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Abstract  
In this paper, we present Bayes’ estimator of the parameter of Size biased Gamma 

distribution (SBGMD), that stems from an extension of Jeffery’s prior (Al-Kutubi (2005)) with a 
new loss function (Al-Bayyati (2002)). We are proposing four different types of estimators. 

Under squared error loss function, there are two estimators formed by using Jaffrey prior and an 
extension of Jaffrey’s prior. The two remaining estimators are derived using the same Jeffrey’s 
prior and extension of Jeffrey’s prior under a new loss function. We are also deriving the survival 
function of the size biased Gamma distribution. These methods are compared by using mean 

square error through simulation study with varying sample sizes.  
 

Key Words: Size Biased Gamma Distribution, Jeffrey’s Prior and Extension of Jeffrey’s 

Prior, Loss Functions, Software. 
 

1. Introduction 
The gamma distribution is used as a lifetime model Gupta and Groll (1961), 

though not, nearly as much as the Weibull distribution. It does fit a widely variety of 

lifetime adequately, besides failure process models that leads to it. It also arises in some 

situations involving the exponential distribution; because of the well known results that 
the sum of independently and identically distributed exponential random variables has a 

gamma distribution. Inference for gamma model has been considered by Engelhard and 

Bain (1978), Chao and Glaser (1978), Jamali et al (2006), Lawless (2003) and 

Kalbfleisch and Prentice (2002) have made significant contributions. The size biased 

classical gamma distribution was introduced by Ahmed et.al (2013). The size biased 

gamma (SBGMD) distribution that is a flexible distribution in statistical literature, and 

has size biased exponential and exponential distribution as a subfamilies are introduced. 

Consider the two parameter size biased gamma distribution with having the probability 

density function of the form: 
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Where 00   and are parameters;  is a scale parameter and   is sometimes 

called the index or shape parameter. 

 

The objective of this article is to estimate the parameters of size biased 

Gamma distribution. We are proposing four different types of estimator. Under squared 

error loss function, there are two estimates formed by using Jeffrey’s prior and an 
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extension of Jeffrey’s prior. The other two estimators are derived using the same 

Jeffrey’s prior and extension of Jeffrey’s prior under a new loss function introduced by 

Al-Bayyati (2002). 

 

2. Materials and Methods 

 Recently Bayesian estimation approach has received great attention by most 

researchers. Bayesian analysis is an important approach to statistics, which formally 

seeks use of prior information and Bayes’ Theorem provides the formal basis for using 

this information. In this approach, parameters are treated as random variables and data 

is treated fixed. Ghafoor et al (2005), Ali et al (2011) and Rahul et al (2009) have 

discussed the application of Bayesian methods. An important pre-requisite in Bayesian 

estimation is the appropriate choice of prior(s) for the parameters. However, Bayesian 

analysts have pointed out that there is no clear cut way from which one can conclude 

that one prior is better than the other. Very often, priors are chosen according to ones 

subjective knowledge and beliefs. However, if one has adequate information about the 
parameter(s) one should use informative prior(s), otherwise it is preferable to use non 

informative prior(s). In this paper we consider the extended Jeffrey’s prior proposed by 

Al-Kutubi (2005) as: 
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Where k  is a constant. With the above prior, we use two different loss functions for the 

model (1.1), first is the squared error loss function which is symmetric, second is the 

precautionary loss which is a simple asymmetric function. It is well known that choice 

of loss function is an integral part of Bayesian inference. As there is no specific 

analytical procedure that allows us to identify the appropriate loss function to be used, 

most of the works on point estimation and point prediction assume the underlying loss 

function to be squared error which is symmetric in nature. However, in-discriminate use 

of SELF is not appropriate particularly in these cases, where the losses are not 

symmetric. Thus in order to make the statistical inferences more practical and 

applicable, we often needs to choose an asymmetric loss function. A number of 

asymmetric loss functions have been shown to be functional, see Varian (1975), Zellner 

(1986), Spiring and Yeung (1998) etc. In the present work, we consider symmetric as 

well as asymmetric loss functions for better comprehension of Bayesian analysis. 
a) The first is the common squared error loss function given by: 

   21
ˆ,ˆ   cl

                                                                                                     (2.3)
 

which is symmetric,   and ̂  represent the true and estimated values of the parameter. 

This loss function is frequently used because of its analytical tractability in Bayesian 

analysis. 

b) The second is the precautionary loss function given by: 
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Which is an asymmetric loss function, for details, see Norstrom (1996). This loss 

function is interesting in the sense that a slight modification of squared error loss 

introduces asymmetry. 

 

3. Parameter estimation under squared error loss function. 
In this section, two different prior distributions are used for estimating the 

parameter of the size biased Gamma distribution namely; Jeffery’s prior and extension 

of Jeffrey’s prior information. 

 

3.1 Bayes’ estimation of parameter of size biased Gamma distribution 

under Jeffrey’s prior 

 Consider there are n recorded values,  nxxx ,...1  from (1.1). We consider the 

extended Jeffrey’s prior as:     Ig   
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Then the joint probability density function is given by: 
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    21

ˆ,ˆ   cl for some constant c, the risk 

function is: 
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Estimation of Survival function: By using posterior probability density function, 
we can found the Survival function, such that 
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3.2 Bayes’ estimation of parameter of size biased gamma distribution using 

extension of Jeffrey’s prior 

We consider the extended Jeffrey’s prior are given as:       RcIg
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Then the joint probability density function is given by: 
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    21
ˆ,ˆ   cl for some constant c, the risk 

function is: 
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 The Bayes’ estimator under a precautionary loss function is denoted by ̂ , and is given 

by the following equation: 

 2
1

2ˆ  EP  and the corresponding Bayes’ estimator comes out to be: 

 

 







n

i

ix

cn

1

1
2

121
ˆ




 The risk function under precautionary loss function is given by: 
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Remark 1: Replacing c1= 1/2 in (3.2.6), the same Bayes’ estimator is obtained as in 

(3.1.5) corresponding to the Jeffrey’s prior. By Replacing c1= 3/2 in (3.2.6), the Bayes’ 
estimator becomes the estimator under Hartigan’s prior (Hartigan (1964)). By 

Replacing c1= 0   in (3.2.6), thus we get uniform prior. 

 

Estimation of Survival function:  By using posterior probability density function, 

we can found the Survival function, such that 
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4. Parameter estimation under a new loss function 
This section uses a new loss function introduced by Al-Bayyati (2002). 

Employing this loss function, we obtain Bayes’ estimators using Jeffrey’s and extension 

of Jeffrey’s prior information. 

Al-Bayyati introduced a new loss function of the form: 
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Here, this loss function is used to obtain the estimator of the parameter of the size 

biased Gamma distribution. 
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The Bayes’ estimator under a precautionary loss function is denoted by ̂ , and is given 

by the following equation: 

 2
1

2ˆ  EP  and the corresponding Bayes’ estimator comes out to be: 
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The risk function under precautionary loss function is given by: 
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Remark 2: Replacing c2 = 0 in (4.1.2), the same Bayes’ estimator is obtained as in 

(3.1.5) corresponding to the Jeffrey’s prior. By Replacing c1= 3/2 and c2 =-2 in (4.1.2), 

the Bayes’ estimator becomes the estimator under Hartigan’s prior (Hartigan (1964)). 

By Replacing c2 =1 in (4.1, 2), we get uniform prior. 
 

4.2 Bayes’ estimation of parameter of size biased Gamma distribution 

using extension of Jeffrey’s prior. 
By using the loss function in the form given in (4.1), we obtained the 

following risk function: 
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The Bayes’ estimator under a precautionary loss function is denoted by̂ , and is given 

by the following equation:
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The risk function under precautionary loss function is given by: 
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Remark 3: Replacing c1= 1/2   and c2 = 0 in (4.2.2), the same Bayes’ estimator is 

obtained as in (3.5.1) corresponding to the Jeffrey’s prior. By Replacing c1= 3/2   and c2 
=0 in (4.2.2), the Bayes’ estimator becomes the estimator under Hartigan’s prior 

(Hartigan (1964)). By Replacing c1= 0   and c2 =0 in (4.2.2),  we get uniform prior. 

 

4. Simulation Study of Size biased Gamma Distribution 
                In our simulation study, we choose a sample size of n=25, 50 and 100 to 

represent small, medium and large data set. The scale parameter is estimated for Size 

biased Gamma Distribution with Maximum Likelihood and Bayesian using Jeffrey’s & 

extension of Jeffrey’s prior methods. For the scale parameter we have considered   = 

1.5, .2.0 and 2.5.The values of Jeffrey’s extension were c1 = 0.5, 1.0, 1.5 and 2.0. The 

value for the loss parameter c2 = -1, 0 and +1.This was iterated 5000 times and the scale 

parameter for each method was calculated. A simulation study was conducted using R-

software to examine and compare the performance of the estimates for different sample 

sizes with different values for the Extension of Jeffrey’s’ prior and the loss functions. 

The results are presented in tables (5.1) and (5.2) for different selections of the 
parameters and c extension of Jeffrey’s prior.  
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n   1  
ML  sl  Nl  

C2=-1.0 C2=0 C2=1.0 

25 

1.0 1.5 0.694831 0.694831 0.598016 0.694831 0.544739 

1.5 2.0 1.616179 1.616179 1.349812 1.585304 1.436083 

2.0 2.5 2.485953 2.485953 2.597593 2.456618 2.389094 

50 

1.0 1.5 0.610410 0.610409 0.5293161 0.530716 0.513424 

1.5 2.0 1.311115 1.311115 1.185384 1.311115 1.209764 

2.0 2.5 2.359689 2.379689 2.282167 2.359689 2.331872 

100 

1.0 1.5 0.466204 0.466204 0.3765582 0.466204 0.378032 

1.5 2.0 1.204456 1.204456 1.138956 1.127385 1.136965 

2.0 2.5 2.274085 2.274065 2.144278 2.274065 2.284561 

 

Table 5.1: Mean Squared Error for under ̂  Jeffrey’s prior 

 

 
 

N 

 
  

 

1  

 

C1 

 

ML  

 

sl  
Nl  

C2=-1.0    C2=0 C2=1.0 

25 1.0 1.5 0.5 
1.0 

1.5 
2.0 

1.751815 
1.751815 

1.751815 
1.751815 

0.605711 
0.678151 

0.756965 
1.743262 

0.491789 
0.785964 

0.796710 
1.551585 

0.605711 
0.678151 

0.707501 
1.743262 

0.675668 
0.715066 

0.761006 
1.873616 

2.0 2.5 0.5 
1.0 
1.5 
2.0 

1.465009 
1.465009 
1.465009 
1.465009 

1.465009 
1.664499 
1.579438 
1.685124 

1.530603 
1.393877 
1.178935 
1.469333 

1.478005 
1.154286 
1.336005 
1.685124 

1.525623 
1.600484 
0.743068 
1.753295 

50 1.0 1.5 0.5 

1.0 
1.5 
2.0 

0.523688 

0.523688 
0.523688 
0.523688 

0.523688 

0.581831 
0.580325 
0.718147 

0.442794 

0.591908 
0.357746 
0.737926 

0.523688 

0.581831 
0.441632 
0.471831 

0.621982 

0.553100 
0.602326 
0.421187 

2.0 2.5 0.5 
1.0 

1.5 
2.0 

1.170480 
1.170480 

1.170480 
1.170480 

1.170480 
1.275611 

1.421131 
1.656525 

1.203897 
1.309292 

1.148665 
1.365212 

1.132317 
1.181767 

1.221135 
1.656525 

1.095543 
0.993167 

0.904535 
1.532779 
 

100 1.0 1.5 0.5 
1.0 
1.5 
2.0 

0.494552 
0.494552 
0.494552 
0.494552 

0.494552 
0.522866 
0.523018 
0.499482 

0.357457 
0.532341 
0.332578 
0.459488 

0.494552 
0.574154 
0.405039 
0.469988 

0.560155 
0.410739 
0.480748 
0.344415 

2.0 2.5 0.5 
1.0 
1.5 
2.0 

1.069772 
1.069772 
1.069772 
1.069772 

1.069772 
1.195533 
1.129912 
1.346683 

1.192434 
1.222817 
1.146871 
1.317127 

1.069772 
1.164875 
0.8618621 
1.346683 

0.981817 
0.879562 
1.321517 
1.250574 

 

Table 5.2: Mean Squared Error for ̂ under extension of Jeffrey’s prior 
 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function, 
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                In table 5.1, Bayes’ estimation with New Loss function under Jeffrey’s prior 

provides the smallest values in most cases especially when loss parameter C2 is ±1. 

Similarly, in table 5.2, Bayes’ estimation with New Loss function under extension of 

Jeffrey’s prior provides the smallest values in most cases especially when loss 

parameter C2 is ±1 whether the extension of Jeffrey’s prior is 0.5, 1.0, 1.5 or 2.0.  

 

6. Concluding Remarks 
In this article, we have primarily studied the Bayes’ estimator of the parameter 

of the size biased Gamma distribution under the extended Jeffrey’s prior assuming two 

different loss functions. The extended Jeffrey’s prior gives the opportunity of covering 

wide spectrum of priors to get Bayes’ estimates of the parameter - particular cases of 

which are Jeffrey’s prior and Hartigan’s prior. A comparative study has been done 

between the MLE and the estimates of two loss functions (SELF and Al-Bayyati’s new 

loss function). From the results, we observe that in most cases, Bayesian Estimator 

under New Loss function (Al-Bayyati’s Loss function) has the smallest Mean Squared 
Error values for both prior’s i.e, Jeffrey’s and an extension of Jeffrey’s prior 

information. Moreover, when the sample size increases from 25 to 100, the MSE 

decreases quite significantly. The future research may be consider to estimate the 

parameters using different loss functions especially Linlex loss function and  

Generalized entropy Loss function under different prior distributions like Gamma prior 

distributions, Conjugate priors and double priors  etc. 
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