiw

 

is easily shown 

to be  

 

( )
( )∑













−

−−
=∑ π=π

==

k

1i i

ii
i

k

1i
SiiS

1P2

P1Ẑ
wˆwˆ  ,                                              (2.3) 

where  N  being the number of units in the whole population, Ni to be the total number 

of units in the stratum i and wi = (Ni/N) for ( i = 1, 2, ...k)  so that ∑ ==
=

k

1i
i 1ww  

As each estimator Siπ̂  is unbiased for Siπ , the expected value for Sπ̂ is  

  









∑ π=








π

=

k

1i
SiiS ˆwEˆE S

k

1i
Siiw π=∑ π=

=                                                      (2.4)                                                 

Since each unbiased estimator Siπ̂  has its own variance, the variance of Sπ̂ is 

         Var )ˆ( Sπ  

 

( ) ( )
( ) 












−

−
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ii
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                                     (2.5)

 

Under the proportional allocation (i.e. ni = n (Ni/N) the variance of Sπ̂ is given by  

         ( ) 










−

−
+π−π∑=π

=
2

i

ii
SiSi

k

1i
iPS

)1P2(

)P1(P
1w

n

1
)ˆ(Var                                (2.6) 

Further, we assume Pi = P for all i ,(4.2.6) becomes the following 

         ∑=π
=

k

1i

2
iiPS Lw

n

1
)ˆ(Var                                                                       

   

(2.7) 

where    

                    









−

−
+π−π=

2SiSii
)1P2(

)P1(P
)1(L                                                 (2.8) 

The expression (2.7) is due to Hong et al. (1994). 

Information on Siπ is usually unavailable. But if prior information on Siπ is available 

from past experience then it helps to derive the optimal allocation formula. The optimal 

allocation of n to n1,n2,…,nk-1 and nk  to drive the minimum variance of the Sπ̂ subject 

to ∑
=

=
k

1i
inn  is approximately given by

∑
=

=
k

1i
ii

iii

Vw

Vw

n

n

                                       (2.9)                            

where  
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Using (2.9) in (2.5), we get the minimal variance of the estimator Sπ̂  as  

         

2
k

1i
iiOS Vw

n

1
)ˆ(Var 







∑=π
=

                                                                       

 

(2.10) 

 which is due to Kim and Warde (2004). Further , under the assumption   Pi =P for all i , 

(2.10) becomes 

          

2
k

1i
iiOS Lw

n

1
)ˆ(Var 







∑=π
=

                                                                   (2.11) 

which is due to Kim and Warde (2004) . 

 In this paper , we have suggested a class of estimators for estimating the population 

proportion Sπ .We have shown that the optimum estimator of the class is more efficient 

than Hong et al.(1994) and Kim and Warde (2004) estimators. An alternative estimator 

based on estimated optimum values has been derived along with its properties. 

 

3. SUGGESTED ESTIMATORS 

Motivated by Searls (1965), we have suggested a class of estimators of Sπ as        

           S1S ˆˆ πλ=π                                                                                                  (3.1) 

Where λ   is a suitably chosen constant. The bias of 1Sπ̂  is given by  

      ( )S1S1S ˆE)ˆ(B π−π=π S)1( π−λ=        
                                          

        (3.2) 

The mean square error (MSE) of 1Sπ̂  is given by  

    ( )2S1S1S ˆE)ˆ(MSE π−π=π ( ) 2
S

2
SS

2
S

2 2)ˆ(Var π+λπ−π+πλ=           (3.3) 

Minimization of (3.3) with respect to λ  yields the optimum value of λ  as  

              say
))ˆ(Var(

0

S
2

S

2
S λ=

π+π

π
=λ

                                              (3.4)

 

So, the value of 0λ  of  λ   at (3.4) is the optimum value of  λ   which will minimize 

MSE )ˆ( 1Sπ  at (3.3), Putting the value of 0λ in place of λ   in (3.3), we get the 

minimum MSE of )ˆ( 1Sπ  as  

     min. MSE ( )1Sπ̂   =  
)ˆ(Var

)ˆ(Var

S
2

S

S
2

S

π+π

ππ

                                                                  (3.5)

 

From (2.5) and (3.5) we have   

  

=π−π )ˆ(MSE.min)ˆ(Var 1SS   
( )

)ˆ(Var
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S

2
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π+π
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which is always positive. Thus the proposed estimator 1Sπ̂  at its optimum condition is 

always better than usual unbiased estimator Sπ̂  
 

Proportional Allocation 

Under the proportional allocation (i.e. ni = n (Ni /N), the MSE of  1Sπ̂  in (3.3) is given 

by 

      MSE ( ) 2
S

2
S

k

1i
ii

2
S

2

P1S 2Vw
n

1
ˆ π+λπ−





∑+πλ=π
=

                                  (3.6) 

where Vi is same defined earlier. 

For Pi = P for all i , (3.6) reduces to  

        MSE ( ) 2
S

2
S

k

1i

2
ii

2
S

2

P1S 2Lw
n

1
ˆ π+λπ−





∑+πλ=π
=

                             (3.7) 

which is minimum when 

                      P0
k

1i

2
ii

2
S

2
S

Lw
n

1
λ=









∑+π

π
=λ

=
                                              (3.8) 

    where  Li is same as defined earlier. 

 Substitution of (3.8) in (3.7) yields the minimum MSE of 1Sπ̂ under the proportional 

allocation and Pi = P for all i, as  

        min. MSE ( )
P1Sπ̂
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                                           (3.9) 

From (2.7) and (3.9) we have  

          Var P1SPS )ˆ(MSE.min)ˆ( π−π 0

Lw
n

1

Lw
n
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S
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2
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∑

=

=

=

     

 (3.10) 

which  shows that the proposed class of estimator 1Sπ̂ is more efficient than Hong et 

al.’s (1994) estimator Sπ̂ under proportional allocation and Pi = P for all i . 

 

Optimum allocation 

Under optimum allocation (2.9), the MSE of 1Sπ̂ is given by 



110 Journal of Reliability and Statistical Studies, Dec. 2014, Vol. 7(2) 

           MSE ( ) 2
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where Vi is same as defined earlier. 

The MSE O1S )ˆ(π  in (3.11) is minimized for  
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Thus the resulting minimum MSE of 1Sπ̂  under optimum allocation (2.9) is given by  
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For Pi = P for all i, (3.11) reduces to  
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where Li is same as defined earlier. 

The MSE O1S )ˆ(π  in (3.14) is minimized for  
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Thus the resulting minimum MSE of 1Sπ̂ under optimum allocation (2.9) and Pi = P for 

all i, is given by 
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From (2.11) and (3.16) we have  
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which indicates that the proposed estimator 1Sπ̂  is more efficient than Kim and Warde 

(2004) estimator Sπ̂  under the optimum allocation and Pi = P for all i . 

 

4. Numerical Illustration 

In order to assess the amount of gain in efficiency due to 1Sπ̂   under 

proportional   and optimum allocation over Hong et al. (1994) estimator PS )ˆ(π (under 

proportional allocation ) and Kim and Warde (2004) estimator  OS )ˆ(π (under optimum 

allocation) ,the percentage relative efficiency of 1Sπ̂  (under proportional and optimum 

allocation) over Sπ̂  (under proportional and optimum allocation ) have been computed 

for different values  21S212S1S PandPP,,w,w,, =πππ    using the 

following formulae: 

(i) The percent relative efficiency of the estimator Sπ̂  (under proportional 

allocation) with respect to the estimator Sπ̂ (under optimum allocation ) is 

defined by: 

        100
)ˆ(Var

)ˆ(Var
))ˆ(,)ˆ((PRE

OS

PS
PSOS ×

π
π

=ππ
    

   (for k = 2)         (4.1) 

(ii) The percent relative efficiency of the estimator 1Sπ̂  (under optimum 

allocation) with respect to  Kim and Warde (2004)  estimator Sπ̂  (under 

optimum allocation)  ( from (2.10) and (3.13) ) is defined by: 

                   100
)ˆ(MSE.min

)ˆ(Var
)ˆ,ˆ(PRE

O1S

OS
OS1S ×

π

π
=ππ  

                                               100Vw
n

1
1

2
2

1i
ii2

S

×
















∑

π
+=

=
 (for k = 2)     (4.2) 

(iii) The percent relative efficiency of the estimator 1Sπ̂  (under proportional 

allocation) with respect to  Hong et al.’s  (1994)  estimator Sπ̂ (under 

proportional allocation ) ( from (2.7) and (3.9) ) is defined by: 

        100
)ˆ(MSE.min

)ˆ(Var
)ˆ,ˆ(PRE

P1S

PS
PS1S ×

π

π
=ππ  

                                                 100Lw
n

1
1

2
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2
ii2

S

×









∑

π
+=

=
     (for k = 2)      (4.3) 
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Table 4.1: Percent relative efficiency of the estimator Sπ̂  (under proportional allocation) 

with respect to the estimator Sπ̂     (under optimum allocation) 

 

 

 

 

when n  = 1000  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 140.2 160.2 127.2 174.0 123.5 134.4 107.5 112.5 

0.08 0.13 0.3 0.7 0.115 245.9 383.1 184.3 283.8 168.8 213.1 118 131.5 

0.28 0.33 0.7 0.3 0.295 138.8 157.1 124.2 140.1 181.1 125.3 104.8 107.8 

0.28 0.33 0.3 0.7 0.315 238.6 357.7 172.8 244.7 150.5 176.5 111.6 119.5 

0.48 0.53 0.7 0.3 0.495 138.4 156.3 123.5 138.4 116.9 123.5 104.3 107 

0.48 0.53 0.3 0.7 0.515 236.7 351.7 170.2 236.9 147 170.3 110.6 117.6 

0.68 0.73 0.7 0.3 0.695 139 157.5 124.5 140.8 118.5 126.1 105 108.1 

0.68 0.73 0.3 0.7 0.715 2399.9 362.2 174.6 250.5 152.9 181.1 112.3 120.8 

0.88 0.93 0.7 0.3 0.895 140.6 161.3 128.1 149.5 125.3 137.8 108.4 114.1 

0.88 0.93 0.3 0.7 0.915 248.8 394.6 189.3 305.2 178.9 237.4 121.9 139.6 

when n  = 6  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 5603.59 5465.08 5465.08 5416.61 5416.61 5403.53 5408.21 5403.53 

0.08 0.13 0.3 0.7 0.115 1606.44 1091.84 1091.84 911.73 911.73 863.13 880.55 863.13 

0.28 0.33 0.7 0.3 0.295 684.07 669.70 669.70 664.68 664.68 663.32 663.81 663.32 

0.28 0.33 0.3 0.7 0.315 311.17 242.58 242.58 218.14 218.14 214.58 214.14 212.58 

0.48 0.53 0.7 0.3 0.495 309.14 304.04 304.04 302.25 302.25 301.77 301.94 301.77 

0.48 0.53 0.3 0.7 0.515 180.09 154.43 154.43 145.62 145.62 143.89 143.02 143.89 

0.68 0.73 0.7 0.3 0.695 205.41 202.83 202.83 201.92 201.92 201.68 201.78 201.68 

0.68 0.73 0.3 0.7 0.715 140.66 127.35 127.35 122.69 122.69 121.43 121.88 121.43 

0.88 0.93 0.7 0.3 0.895 162.23 160.67 160.67 160.12 160.12 160.98 159.03 160.98 

0.88 0.93 0.3 0.7 0.915 123.40 115.27 115.27 112.42 112.42 111.66 111.93 111.66 

when n  = 100  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 443.97 435.31 435.31 432.28 432.28 431.47 431.76 431.47 

0.08 0.13 0.3 0.7 0.115 194.15 161.99 161.93 150.73 150.73 147.69 148.78 147.69 

0.28 0.33 0.7 0.3 0.295 136.50 135.60 135.60 135.29 135.29 135.20 135.23 135.20 

0.28 0.33 0.3 0.7 0.315 113.19 108.91 108.91 107.41 107.41 107.06 107.15 107.06 

0.48 0.53 0.7 0.3 0.495 113.07 112.75 112.75 112.64 112.64 112.61 112.62 112.61 

0.48 0.53 0.3 0.7 0.515 105.00 103.40 103.40 102.84 102.84 102.68 102.74 102.68 

0.68 0.73 0.7 0.3 0.695 106.58 106.42 106.42 106.37 106.37 106.35 106.36 106.35 

0.68 0.73 0.3 0.7 0.715 102.54 101.71 101.71 101.41 101.41 101.34 101.36 101.34 

0.88 0.93 0.7 0.3 0.895 103.89 103.79 103.79 103.75 103.75 103.74 103.74 103.74 

0.88 0.93 0.3 0.7 0.915 101.46 100.95 100.95 100.77 100.77 100.72 100.72 100.72 
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Table 4.2: Percent relative efficiency of the estimator 1Sπ̂  (under optimum 

allocation) with respect to the Kim and Warde (2004) estimator Sπ̂    (under 

optimum allocation) 

 

 

 

 

 

 

 

 

 

 

when n  = 1000  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 134.39 133.53 133.53 133.22 133.22 133.14 133.17 133.14 

0.08 0.13 0.3 0.7 0.115 109.41 106.19 106.19 105.07 105.07 104.77 104.87 104.77 

0.28 0.33 0.7 0.3 0.295 103.65 103.56 103.56 103.52 103.52 103.52 103.53 103.52 

0.28 0.33 0.3 0.7 0.315 101.32 100.89 100.89 100.74 100.74 100.70 100.71 100.70 

0.48 0.53 0.7 0.3 0.495 101.70 101.70 101.71 101.71 101.27 101.26 101.27 101.26 

0.48 0.53 0.3 0.7 0.515 100.50 100.34 100.34 100.28 100.28 100.26 100.27 100.26 

0.68 0.73 0.7 0.3 0.695 100.65 100.64 100.61 100.63 100.63 100.63 100.64 100.63 

0.68 0.73 0.3 0.7 0.715 100.25 100.17 100.17 100.14 100.14 100.13 100.14 100.13 

0.88 0.93 0.7 0.3 0.895 100.38 100.37 100.37 100.38 1000.38 100.37 100.37 100.37 

0.88 0.93 0.3 0.7 0.915 100.14 100.09 100.09 100.07 100.07 100.07 100.07 100.07 

when n  = 6  

1Sπ  
2Sπ  w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 11338.13 10988.61 2678.36 2678.36 1139.42 1139.42 600.79 600.79 

0.08 0.13 0.3 0.7 0.115 7789.03 7789.03 1881.66 1881.66 787.70 787.70 404.82 404.82 

0.28 0.33 0.7 0.3 0.295 1288.82 1288.82 391.09 391.09 224.84 224.82 166.66 166.66 

0.28 0.33 0.3 0.7 0.315 1143.96 1143.96 356.61 356.61 210.80 210.80 129.77 159.77 

0.48 0.53 0.7 0.3 0.495 525.08 525.08 206.24 206.24 147.19 147.19 126.53 126.53 

0.48 0.53 0.3 0.7 0.515 492.70 492.70 198.13 198.13 143.59 143.59 124.29 124.49 

0.68 0.73 0.7 0.3 0.695 314.32 314.32 152.58 152.58 122.63 122.63 112.14 112.14 

0.68 0.73 0.3 0.7 0.715 302.234 302.234 149.41 149.41 121.11 121.11 111.21 111.21 

0.88 0.93 0.7 0.3 0.895 226.78 226.78 129.25 129.25 111.19 111.19 104.87 104.81 

0.88 0.93 0.3 0.7 0.915 220.98 220.98 127.66 127.66 110.38 110.38 104.33 104.23 
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Table 4.3: Percent relative efficiency of the estimator 1Sπ̂  (under proportional 

allocation) with respect to Hong et al. (1994) estimator Sπ̂  (under proportional 

allocation) 

 

  

 

Table 4.1 shows that the values of the relative efficiency are greater than 100 % for all 

parameter values tabled. This shows the superiority of the Kim and Warde (2004) 

estimator Sπ̂  
(under optimum estimator) over Hong et al. (1994) estimator Sπ̂  

(under 

proportional allocation). Table 4.2 exhibits that the percent relative efficiency of the 

proposed estimator 1Sπ̂  (under optimum allocation) with respect to Kim and Warde 

(2004) estimator Sπ̂  (under optimum allocation) decreases as sample size increases. It 

is observed that the percent relative efficiency is almost 100 % when the sample size is 

when n  = 100  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 774.28 774.28 254.89 254.89 158.71 158.71 125.04 125.04 

0.08 0.13 0.3 0.7 0.115 561.34 561.34 206.89 206.89 141.26 141.26 118.28 118.28 

0.28 0.33 0.7 0.3 0.295 171.32 171.32 117.46 117.46 107.49 107.49 103.99 103.99 

0.28 0.33 0.3 0.7 0.315 162.63 162.63 115.39 115.39 106.64 106.64 103.83 103.83 

0.48 0.53 0.7 0.3 0.495 125.50 125.50 106.37 106.37 102.83 102.83 101.59 101.59 

0.48 0.53 0.3 0.7 0.515 123.56 123.56 105.88 105.88 102.61 102.61 101.47 101.47 

0.68 0.73 0.7 0.3 0.695 112.85 112.85 103.15 103.15 101.35 101.35 100.72 100.72 

0.68 0.73 0.3 0.7 0.715 112.13 112.13 102.96 102.96 101.26 101.26 100.67 100.67 

0.88 0.93 0.7 0.3 0.895 107.60 107.60 101.75 101.75 100.67 100.67 100.29 100.29 

0.88 0.93 0.3 0.7 0.915 107.25 107.25 101.65 101.65 100.23 100.23 100.26 100.26 

when n  = 1000  

1Sπ  2Sπ  
w1 w2 

Sπ  
P  = P1 

    0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

  P2 

 0.7 0.8 0.8 0.9 0.9 0.95 0.93 0.95 

0.08 0.13 0.7 0.3 0.095 167.42 167.42 115.48 115.48 105.87 105.87 102.50 102.50 

0.08 0.13 0.3 0.7 0.115 146.13 146.13 110.69 110.69 104.12 104.12 101.82 101.82 

0.28 0.33 0.7 0.3 0.295 107.13 107.13 101.74 101.74 100.74 100.74 100.4 100.4 

0.28 0.33 0.3 0.7 0.315 106.26 106.26 101.53 101.53 100.66 100.66 100.35 100.35 

0.48 0.53 0.7 0.3 0.495 102.55 102.55 100.63 100.63 100.28 100.28 100.15 100.15 

0.48 0.53 0.3 0.7 0.515 102.35 102.35 100.58 100.58 100.26 100.26 100.14 100.14 

0.68 0.73 0.7 0.3 0.695 101.28 101.28 100.31 100.31 100.13 100.13 100.07 100.07 

0.68 0.73 0.3 0.7 0.715 101.21 101.21 100.29 100.29 100.12 100.12 100.06 100.06 

0.88 0.93 0.7 0.3 0.895 100.76 100.76 100.07 100.17 100.06 100.06 100.02 100.02 
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large. Larger gain is observed when the sample size n and Sπ  are small. However, the 

percent relative efficiency is always greater than 100 % which establishes the 

superiority of the proposed estimator 1Sπ̂  (under optimum allocation) over Kim and 

Warde (2004) estimator Sπ̂  (under optimum allocation). Table 4.3 - exhibits that the 

percent relative efficiency of the proposed estimator 1Sπ̂  (under proportional 

allocation) with respect to Hong et al. (1994) estimator Sπ̂  (under proportional 

allocation) decreases as sample size and value of P increase. Larger gain in efficiency is 

observed for small as well as moderately large sample sizes. However, the percent 

relative efficiency is more than 100 % for all parametric values considered here, 

therefore the proposed estimator 1Sπ̂  (under proportional allocation) is better than 

Hong et al. (1994) estimator Sπ̂  (under proportional allocation). 

 

Finally from the above discussion we conclude that the proposed class of 

estimators 1Sπ̂ under proportional as well as optimum allocations is better than the 

Hong et al.(1994) estimator Sπ̂  (under proportional allocation) and Kim and Warde 

(2004) estimator Sπ̂  (under optimum allocation). 

  

Remark 4.1 – It is pertinent to note that the optimum values O0P00 and, λλλ  in 

(3.4), (3.8) and (3.12) respectively depend on the Zi’s which can be estimated unbiased 

by sample proportion iẐ of the “Yes” answers. Hence it is suggested for the use of  

O0P00
ˆandˆ,ˆ λλλ  respectively defined as 
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where  
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For further discussion on this issue one can refer to Singh and Singh (1992) and 

Sampath et al. (1995). 

 

5. Further Development 
 

Motivated by Sampth et al. (1995) we consider a more generalized class of estimators 

for Sπ  
 namely  

                   { }iii

k

1i
iSab bẐawˆ +∑=π

=
                                                                     (5.1) 

which reduces to (i) ∑ π=π
=

k

1i
SiiS ˆwˆ , 

 when 

         ai =  (2Pi – 1)
-1

  ,  bi = - (1-Pi) (2Pi-1)
-1

  

 

(ii) Singh and Singh (1992) type estimator   
{ }

∑
−
−−

=π
=

k

1i i

iii
iSS

)1P2(

)P1(Ẑh
wˆ   

 when   

          ai  =  ih (2Pi – 1)
-1

  ,  bi = - (1-Pi) (2Pi-1)
-1

   

(iii) the proposed estimator S1S ˆhˆ π=π  

 when     

          ai  =  h (2Pi – 1)
-1

  ,  bi = -  h (1-Pi) (2Pi-1)
-1

   

The mean square error of the estimator  Sabπ̂  is  

     MSE [ ]2SabSabSab )ˆ(B)ˆ(Var)ˆ( π+π=π                                                     (5.2) 

Here   
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Thus the MSE of Sabπ̂ is given by  

        MSE )ˆ( Sabπ =
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The mean square error of the estimator given in (5.4) is minimum if     ai = 0 and        bi 

= 
)1P2(

)P1(Z

i

ii

−

−−
 and the resulting mean square error is zero. 

The exact mean square error of the estimator )ˆ( Sabπ is zero for the optimum values of  

  ai = 0 and bi = 
)1P2(

)P1(Z

i

ii

−
−−

. But the optimum value bi needs the knowledge of Zi 

for which the usual choice is iẐ , the proportion of “Yes” answers in a stratum i. 

Thus the substitution of ai = 0 and  bi = 
)1P2(

)P1(Ẑ

i

ii

−

−−
in Sabπ̂  given by (5.1) yields 

the estimator  

                  Sabπ̂    =  
( )

)1P2(

)P1(Ẑ
w

i

ii
k

1i
i −

−−
∑
=

∑ π=
=

k

1i
Sii ˆw = Sπ̂  

which is the conventional unbiased estimator [ see Hong et al. (1994)]. Hence it is 

inferred that the estimator Sπ̂ is the best estimator if one tries to formulate estimators 

better than the usual estimator Sπ̂  proceeding in the direction of Singh and Singh 

(1992), [see Sampath et al. (1995) p. 248] . 
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