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Abstract  

In this paper, a new class of Size-biased Generalized Gamma (SBGG) distribution is 

defined. A Size-biased Generalized Gamma (SBGG) distribution, a particular case of weighted 

Generalized Gamma distribution, taking the weights as the variate values has been defined. The 

important statistical properties including hazard functions, reverse hazard functions, mode, 

moment generating function, characteristic function, Shannon’s entropy, generalized entropy and 

Fisher’s information matrix of the new model have been derived and studied. Here, we also study 

SBGG entropy estimation, Akaike and Bayesian information criterion. A likelihood ratio test for 

size-biasedness is conducted. The estimation of parameters is obtained by employing the classical 

methods of estimation especially method of moments and maximum likelihood estimator. 

 

Key Words: Size Biased Generalized Gamma Distribution, Shannon’s Entropy, Generalized 
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1. Introduction 
The weighted distributions arise when the observations generated from a stochastic 

process are not given equal chance of being recorded; instead they are recorded 

according to some weighted function. When the weight function depends on the lengths 

of the units of interest, the resulting distribution is called length biased. More generally, 

when the sampling mechanism selects units with probability proportional to measure of 

the unit size, resulting distribution is called size-biased. Size biased distributions are a 

special case of the more general form known as weighted distributions. These 

distributions arise in practice when observations from a sample are recorded with 

unequal probability and provide unifying approach for the problems when the 

observations fall in the non –experimental, non–replicated and non –random categories. 

Prentice (1974) resolved the convergence problem using a nonlinear transformation of 

Generalized Gamma model. However, despite its long history and growing use in 

various applications, the Generalized Gamma family and its properties has-been 

remarkably presented in different papers. Hwang et al (2006) introduced a new moment 

estimation of parameters of the generalized gamma distribution using it’s 

characterization.  The Size biased Generalized Gamma (SBGG) distribution presents a 

flexible family in the varieties of shapes and hazard functions for modelling duration. It 
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was introduced by Ahmed et.al (2013a). The SBGG family, which encompasses 

exponential )0,1( == kβ   and size biased exponential )1( == kβ Mir et.al (2013) 

as a subfamilies, and Size biased Gamma distribution )1( =β  Ahmed et.al (2013b) as 

a particular case is introduced. The Probability Density function of the Size biased 

Generalized Gamma distribution is given by: 
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is an incomplete Size biased Generalized Gamma 

function.

  The mth non-central moment of SBGG is given by
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Using the equation (1.3), the mean and variance of the SBGG are given by 
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The coefficient of variation of SBGG is given by 
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From the above figure, we can interpret that the peakedness of a probability density 

curve increases as we increases the values of the parameters of Size biased Generalized 

Gamma function.

The moment generating of SBGG distribution is given as:

 

        

( )
( ) ββ

β

λ

λβ

1

1

+

+

−
=

k

k
tx

t

eE

          

(1.7)

 

Substitute 1=β  in the above relation (1.7), we get the moment generating function of 

Size biased Gamma Distribution (see Reshi et. al (2014)) which is given as: 
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The Characteristic function of SBGG distribution is given as: 
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Substitute 1=β  in the above relation (1.9), we get Characteristic function of Size 

biased Gamma Distribution 

 (see Reshi et. al (2014)) which is given as: 
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2. 
 
Reliability Measures of Size-biased Generalized Gamma Distribution 

 

The hazard function for the Size biased Generalized Gamma distribution is given as: 
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 is an incomplete Size is biased Generalized Gamma 

function.

 The reverse hazard function for the Size biased Generalized Gamma distribution is 

given as: 
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function.
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a) If ( ) ,0,,; <′ kxn βλ for all x > 0, then the hazard function is monotonically 

decreasing. 

b) If ( ) ,0,,; >′ kxn βλ for all x > 0, then the hazard function is monotonically 

increasing.  

c) Suppose there exist 0x  such that ( ) 00allfor,0,,; xxkxn <<<′ βλ  and

( ) 00allfor,0,,; xkxn >>′ βλ , In addition, 0)(lim
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 then the hazard 

function is upside down bathtub shape. 

Proof: Using equation (1.1), the derivative of the ( )kxf s ,,; βλ is given by: 
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a)  If 1≥β , then ( ) ,0,,; >′ kxn βλ for all x > 0, then the hazard function is 

monotonically increasing. 

b)  If 1<β , then ( ) ,0,,; <′ kxn βλ  for all x > 0, then the hazard function is 

monotonically decreasing. 
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3. Structural properties and information measures of Size biased 

Generalized Gamma Distribution 

In this section, we derive some structural properties and information measures 

of Size-biased generalized gamma distribution. 

 

3.1 Mode of Size biased generalized gamma distribution 
The probability distribution of Size biased Generalized Gamma distribution 

can be obtained as: 
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In order to discuss monotonicity of size biased Generalized Gamma distribution, we 

take the logarithm of its probability density function: 
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Therefore, the mode of size biased generalized gamma distribution is given by: 
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3.2 Shannon’s entropy of Size-biased Generalized Gamma Distribution 
The concept of Shannon’s entropy is the central role of information theory, 

sometimes referred as measure of uncertainty. The entropy of a random variable is 

defined in terms of its probability distribution and can be shown to be a good measure 

of randomness or uncertainty. Henceforth we assume that log is to the base 2 and 

entropy is expressed in bits. In information theory, thus far a maximum entropy (ME) 

derivation of GG is found in Kapur (1989).  For deriving the entropy of the size-biased 

Generalized Gamma distribution, we need the two definitions that are more details of 

them can be found in Shannon (1948). 

Theorem.3.1  Let  nxxxx ...,, 321  be a n positive identical independently distributed 

random samples drawn from a population having a size-biased generalized gamma 

density 
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Proof:  Shannon’s entropy is defined as: 
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Substitute the value of equation (3.5) in equation (3.4), we have
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3.3 The Generalized entropy of size-biased Generalized Gamma 

Distribution 

 Generalized entropy is often used in econometrics Golan (2006). It is indexed by a 

single parameterα . The generalized entropy is defined to be 
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3.4 Fisher’s information matrix of size-biased Generalized Gamma 

Distribution 

The Fisher information is that a random variable ‘X’ contains about the parameter θ is 

given by 
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Now, if log f(x; θ) is twice differentiable with respect to θ under certain regularity 

conditions, Fisher’s information is given by: 
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The Size biased generalized gamma distribution has a probability density function of 

the form: 
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Applying log on both sides in above equation (3.10), we have
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3.5 Entropy estimation of Size-biased Generalized Gamma Distribution    

   Consider the Probability Density function of size biased generalized gamma 

distribution (1.1) 
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 The Shannon’s entropy Estimation of Size-biased Generalized Gamma Distribution is 

given as:

 

( ) ˆ ˆ1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ (1 ) log log log log (3.31)
ˆ

H SBGG k k k x x
β ββ λ β β λ

β

  
= − + + − Γ + + −      

 Comparing equations (3.3) and (3.31), we can state that both equations are same, 
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because )log())(log( xxE =  and
ββ xxE =))( .

 

From equation )30.3( and )31.3( , 

we can write

 

 ( )
n

kxl
SBGGH

)ˆ,ˆ,ˆ;(ˆ βλ
−=                                    (3.32) 

Where ( )SBGGĤ  is the Shannon’s entropy estimation, )ˆ,ˆ,ˆ;( kxl βλ is the 

logarithm likelihood, λ̂  is the estimated value ofλ , β̂  is the estimated value ofβ  

and k̂ is the estimated value of k  of the size biased is generalized gamma distribution 

and n is the sample size. The estimators’ like k̂andˆ,ˆ βλ  can be obtained by 

employing the maximum likelihood estimation. 

  

3.6 Akaike and Bayesian information criterion 
In order to introduce an approach for model selection, we remember Akaike 

and Bayesian information criterion based on entropy estimation. Akaike’s information 

criterion, developed by Hirotsugu Akaike (1973) under the name of “an information 

criterion” (AIC) in 1971 and proposed in Akaike (1974), is a measure of the goodness 

of fit of an estimated statistical model. It is grounded in the concept of entropy, in effect 

offering a relative measure of the information lost when a given model is used to 

describe reality and can be said to describe the trade-off between bias and variance in 

model construction, or loosely speaking that of precision and complexity of the model. 

The AIC is not a test of the model in the sense of hypothesis testing; rather it is a test 

between models - a tool for model selection. Given a data set, several competing 

models may be ranked according to their AIC, with the one having the lowest AIC 

being the best. From the AIC value one may infer that e.g. the top three models are in a 

tie and the rest are far worse, but it would be arbitrary to assign a value above which a 

given model is “rejected”. In the general case, the AIC is 

( )θ̂log22 LKAIC −=  

Where K is the number of parameters in the statistical model and L is the maximized 

value of the likelihood function for the estimated model. 

The Bayesian information criterion (BIC) or Schwarz Criterion is a criterion 

for model selection among a class of parametric models with different numbers of 

parameters. Choosing a model to optimize BIC is a form of regularization. It is very 

closely related to AIC. In BIC, the penalty for additional parameters is stronger than 

that of the AIC. 

The formula for the BIC is 

  
( )θ̂log2log LnKBIC −=  

The AIC and BIC methodology attempts to find the model that best explains the data 

with a minimum of their values, from (3.38) we have 

( )SBGGˆ),,;( Hnkxl −=βλ  

Then for SBGG family we have 

( )SBGGˆ22 HnKAIC +=
                                                      

(3.33)
 

and ( )SBGGˆ2log HnnKBIC +=
                    

(3.34) 
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3.7 Test for Size-biasedness of Size biased Generalized Gamma 

Distribution 
Let x1, x2 … xn be random samples can be drawn from Generalized Gamma 

Distribution or Size biased Generalized Gamma distribution. We test the hypothesis  

),,;()(:againest),,;()(: 10 kxfxfHkxfxfH S βλβλ ==
 

                    To test whether the random sample of size n comes from the generalized 

Gamma distribution or Size biased generalized Gamma distribution, then the following 

test statistic is used. 
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We reject the null hypothesis. 
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For some constant k. Equivalently, we reject the null hypothesis where 
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For a large sample size of n, ∆log2 is distributed as a Chi-square distribution with 

one degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. 

Also, we can reject the reject the null hypothesis, when probability value s given by: 

∏
=

=>∆
n

i

ixP
1

*** Where),( λλ  is less than a specified level of significance, where 

∏
=

n

i

ix
1

is the observed value of the test statistic. 

4. Estimation of parameters in the size-biased Generalized Gamma 

Distribution.
 

In this section, we obtain estimates of the parameters for the Size-biased Generalized 

Gamma distribution by employing the method of moment (MOM) and maximum 

likelihood (ML) estimators. 

 

4.1 Method of Moment Estimators of size-biased Generalized Gamma 

Distribution 
Let X1, X2, X3… Xn be an independent random samples from the Size-biased 

Generalized Gamma (SBGG) distribution with weight c=1. The method of moment 

estimators are obtained by setting the raw moments equal to the sample moments, that 

is E(Xr) = Mr where is the sample moment Mr corresponding to the E(Xr).The 

following equations are obtained using the first and second sample moments. 
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4.1.1 When
 

kandβ are fixed and from equation (4.1), we obtain an estimate λ̂ forλ , 

that is 
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4.1.2 When λβ and1= are fixed and dividing (4.1) by equations (4.2), we get 
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2ˆ . 2 (4.4)
M

k
X
λ= −  

4.1.3 When kandλ  are fixed, the estimate for β  can be obtained by numerical 

methods. 

 

4.2 Maximum likelihood Estimator of size-biased Generalized Gamma 

Distribution 

Let nxxx ,...,, 21  be a random sample from a Size-biased Generalized Gamma 

Distribution. Then the likelihood function of Size-biased Generalized Gamma (SBGG) 

Distribution is given by: 
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Using equation (4.5), the log likelihood function is given by 
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Equating these equations to zero, leads to the normal equations:
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4.2.1   When λβ and  are fixed, It follows from equation (4.7), that 
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4.2.2 When kandβ  are fixed, It follows from equation (4.9), that 
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4.2.3 When kandλ  are fixed, the estimate for β  can be obtained by numerical 

methods.  

 

5. Concluding Remark 
 The objective of this article is to obtain and derive the various structural 

properties, reliability measures and information measures of size biased generalized 

gamma distribution. Also a likelihood ratio test for size-biasedness is conducted. The 

estimation of parameters is obtained by employing the classical estimators especially 

methods of moments and maximum likelihood estimators. The future research may be 

considered to develop a mixture of Generalized Gamma (GG) distribution with the Size 

biased Generalized Gamma (SBGG) distribution. Also, it may be consider to estimate 

the parameters of the new model by using different loss functions especially LINLEX 

loss function, Quadratic, precautionary loss function and generalized entropy Loss 

function under different prior distributions like Gamma prior distributions, Conjugate 

priors and double priors etc.   
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