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Abstract 
       This papers presents the comparison between maximum likelihood estimator(MLE) and 

Bayes estimator of scale parameter of  Generalized gamma distribution under Squared error loss 

function when shape parameters are known.   Maximum likelihood estimator (MLE) of scale 

parameter is obtained. Using Jeffrey’s prior , Bayes estimator of scale parameter is  obtained 

under squared error loss function .For comparison purpose, a  simulation study is also carried out 

to compute the relative efficiency  of  Bayes  estimator  with respect to maximum likelihood 

estimator. 
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1. Introduction 
     The generalized gamma distribution was first given by Stacy (1962). Most of 
the life time distributions such as Exponential, Gamma, Rayleigh , Pareto, Weibull [ 

Bansal (2007),Sinha (1986),Sinha (1998)  and Lawless (2003)] etc.used in reliability 

theory to represent  life time behavior  of the system  are special cases of Generalized 

gamma distribution. Cohen (1969) considered it as a generalization of Weibull 

distribution. Harter (1967) used  this distribution as a life time model. It is worth 

mentioning here that all these authors  obtained estimators  of parameters with complete 

samples. Recently, Krishna (2011) derived MLE and  Bayes estimates of scale 

parameters of generalized gamma distribution with type II  right censored scheme.  

The probability density function (p.d.f.) of generalized gamma distribution with scale 

parameter   and shape parameters ( ,  ) is given by   
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It can be shown that exponential, gamma and weibull distributions are particular cases 

of (1) as : 

(i) if we put  ,  =1 in equation (1), we get exponential distribution with parameter 

 , 

(ii) for  =1,in equation(1),we get Gamma distribution with parameters ( ,  ) and  

(iii) for c    and 
c   in equation(1),we get Weibull distribution with 

parameters  ,  . 

 

     In classical estimation approach, most widely used method of estimation is the 

method of maximum likelihood estimation (MLE).Bayesian method of estimation has 

also drawn attention in recent times.  In Bayesian estimation, we combine the prior 

information and the sample information to get the posterior distribution and after that 

all decisions and conclusions based on posterior distribution are drawn. Another term 
that plays a vital role in Bayesian analysis is the loss function. There are several types 

of loss functions. But most frequently used loss function is the squared error loss 

function (SELF) and   is defined by 

                2ˆ ˆ, ( )L                            (2) 

Where  ̂  is an estimate of  .This loss function is symmetric in nature i.e. it gives 

equal weight age to both over estimation and under estimation..Ahmed et al.(2010)  

considered ML estimation and Bayes estimation of scale parameter of Weibull 

distribution with known shape parameter and compared their performance under 

Squared error loss function. Keeping this in view, an attempt is made to compare the 

MLE and Bayes estimate of scale parameter under Squared error loss function.  

   The rest of the paper  is structured as follows: In  Section 2,under classical estimation, 

MLE of scale parameter   is obtained. Section 3 deals with the Bayes estimation of    

under Squared error loss function. Section 4 presents the relative efficiency of Bayes 

estimator with respect to MLE. In Section 5, Monte Carlo simulation study is carried 

out to illustrate the results. Finally, we conclude the paper in Section 6.  

2. Classical Estimation 
In our study, we are interested with the Maximum Likelihood  estimation 

procedure as one of the most  important classical procedures. 

 

2.1 Maximum Likelihood  Estimation 
       Let  x1.x2…x  be a random sample of size n drawn from Generalized gamma 
distribution with p.d.f. given by equation (1). Then likelihood function of the sample 

observations is given by 

              

                                      (3) 

Taking logarithm of both sides of  equation (3), we get 
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3. Bayesian Estimation          

   From Bayesian perspective choice of prior distribution of parameter and Loss 

function play an important role in estimation and prediction problems.. Based on 

knowledge and beliefs, researchers choose informative prior .However, an appropriate 

choice of prior is still a problem. Jeffrey (1946) proposed a rule according to which 

prior is given by 

  

Prior   I 
 

Where, I(θ) is the Fisher information on θ given in equation (4).Thus, prior distribution 

of θ is given by
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Now, combining the prior (5) with the likelihood function (3), the posterior distribution 

of   is given by  
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The denominator of (6) is 
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Therefore, posterior distribution of    is given by 
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Which is the pdf of inverted- gamma distribution with parameters (nα/β ,t)                                                                                                                                                                                                                        

Where,                                                                                                                                                                            

1

( , ),
n

i

i

n
t x Gamma 




 
  

since,  iX     ,i=1,2,…n ,are independently and 

identically distributed gamma variates with parameters ( 


,θ).  

 The p.d.f. of T= t is given by 
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4. The Relative efficiency of  Bayes estimator( ˆ
SB ) with respect to  MLE   

( ˆ
ML ) under Squared error loss function (SELF) 

       In decision theoretic approach, the decision   taken by a decision maker is a 

function which specifies   ̂ = d(x) as the action to be taken when the observed data is 

X=x. On taking action ̂ =d(x), the decision maker incurs a loss  ˆ( , )L   .A good 

decision is one that has minimum risk function(or minimum expected loss) given by 

 

 

        ˆ( , ) ( , ) ,L f x dx    if X is a continuous random variable 

The risk function of MLE under Squared error loss function is given by 
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We know that under Squared error loss function, Bayes estimator is the mean of 

posterior distribution (7) and is given by 
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Now, the  risk function of  Bayes estimator under Squared error loss function is given 

by 
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As we know, the relative efficiency (R.E.) of estimator  1̂  with respect to (w.r.t.) 

estimator 2̂ is defined by 

R.E.= 2
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Thus, if R.E.>1, then estimator 1̂ is better than estimator 2̂ . 

Therefore, the relative efficiency of  Bayes estimator ( ˆ
SB  ) w.r.t. MLE ( ˆ

ML ) under 

Squared error loss  function is given by 
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5. Simulation Study 

To compare the performance of  MLE and Bayes estimators under Squared 

error loss function, we carry out simulation study. For this, we have generated N=1000 

samples of sizes  n=10,20,50,100  representing  small, moderate and  large samples. 
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Keeping  the scale parameter  θ=.5,  1.5, 2.5  and  fixing the shape parameters   α=..4 

,β=.8 and α=1.4,β=1.8  respectively   the relative efficiency (11) of Bayes estimator 

with respect to  MLE  is  computed  .The values are shown in Table 1. All the 

calculations are performed on the package  R 2.15.1. 

6. Conclusion 

According to the results obtained in Section 5, we observe from Table 1 that 

relative efficiency of Bayes estimator w.r.t.  MLE under Squared error loss  function is 

smaller  than one for all sample sizes. However, it increases with the increase in sample 

size .Thus ,finally we conclude that  ML estimator performs better than Bayes 

estimator. Therefore, in this scenario, the use of Maximum likelihood estimator is 

recommended.  
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Relative  

efficiency 

10 0.5 .4 .8 0.4715008 0.4963166 0.01121698 0.01446009 0.7757202 

1.4 1.8 0.5032448 0.545687 0.02246551 0.03347366 0.67114 

1.5 .4 .8 0.726732 0.7649811 0.0266253 0.03432332 0.7757202 

1.4 1.8 2.316921 2.512324 0.4808245 0.7164295 0.67114 

2.5 .4 .8 0.8972021 0.9444233 0.04058129 0.05231434 0.7757202 

1.4 1.8 4.714145 5.111723 1.96523 2.928196 0.67114 

20 .5 .4 .8 0.471278 0.483362 0.00557609 0.00632463 0.8816467 

1.4 1.8 0.5056683 0.5261288 0.01074163 0.01307811 0.8213444 

1.5 .4 .8 0.7302302 0.7489541 0.01338914 0.01518651 0.8816467 

1.4 1.8 2.338558 2.433182 0.2297229 0.2796913 0.8213444 

2.5 .4 .8 0.8929407 0.9158366 0.02001495 0.02270178 0.8816467 

1.4 1.8 4.771247 4.96430 0.9544918 1.162109 0.8213444 

50 .5 .4 .8 0.4701855 0.4749349 0.00221452 0.00232841 0.9510852 

1.4 1.8 0.4990571 0.5069429 0.00398628 0.004310282 0.9248284 

1.5 .4 .8 0.7294848 0.7368533 0.00533117 0.005605348 0.9510852 

1.4 1.8 2.338535 2.375488 0.08771146 0.09484079 0.9248284 

2.5 .4 .8 0.8955204 0.904566 0.00803282 0.00844596 0.9510852 

1.4 1.8 4.7821 4.857664 0.367156 0.396999 0.9248284 

100 .5 .4 .8 0.4713994 0.4737683 0.00111206 0.001140256 0.9752731 

1.4 1.8 0.5018481 0.505782 0.001990193 0.002069304 0.9617695 

1.5 .4 .8 0.7308634 0.7345361 0.002672982 0.002740752 0.9752731 

1.4 1.8 2.332116 2.350397 0.04298184 0.04469037 0.9617695 

2.5 .4 .8 0.8958892 0.9003911 0.004016478 0.004118311 0.9752731 

1.4 1.8 4.781447 4.818928 0.1808324 0.1880205 0.9617695 

Table 1: Relative efficiency of Bayes estimator w.r.t. MLE under SELF

 

 


