ANALYSIS OF CESAREAN-SECTION BIRTHS- AN APPLICATION OF ZERO-TRUNCATED GENERALIZED POISSON (ZTGP) REGRESSION MODEL
Keywords:
c-Section, Poisson Regression, Truncation, Link Function, Log-Likelihood, Chi Square Test.Abstract
Fitting of ZTGP model is done using C-section data. Data set consists of annual total births, hospital type (private and public) and C-sections. The response variable Y denotes the number of C-sections which do not have any zero values. We first regress the response variable, ‘C-sections’ against one explanatory variable ‘number of births’, then we add one more explanatory variable in the form of indicator variable hospital type (public hospital=1, private hospital=0) in the Poisson regression analysis. A measure of goodness of fit of the ZTGP regression model is used on the log-likelihood statistic. The addition of the dispersion parameter α in the ZTGP regression model is justified by testing for the adequacy of the ZTGP model over the ZTP regression model.
Downloads
References
Althabe F., Sosa C., Belizan J. M., Gibbons L., Jacquerioz F. and Bergal E.
(2006). Cesarean section rates and maternal and neonatal mortality in low,
medium and high income countries: an ecological study, Birth, 33(4), p. 270-7.
Betran A P. , Merialdi M. , Lauer J A. , Bing-Shun W. , Thomas J. , Van Look P.
and Wagher M. (2007). Rates of cesarean section: analysis of global, regional and
rational estimates, Paediatr Perinat Epidemiol, 21(2), p. 98-113.
Gibbon L., Belizan J. M., Lauer J. A., Betran A. P., Merialdi M. and Althabe F.
(2010). The global numbers and costs of additionally needed and unnecessary
cesarean section performed per year: overuse as a barrier to universal coverage,
World Health Report: Background paper, No. 30, p. 1-19.
Gupta, P. L., Gupta, R. C and Tripati, R. C. (1996). Analysis of zero-adjusted
count data, Computational Statistics and Data Analysis, 23, p. 207-218.
Hamilton B.E., Martin J.A., Ventura S.J., et al. (2013). Births: preliminary data
for 2012, National Vital Statistics Reports, Vol. 61, No. 1, Hyattsville, MD:
National Center for Health Statistics.
Lambert, D. (1992). Zero-inflated Poisson regression with an application to
defects in manufacturing, Technometrics, 34, p. 1-14.
Lee, A. H., Wang, K., Scott J. A., Yau, K. K. W. and Mclachlan, G. J. (2006).
Multi-level zero-inflated Poisson regression modeling of correlated count data
with excess zeros, Statistical Methods in Medical Research, 15, p. 47-61.
Lee, A.H., Wang, K. and Yau, K.K.W. (2001). Analysis of zero-inflated Poisson
data incorporating extent of exposure, Biometrical Journal, 43, p. 963-975.
Martin JA, Hamilton BE, Ventura SJ, et al. (2013). Births:final data for 2011,
National Vital Statistics Reports, Vol. 61, No.1. Hyattsville, MD: National Center
for Health Statistics
Ronasmans C., Holtz S. and Stanton C. (2006). Socio-economic differentials in
cesarean rates in developing countries: a retrospective analysis, Laneet, 368
(9546), p. 1516-23.
Wang, W. and Famoye, F. (1997). Modelling household fertility decisions with
fertilized Poisson regression, Journal of Population Economics, 10, p. 273-283.
Wulu, J. T., Singh, K. P. Famoye, F. and McGwin, G. (2002). Regression analysis
of count data, Journal of the Indian Society of Agril. Statistics, 55, p. 22-231.
Zhao, W. Feng, Y. and Li, Z. (2010). Zero-truncated generalized Poisson
regression model and its score tests, Journal of East China Normal University
(Natural Science), No. 1, 17-23.