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Abstract 
 This paper proposed the exact distribution of centered hat values of the hat matrix of 
predictors in multiple linear regression analysis. The authors adopted the relationship proposed 
by Belsey et al. (1980) between the centered hat values and the F-ratio and we showed that the 
derived density function of the centered hat values followed Beta distribution ( 1, )p n p    and 

it lies between1/ 1
ii

n h  . Moreover, the first two moments of the distribution are derived and 

we established the upper and lower limits of the centered hat values. Moreover, the shape of the 

density function of hat values is also visualized and the authors computed the percentage points 
of centered hat values at 5% and 1% significance level for different sample sizes and predictors. 
Finally, the authors proposed two approaches. The first approach helps to identify the leverage 
points in multiple linear regression analysis in the X-space based on the test of significance and 
the second approach scrutinized the leverage points as well as the outliers. The proposed 
approaches were numerically illustrated and the results were compared the traditional approach. 
 

Key Words: Centered Hat Values, Hat Matrix, Beta-Distribution, Moments, Leverage Points, 

Outliers, X-Space. 
  

1. Introduction and Related work 
The hat matrix is an important auxiliary quantity in regression theory and it is 

a standard measure of predictor influence. (Belsley et al. (1980) and Chatterjee and 

Hadi (1988)). Hoaglin and Welsch (1978) suggested, observations with 
ii

h >2p/n as 

high leverage points. A standard statistical measure of leverage is the size of the 

diagonal elements of the hat matrix, and many estimators use this quantity to detect and 

down weight the leverage values (Mallows (1975), Handschin et al. (1975) and Krasker 

and Welsch (1982)). Later, Dodge and Hadi (1999) presented graphs and bounds for the 

elements of hat matrix. In the work of Chave and Thomson (2003), a new bounded 
influence estimator is proposed that combines high asymptotic efficiency for normal 

data, high breakdown point behavior with contaminated data and computational 

simplicity for large data sets. The algorithm combines a standard M-estimator to down 

weight data corresponding to extreme regression residuals and removal of overly 

influential predictor values (leverage points) on the basis of the statistics of the hat 

matrix diagonal elements. Diaz-Garcia, J.A. and Gonzalez- Faras, G. (2004) 

investigated the Cook’s D distance and extracted more properties to scrutinize the 

influential observation in linear regression. Moreover, Prendergast, L.A. (2005, 2006) 

studied the influential observations in the sliced inverse regression model and Huang, 

Y., Kuo, M. and Wang, T. (2007) proposed the perturbation influence functions and 
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visualized the local influence of observations in a sample. Finally M.A. Ullah1 and 

G.R. Pasha (2009) presented extensive literatures on the origin and developments of 

influence measures in regression analysis. Based on the reviews, the authors propose a 

more systematic and scientific approach to identify the leverage points and they discuss 

the characteristics of centered hat values and it’s relationship with F-ratio, exact 

distribution, limits of hat values in the subsequent sections. 

2. Relationship between centered hat values and F-ratio 
Let the multiple linear regression model with random error can be given as 

 Y X e                                                                                                                (1)  

where 
( 1)nX
Y  is the matrix of the dependent variable, 

((p 1) 1)X




is the matrix of beta co-

efficients or partial regression co-efficients and 
( 1)nX
e is the residual followed normal 

distribution  ne IN 2,0  .From (1), the fitted model with estimates as 

 Y X                                                           (2) 

  
1

T TX X X Y


                                             (3) 

Substitute  in (3), we get 

  
1

T TY X X X X Y


  

Y HY                                                            (4) 

From (4), the estimated Y is predicted by the actual value of Y  based on the projection 

matrix  
1

T TH X X X X


 , technically called as Hat matrix. Combine (2) and (4), 

we get a compact form of the disturbance in terms of the hat matrix and it is given as 

e Y Y                                                                          (5) 

e Y X   

 
1

T Te Y X X X X Y


     

  1
T Te Y I X X X X



   

 e I H Y                                                                     (6) 

From (6), the regression disturbance is the product of actual value of Y and the residual 

operator  I H .Myers, Montgomery (1997) proved the magical properties of the 

residual operator matrix as idempotent and symmetric. Based on the properties they 

derived the variance-co-variance matrix of the disturbance as 

 2

e e
I H                                                                                       (7) 

Where 
e

  is the Variance-covariance matrix and 
2

e
  is the homoscedastic error 

variance of the linear regression model. The authors utilized the least squares estimates 

of the variance-covariance matrix of the disturbance and found the link between 
e

  
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and I H . From (7), the estimate of 
e

 is given as 

  2

e e
I H                                                                                                         (8) 

From (8), where   



      
      
      

2

1 2 11

2

2 1 22

2

1 2

cov , cov ,

cov , cov ,

cov , cov ,

e n

e n
e

n n en

e e e e

e e e e

e e e e







               





   


                                        (9) 

11 12 1

21 22 2

1 2

n

n

n n nn

h h h
h h h

H

h h h

        




   


                                                                                      (10) 

From (8), compare the diagonal elements of both sides, we get the estimated 

heteroscedastic error variance as  

  2 2 1
e e iii

h                                                                               (11) 

Where  2 2,
e ei

   are the estimates of heteroscedastic, homoscedastic error variances and 

ii
h  is the leading diagonal elements of the hat matrix, sometimes called as centered 

leverage values. If 
ii

h  is close to 0, then the error variance of the ith observation is equal 

to the homoscedastic variance, then the observation is said to be remote (outliers). In 

the same manner, if 
ii

h is close to 1, then the error variance of the ith observation will be 

nearly 0 and the observation is a leverage point to the fitted regression equation. Many 

authors studied the hat matrix (  
1

T TH X X X X


 ) and it’s applications, but 

Belsley et al (1980) proposed a useful relationship between the centered hat values and 

F-ratio. They showed when the set of predictors followed a multivariate normal 

distribution with  ,
X X

  , then        ( 1, )1/ / 1 1ii ii p n pn p h n h p F       of ith 

observation followed F-distribution with ( 1, )p n p  degrees of freedom 

respectively. Without loss of generality, the relationship can be written as 

  

  
( 1, )

1/

1 1

ii

i p n p

ii

n p h n
F F

p h
 

 


 
                                                                     (12) 

From (12), solve it for iih , we get 

    
    

1 / 1/

1 1 /

i

ii

i

p n p F n
h

p n p F

  


  
                                                                          (13) 
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From (13), the relationship between 
iF  and 

iih  visualizes if 0 iF   ,then 

(1/ ) 1iin h  .So far, past researches emphasize 0 1iih  ,but based on the 

relationship from (13), we found 
iih  lies between 1/ n and 1.If the sample size is very 

large, that is n ,then the centered hat values will lies between 0 and 1.Based on 

the identified relationship from (13), the authors derived the distribution of the centered 

hat values and it is discussed in the next section. 

3. Exact Distribution of Centered Hat Values  
Using the technique of one-dimensional Jacobian transformation, the density 

function of F-ratio with ( 1, )p n p  degrees of freedom was transformed into density 

function of centered hat values for the ith observation and it is given as 

 ; ,
ii

f h p n =  ; 1,
i

f F p n p  J                                                                     

(14) 

 ; ,
ii

f h p n =  ; 1,
i

f F p n p  i

ii

dF

dh
                                                                 (15) 

From (15), we know the density function of F-ratio with ( 1, )p n p  degrees of 

freedom and the first derivative of the relationship from (15) are given as 

 
      

1( 1)/2
2 2

( 1)/2 1
1 / 1

; 1, 1
1

,
2 2

p n pp

p

i i i

p n p p
f F p n p F F

p n p n p
B

     
 

 
   

    
     

 
 

         (16) 

where 0
i

F  , , 0n p , n p  and    

     
2

1 / 1 1i
ii

ii

dF
n p n n p h

dh
                                                                (17) 

Then substitute (16) and (17) in (15), we get the density function of centered hat values 

as  

 
   

 
1

( 1)/2 12
2 21 / 1 1/ 1/

; , 1
1 1 1

,
2 2

p n p
p

ii ii ii

ii

ii ii

n n h h n h n
f h p n

p n p h h
B

  
    

       
    

        
 
 

             (18) 

where (1/ ) 1iin h  , , 0n p , n p  

From (18), it is the density function of centered hat values and it involves the beta 

function  ( 1) / 2,( ) / 2B p n p   with two parameters ( ,n p ), where n is the 

sample size and p is the no. of predictors in a multiple linear regression model. 

Moreover, the authors derived the first two moments of the distribution of centered hat 

values and it is given as follows. 

   
1

1/

; ,
ii ii ii ii

n

E h h f h n p dh                    
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 
   

 
1

( 1)/2 121 2 2

1/

1 / 1 1/ 1/
1

1 1 1
,

2 2

p n p
p

ii ii ii

ii ii ii

n ii ii

n n h h n h n
E h h dh

p n p h h
B

                                    

      

 
 

 
0

1 / 1
1 1 ,

1 2 2
,

2 2

k

ii

k

n n p n p
E h B k k

p n p
B





   
         

 
 

                                                        

  /iiE h p n                                                                                                           (19) 

     
  1
( 1)/2 11 2

2 2
2 2

1/

1 / 1 1/ 1/
1

1 1 1
,

2 2

p n p
p

ii ii ii
ii ii ii

ii iin

n n h h n h n
E h h dh

p n p h h
B

                                   



   

 
  

     

2

2

0

1 / 1
1 1 , 2 / 1

1 2 2
,

2 2

k

ii

k

n n p n p
E h k B k k p n

p n p
B





     
        

     
 
 

       

                                                                                                                                      (20)                           

From (19) and (20), we know   /iiE h p n  and 

 
   

 
 2

1 21
2

1
ii

n n p n p
E h n p

n n n

    
     

 then the variance of the distribution was 

derived by substituting (19) and (20) in the following (21) we get   

      
22

ii ii iiV h E h E h                                                                                    

(21) 

 
  

 2

2 1

1
ii

p n p
V h

n n

 



                                                                                      (22) 

 
  

 2

2 1

1
ii

p n p
h

n n


 



                                                                              (23) 

Moreover, the authors adopted two approaches of evaluating and identifying the 

leverage points in a sample. The first approach is to compute the critical points of the 

centered hat values by using the relationship between hat values and F-ratio from (13) 

is given as  

   
        

        
1,

,

1,

1 / 1/

1 1 /

i p n p

ii n p

i p n p

p n p F n
h

p n p F






 

 

  


  
                                        (24) 

From (24), for different values of ( , )n p  and for significance probability 
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 0.05,0.01 , the percentage points were computed. The following table 1 and 2 

shows the significance points of distribution of the hat values for varying sample size 

(n) and predictors (p) at 5% and 1% significance ( ).using the percentage points, we 

can test the significance of the hat values computed from a multiple linear regression 

model to identify the leverage points. Similarly, the second approach is based on the 

control charts. The authors derived the lower and upper limits of the centered hat values 

by using the mean and standard deviation from (19) and (23) and both the limits are 

given as follows. 

Lower limit of iih =    ii iiE h h  

Lower limit of iih =  
  

 2

2 1
/

1

p n p
p n

n n

 



                                            (25) 

Upper limit of iih =    ii iiE h h  

Upper limit of iih =  
  

 1
12

/
2 




nn

pnp
np                                     (26) 

 

From (25) and (26), the authors computed the limits of the centered hat values for 

different combination of ( , )n p  and it is visualized in table no.3.Based on the limits, if 

the centered hat values  of an observation is exceeding or above the upper limit, then 

the observation is said to be a leverage point in X-space. On the other hand, if it is 

below the lower limit, then the observation is said to be remote and technically it is an 

outlier in X-space. The following simulation graph shows the shape of the distribution 

of centered hat values for a fixed small sample size of 30 and for different values of p

.From the curve of hat distribution, we observed for a fixed sample size of 30, it reaches 

the maximum probability if the no.of predictors used in a regression model will be 

more and the tail of the curves also touched the maximum hat value.  
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n p 

1 2 3 4 5 6 7 8 9 10 

3 0.3333 .5531 - - - - - - - - 

4 0.2500 .3980 .5892 - - - - - - - 

5 0.2000 .3127 .4337 .6264 - - - - - - 

6 0.1667 .2579 .3465 .4694 .6601 - - - - - 

7 0.1429 .2196 .2895 .3791 .5033 .6894 - - - - 

8 0.1250 .1913 .2490 .3192 .4103 .5345 .7147 - - - 

9 0.1111 .1695 .2186 .2763 .3478 .4397 .5629 .7365 - - 

10 0.1000 .1521 .1949 .2438 .3025 .3750 .4671 .5884 .7554 - 

11 0.0909 .1380 .1759 .2183 .2680 .3276 .4006 .4924 .6114 .7719 

12 0.0833 .1263 .1604 .1978 .2408 .2912 .3514 .4247 .5158 .6322 

13 0.0769 .1164 .1473 .1808 .2187 .2624 .3134 .3740 .4472 .5373 

14 0.0714 .1080 .1363 .1665 .2004 .2389 .2831 .3346 .3954 .4683 

15 0.0667 .1007 .1267 .1544 .1850 .2193 .2583 .3030 .3548 .4156 

16 0.0625 .0943 .1185 .1439 .1718 .2028 .2376 .2770 .3220 .3740 

17 0.0588 .0887 .1112 .1348 .1604 .1886 .2200 .2552 .2950 .3402 

18 0.0556 .0837 .1048 .1267 .1504 .1763 .2049 .2367 .2722 .3122 

19 0.0526 .0793 .0991 .1196 .1416 .1656 .1918 .2208 .2528 .2886 

20 0.0500 .0753 .0940 .1132 .1338 .1561 .1803 .2069 .2361 .2684 

21 0.0476 .0717 .0894 .1075 .1268 .1476 .1701 .1946 .2215 .2509 

22 0.0455 .0684 .0852 .1024 .1205 .1400 .1611 .1838 .2086 .2356 

23 0.0435 .0654 .0814 .0977 .1149 .1332 .1529 .1741 .1971 .2221 
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24 0.0417 .0626 .0779 .0934 .1097 .1270 .1455 .1655 .1869 .2101 

25 0.0400 .0601 .0747 .0895 .1050 .1214 .1389 .1576 .1777 .1993 

26 0.0385 .0578 .0718 .0859 .1006 .1162 .1328 .1505 .1694 .1897 

27 0.0370 .0556 .0691 .0826 .0966 .1115 .1272 .1440 .1618 .1809 

28 0.0357 .0536 .0665 .0795 .0930 .1071 .1221 .1380 .1549 .1729 

29 0.0345 .0518 .0642 .0766 .0895 .1031 .1174 .1325 .1486 .1656 

30 0.0333 .0500 .0620 .0740 .0864 .0994 .1130 .1275 .1427 .1589 

40 0.0250 .0413 .0547 .0675 .0802 .0930 .1059 .1191 .1325 .1464 

60 0.0167 .0278 .0370 .0458 .0545 .0632 .0718 .0805 .0892 .0980 

120 0.0083 .0139 .0186 .0230 .0273 .0316 .0358 .0400 .0441 .0483 

∞ 0 0 0 0 0 0 0 0 0 0 

 

Table 1: Significant two-tail percentage points of hat values at   
(n,p)

0.05
ii

h   

 

 

n p 

1 2 3 4 5 6 7 8 9 10 

3 0.3333 .9998 - - - - - - - - 

4 0.2500 .9996 .9999 - - - - - - - 

5 0.2000 .9994 .9998 1 - - - - - - 

6 0.1667 .9992 .9998 .9999 1 - - - - - 

7 0.1429 .9989 .9997 .9998 .9999 1 - - - - 

8 0.1250 .9987 .9996 .9998 .9999 .9999 1 - - - 

9 0.1111 .9985 .9995 .9997 .9998 .9999 .9999 1 - - 

10 0.1000 .9982 .9994 .9997 .9998 .9999 .9999 1 1 - 

11 0.0909 .9980 .9993 .9996 .9998 .9998 .9999 .9999 1 1 

12 0.0833 .9977 .9992 .9995 .9997 .9998 .9999 .9999 .9999 1 

13 0.0769 .9975 .9991 .9995 .9997 .9998 .9998 .9999 .9999 .9999 

14 0.0714 .9973 .9990 .9994 .9996 .9997 .9998 .9999 .9999 .9999 

15 0.0667 .9970 .9989 .9994 .9996 .9997 .9998 .9998 .9999 .9999 

16 0.0625 .9968 .9988 .9993 .9995 .9997 .9998 .9998 .9999 .9999 

17 0.0588 .9965 .9987 .9992 .9995 .9996 .9997 .9998 .9998 .9999 

18 0.0556 .9963 .9986 .9992 .9995 .9996 .9997 .9998 .9998 .9999 

19 0.0526 .9960 .9985 .9991 .9994 .9996 .9997 .9997 .9998 .9998 
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20 0.0500 .9958 .9984 .9991 .9994 .9995 .9996 .9997 .9998 .9998 

21 0.0476 .9956 .9983 .9990 .9993 .9995 .9996 .9997 .9998 .9998 

22 0.0455 .9953 .9982 .9989 .9993 .9995 .9996 .9997 .9997 .9998 

23 0.0435 .9951 .9981 .9989 .9992 .9994 .9996 .9997 .9997 .9998 

24 0.0417 .9948 .9980 .9988 .9992 .9994 .9995 .9996 .9997 .9998 

25 0.0400 .9946 .9979 .9988 .9991 .9994 .9995 .9996 .9997 .9997 

26 0.0385 .9943 .9978 .9987 .9991 .9993 .9995 .9996 .9997 .9997 

27 0.0370 .9941 .9977 .9986 .9991 .9993 .9995 .9996 .9996 .9997 

28 0.0357 .9939 .9976 .9986 .9990 .9993 .9994 .9995 .9996 .9997 

29 0.0345 .9936 .9975 .9985 .9990 .9992 .9994 .9995 .9996 .9997 

30 0.0333 .9934 .9974 .9985 .9989 .9992 .9994 .9995 .9996 .9996 

40 0.0250 .2288 .3078 .3694 .4214 .4669 .5074 .5439 .5770 .6073 

60 0.0167 .1306 .1738 .2090 .2402 .2689 .2957 .3210 .3452 .3683 

120 0.0083 .0634 .0843 .1016 .1171 .1315 .1451 .1582 .1709 .1831 

∞ 0 0 0 0 0 0 0 0 0 0 

 

Table 2: Significant two-tail percentage points of hat values at   
(n,p)

0.01
ii

h   

 

 

n 

p 

1 2 3 4 5 

LL/UL LL UL LL UL LL UL LL UL 

3 
0.333 

0.431 0.902 - - - - - - 

4 
0.250 

0.276 0.724 0.526 0.974 - - - - 

5 
0.200 

0.200 0.600 0.369 0.831 0.600 1.000 - - 

6 
0.167 

0.155 0.512 0.282 0.718 0.448 0.885 0.655 1.000 

7 
0.143 

0.126 0.445 0.227 0.631 0.357 0.786 0.512 0.916 

8 
0.125 

0.106 0.394 0.189 0.561 0.296 0.704 0.421 0.829 

9 
0.111 

0.091 0.354 0.161 0.505 0.252 0.637 0.357 0.754 

10 
0.100 

0.079 0.321 0.140 0.460 0.219 0.581 0.309 0.691 

11 
0.091 

0.070 0.293 0.124 0.421 0.194 0.534 0.273 0.636 

12 
0.083 

0.063 0.270 0.111 0.389 0.173 0.493 0.244 0.590 
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13 
0.077 

0.057 0.250 0.101 0.361 0.157 0.459 0.220 0.549 

14 
0.071 

0.053 0.233 0.092 0.337 0.143 0.429 0.201 0.514 

15 
0.067 

0.048 0.218 0.085 0.315 0.131 0.402 0.184 0.482 

16 
0.063 

0.045 0.205 0.078 0.297 0.121 0.379 0.170 0.455 

17 
0.059 

0.042 0.194 0.073 0.280 0.113 0.358 0.158 0.430 

18 
0.056 

0.039 0.183 0.068 0.265 0.105 0.339 0.148 0.408 

19 
0.053 

0.037 0.174 0.064 0.252 0.099 0.322 0.139 0.388 

20 
0.050 

0.035 0.165 0.060 0.240 0.093 0.307 0.130 0.370 

21 
0.048 

0.033 0.158 0.057 0.229 0.088 0.293 0.123 0.353 

22 
0.045 

0.031 0.151 0.054 0.219 0.083 0.280 0.117 0.338 

23 
0.043 

0.029 0.144 0.051 0.210 0.079 0.269 0.111 0.324 

24 
0.042 

0.028 0.139 0.049 0.201 0.075 0.258 0.106 0.311 

25 
0.040 

0.027 0.133 0.046 0.194 0.072 0.248 0.101 0.299 

26 
0.038 

0.026 0.128 0.044 0.186 0.069 0.239 0.096 0.288 

27 
0.037 

0.025 0.124 0.043 0.180 0.066 0.230 0.092 0.278 

28 
0.036 

0.024 0.119 0.041 0.173 0.063 0.222 0.089 0.269 

29 
0.034 

0.023 0.115 0.039 0.168 0.061 0.215 0.085 0.260 

30 
0.033 

0.022 0.111 0.038 0.162 0.059 0.208 0.082 0.251 

 

 

n 

p 

6 7 8 9 10 

LL 
UL LL UL LL UL LL UL LL UL 

3 - - - - - - - - - - 

4 - - - - - - - - - - 

5 - - - - - - - - - - 

6 - - - - - - - - - - 

7 0.697 1.000 - - - - - - - - 

8 0.564 0.936 0.731 1.000 - - - - - - 

9 0.474 0.859 0.606 0.950 0.757 1.000 - - - - 

10 0.409 0.791 0.519 0.881 0.640 0.960 0.779 1.000 - - 

11 0.360 0.731 0.455 0.818 0.557 0.897 0.670 0.967 0.798 1.000 
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12 0.321 0.679 0.404 0.762 0.494 0.840 0.590 0.910 0.695 0.972 

13 0.290 0.634 0.364 0.713 0.443 0.787 0.528 0.857 0.618 0.920 

14 0.264 0.594 0.331 0.669 0.402 0.740 0.478 0.808 0.558 0.871 

15 0.242 0.558 0.303 0.630 0.368 0.698 0.437 0.763 0.509 0.825 

16 0.223 0.527 0.280 0.595 0.340 0.660 0.402 0.723 0.467 0.783 

17 0.208 0.498 0.260 0.564 0.315 0.626 0.373 0.686 0.433 0.744 

18 0.194 0.473 0.242 0.535 0.294 0.595 0.347 0.653 0.403 0.709 

19 0.182 0.450 0.227 0.510 0.275 0.567 0.325 0.623 0.377 0.676 

20 0.171 0.429 0.214 0.486 0.259 0.541 0.305 0.595 0.354 0.646 

21 0.161 0.410 0.202 0.465 0.244 0.518 0.288 0.569 0.333 0.619 

22 0.153 0.393 0.191 0.445 0.231 0.496 0.272 0.546 0.315 0.594 

23 0.145 0.377 0.181 0.427 0.219 0.476 0.258 0.524 0.299 0.571 

24 0.138 0.362 0.173 0.411 0.209 0.458 0.246 0.504 0.284 0.549 

25 0.132 0.348 0.165 0.395 0.199 0.441 0.234 0.486 0.271 0.529 

26 0.126 0.335 0.157 0.381 0.190 0.425 0.224 0.468 0.259 0.510 

27 0.121 0.324 0.151 0.368 0.182 0.410 0.215 0.452 0.248 0.493 

28 0.116 0.313 0.145 0.355 0.175 0.397 0.206 0.437 0.238 0.477 

29 0.111 0.302 0.139 0.344 0.168 0.384 0.198 0.423 0.228 0.461 

30 0.107 0.293 0.134 0.333 0.162 0.372 0.190 0.410 0.220 0.447 

 

Table 3: Lower and upper limits of the centered hat values for combinations of ( , )n p  

 

4. Numerical Results and Discussion 
In this section, we will investigate the discrimination between the traditional 

approach and the two proposed approaches of identifying the leverage points on the 

survey data collected from RSQ (Retail Services Quality) study. The data comprised of 

20 different attributes about the retail stores and the data was collected from 275 

customers. A well-structured questionnaire was prepared and distributed to 300 

customers and the questions were anchored at five point Likert scale from 1 to 5. After 

the data collection is over, only 275 completed questionnaires were used for analysis. 

The following table shows the results extracted from the analysis by using SPSS 

version 20. At first, the authors used, stepwise multiple regression analysis by utilizing 

19 independent variables and a dependent variable. The results of the stepwise 

regression analysis revealed, 4 fitted multiple linear regression models are significant 

with different set of predictors. For each model, the centered hat values were computed 
and the process of identifying the leverage points, comparative results of the proposed 

approaches with the traditional approaches are visualized in the following table.4 
 

Model P 

Traditional approach  Proposed approach-I 

 

Cut-

off     (2 / )p n  

 

Leverage 

points(n) 

> 

(2 / )p n  

Mean 

hat 

values of 

Leverage 

points 

Significance level 

5% 1% 

Critical 

hat 

values 

Leverage 

points(n) 

Mean 

hat 

values of 

Leverage 

points 

Critical 

hat 

values 

1 1 0.0072727 38 .0193428 0.00363 38 .0193428 0.00363 
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2 2 0.014545 21 0.039741 0.01758 21 .0446091 0.027603 

3 3 0.021818 41 0.040602 0.02534 36 0.043004 0.036810 

4 4 0.029091 43 0.05262 0.03191 42 0.05314 0.044413 

 

Model p 

Proposed 
approach-I 

Proposed approach-II 

1% Significance 
level 

Lever

-age 

points

(n) 

Mean hat 

values of 

Leverage 

points 

UL 

Lever

age 

point

s(n) 
> UL 

Mean hat 

values of 

Leverage 

points 

LL 

Out 

liers 

(n) 

<LL 

Mean 

hat 

values 

of 
outliers 

1 1 38 0.193428 0.003636 38 0.003636 0.003636 237  
0.001118 

2 2 19 0.0412186 0.01238 41 0.0271215 0.002158 147 
0.001498 

3 3 21 0.0502705 0.01812 43 0.0396624 0.003689 122 
0.002287 

4 4 27 0.0607974 0.023371 49 0.0493099 0.005718 123 
0.003515 

          p-no.of predictors   n=275          LL-Lower limit      UL-Upper limit 

Table 4: Comparative results of proposed and traditional approaches        

From the above tables, Table-4 visualizes the results of traditional approach 

and the proposed approach-I of evaluating the leverage points based on the centered hat 

values in a multiple linear regression model. As far as the fitted model-1 is concern, 38 

observations found to be leverage points because the hat value of those observations are 

more than the cut-off of 0.0072727. Similarly, model-2, model-3 and model-4 are also 

having 21, 41 and 43 observations are leverage points respectively. This approach of 

evaluating the leverage points is a traditional one and experts revealed it is a rule of 

thumb but the proposed approach-I by the authors is scientific and it is based on the test 

of significance. In this approach the authors derived the percentage points of the 

centered hat values for each fitted multiple regression models at 5% and 1% level. As 

far as model-1 is concern 38 observations are said to be leverage points because the 
calculated hat values of these observations are greater than the critical values at 5% 

level of significance. Similarly, 21 observations in model-2, 36 observations in model-3 

and 42 observations in model-4 are statistically proved as a leverage points at 5% level 

of significance. Moreover, 19 observations in model-2, 21 observations in model-3 and 

27 observations in model-4 are found to be leverage points at 1% level of significance. 

Besides these the authors proposed another approach to evaluate the leverage as well as 

outlier points, because the proposed first approach only scrutinized the leverage points 

but  fail to identify  the remote or outliers in the X-space. The second approach is based 
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on the limits of the centered hat values. From Table-5 the authors computed the lower 

and upper limits of the centered hat values for each fitted regression models based on 

the no.of predictors and the sample size. As far as model-1 is concern the lower limit, 

upper limit and mean hat values of the leverage points are same because the fitted 

model-1 is having only one predictor. In this model, the hat values of 38 observations 

are above the upper limit and they are said to be leverage points, but the hat values of 
237 observation are less than the lower limits. Hence these observations are treated as 

outliers. As far as model-2, 3 and 4 are concern, the hat values of 41, 43, 49 

observations are above the respective upper limits such as 0.01238, 0.01812 and 

0.023371 respectively. This shows, these observations are said to be leverage points in 

each fitted models. Similarly, the same models-2, 3 and 4 are concern, the hat values of 

147, 122, 123 observations are below the respective lower limits such as 0.002158, 

0.003689 and 0.005718 respectively. This shows, the hat value of these observations 

are close to 0 and they are said to be outliers. Finally from table-4 and table-5 the 

results of the proposed approach-I and II were shown along with the results of 

traditional approach. The identification of leverage points based on these two 

approaches are different when compared to the traditional approach. For example, the 
traditional approach emphasize model-3 is having 41 leverage points but the proposed 

approach-I critically claimed 36 observations are leverage points at 5% significance 

level and 21 observations are leverage points at 1% significance level respectively. This 

shows the proposed approach is discriminated from the traditional approach in 

identifying the leverage points. Similarly, the proposed approach-II is also different 

from the traditional approach, for example traditional approach emphasizes model-2 is 

having 21 leverage points but the proposed approach-II visualizes 41 observations are 

said to be leverage points and 147 observations are outliers in the same model. Hence, 

there is some discrimination between the two approaches in identifying the leverage 

points in a multiple linear regression model and the proposed approach-II helps us to 

identify the leverage as well as outliers. The following control charts visualize the 

results of the proposed approach-II. 
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Fig.13 

5. Conclusion 
From the previous sections, the authors proposed two approaches of 

identifying and evaluating the leverage points in X-space in a multiple linear regression 

model. At first, the exact distribution of the leverage points was derived and the authors 

proved it followed a beta distribution with 2 shape parameters n and p. Similarly, the 

authors proved the leverage points are non-normally distributed and we found the hat 

values does not lies between 0 and 1 but it lies between 1/n and 1.If the sample size is 

very large, then the hat values in a multiple regression model lies between 0 and 

1.Secondly, the proposed approach-I is a more systematic and scientific method of 
identifying the leverage points because it is based on the test of significance. The 

proposed approach-II is based on the limits of hat values and the authors treated if the 

hat values of an observation is beyond the upper limit is said to be a leverage point and 

if it is below the lower limit, then the observation is an outlier in X-space. Finally, the 

proposed approach-II is having an advantage over the Traditional approach and the 

proposed approach-I. This approach helps the statisticians to exactly identify the 

leverage as well as the outlier points in a multiple linear regression model. Moreover, 

the authors emphasizes that the hat values not only helps to identify the leverage points 

but also the outliers in X-space too. The hat values are non-normally distributed and 

using more rigorous parametric test based on normal distribution to test the differences 

in the means of the hat values are impossible. 
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