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Abstract 
 In this paper, a ratio-cum-product estimator of population mean in systematic sampling 

has been proposed using Kadilar and Cingi (2006) estimator. The bias and mean squared error of 

the proposed estimator has been obtained under large sample approximation. The proposed 

estimator has been compared with simple mean estimator, usual ratio  and product estimators in 

systematic sampling given by Swain (1964) and Shukla (1971) respectively. An empirical study 

has been carried out to demonstrate the performance of the proposed estimator.  
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1. Introduction 
In sample surveys, the auxiliary information is used at the estimation stage to 

improve the efficiency of the estimators of the population parameters. Out of many, 

ratio, product and regression estimators are good examples in this context. When the 

correlation between the study variate and auxiliary variate is positively high, the ratio 

method of estimation is used for estimating the population mean. On the other hand, if 

this correlation is negative, the product method of estimation envisaged by Robson 

(1957) is used.  

 

Systematic sampling has got the nice feature of selecting the whole sample with 

just one random start. Apart from its simplicity, which is of considerable importance, 

this procedure in many situations provides estimator more efficient than simple random 

sampling and stratified tendon sampling for certain type of population from 1 to N  in 

some order. 

 

In systematic sampling, Swain (1964) defined ratio estimator while Shukla (1971) 

defined product estimator for the population mean.  Kadilar and Cingi (2006) used 

coefficient variation of auxiliary variates and correlation coefficient between the study 

variate and auxiliary variate. 

 

Singh and Tailor (2005)  and  Tailor  and Sharma (2009) defined ratio-cum-product 

estimator for population mean using suitably chosen scalar α  in simple random 
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sampling that motivate authors to propose a ratio-cum-product type estimator of 

population mean in systematic sampling.  

 

Let },...,,{ 21 NUUUU = be the population of size N serially numbered from 1 

to N  . We assume that nkN = , where n  and k  are positively integers. Thus there 

will be k  samples (clusters) each of size n . We select a sample at random out of k  

samples and observe the study variate y and auxiliary variate x  for each and every 

unit selected the sample. 

 

Let ijy and 
ij
x ),...,2,1,,...,2,1( njki ==  denote the value of 

thj  unit in the thi  

sample. The systematic sample means of study variate y and auxiliary variate x are 

respectively defined as  
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It is to be noted that sysy  and sysx  are unbiased estimator of population mean Y  and 

X respectively.  

Swain (1964) studied the classical ratio estimator of population mean  Y  as   
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Shukla (1971) defined classical product estimator of population mean in systematic 

sampling as  
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The biases and mean squared errors (MSEs) of 
Rsy
y and 

Psy
y  to the first degree of 

approximation are  respectively given by  
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Sisodia and Dwivedi (1981) and Pandey and Dubey (1988)   estimators can be defined 

in systematic sampling as  
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The biases and mean squared errors (MSEs) of 
sys

SDY
ˆ

and 
sys

PDY
ˆ

are respectively, given by   
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Singh and Tailor (2003) defined a ratio and product type estimators of population mean 

Y using correlation coefficient yxρ  which can be defined as  
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The biases and mean squared errors (MSEs) of proposed estimators 
sys

STRŶ  and 
sys

STPŶ  to 

the first degree of approximation are given by    
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Kadilar and Cingi (2006) estimators of population mean in systematic sampling are 

defined as      
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2. Proposed estimator 
Motivated by Singh and Ruiz Espejo (2003), authors propose a ratio-cum-product 

estimator using Kadilar and Cingi  (2006) estimators  in systematic sampling as 
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where α  is suitably chosen scalar. 

To obtain bias and mean squared error of proposed estimator TJy  we write, 
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Upto the first degree of approximation, the bias and mean squared error of the proposed 

estimator TJy  are obtained as  
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The value of α  which minimizes mean squared error of the proposed estimator TJy is  

B

C
=α  

where 

 

. 

 

The minimum mean 

squared error of the 

proposed estimator
TJ
y is  
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yxsysTJ yVyMSEMin ρ−=                                                                    (2.4) 

which is mean squared error of the regression estimator in systematic sampling. 

 

3. Efficiency comparison of proposed estimator 
Comparison of (1.6), (1.8), (1.9), (1.14), (1.16), (1.20), (1.22), (1.26), (1.28) and (2.3) 

shows that the proposed estimator  TJy  would be more efficient than  
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Condition (3.1) to (3.9) are conditions under which proposed estimator TJy  has less 

mean squared error than all other considered estimator respectively.   

4. Optimum estimator with the 
B
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=α   

 Optimum estimator with 
B
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=α  is defined as  
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With this is )(optα , minimum mean squared error )(ˆ opt

TJy α  is obtained as  
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5. Efficiency comparisons for 
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Comparison of (1.6), (1.8), (1.9), (1.14), (1.16), (1.20), (1.22), (1.26), (1.28) and 
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)4,3,2,1( == iiλ are already defined. Expressions (5.1) to (5.9) are conditions Which 

are always true. Thus the proposed estimator 
)(opt

TJy α  has less mean squared error than 

all other considered estimators.   

 

6. Empirical study 

To compare the proposed estimator TJy  with other estimators empirically, we 

are considering two natural population data sets. Descriptions of populations are given 

below: 

 

Population I [Source: Johanson and Wichard (2003), p. 275] 

x:Male width,                          y:Male height, 
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80.38=Y  ,     89.42 =yS   ,    06.0=yC  ,  20.9=xyS  , 

27.84=X   ,  79.232 =xS ,    06.0=xC   , 86.0=yxρ  , 

59.0,77.0 == yx ρρ ,          N=15,           n=3. 

 

Population II [Source: Bhuyan (2005), p. 4] 

x:Level of education of father(in completed Years) 

y:Level of education of mother(in completed Years) 

 

93.10=Y ,   50.262 =yS , 47.0=yC ,      72.16=xyS ,    

13.5=X ,   55.102 =xS ,  63.0=xC ,   88.0=yxρ , 

10.0,09.0 =−= yx ρρ ,    N=15,           n=3. 

 

Estimator 

 sysY
ˆ

 
)( RsyyMSE  )( TJyMSE  )(. TJyMSEMin  

Population I 

 

100.00 303.85 337.45 337.45 

Population II 

 

100.00 372.20 459.70 459.70 

 

Table 5.1: Percent Relative Efficiency of sysy , Rsyy  and TJy  with respect to sysy  

 

Section 4 and 5 provide the conditions under which proposed estimators have 

less mean squared error than mean squared error of other estimator. Table 5.1 shows 

that proposed estimator 
TJ
y  has highest percent relative efficiency in comparison to 

other estimators. These proposed estimators are recommended for use in practice for 

the estimation of population mean. 
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