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Abstract

This article discusses the Bayesian and frequentist inferences for the expo-
nentiated Chen distribution assuming upper record values. Due to unavailabil-
ity of the compact form of marginal posterior distributions, a Markov Chain
Monte Carlo algorithm is designed to compute the posterior summaries.
Prediction of future record values under Bayesian and frequentist methods
is also discussed mathematically and numerically. Further, a sensitivity anal-
ysis to assess the effect of prior on the estimated parameters is also a part
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of this study. Besides the simulation studies, the importance of the present
study is illustrated with the help of a real data example. It is noted that the
Bayes estimates outperform the frequentist inference.

Keywords: Asymptotic intervals, Bayesian prediction, exponentiated Chen
distribution, record values.

1 Introduction

The ordered observations which strictly exceed the previous values are called
the record values, and thus the record statistics are closely related to theory
of order statistics. The study of records gained popularity in the literature
because of their practical usage, such as industrial stress testing, meteorology,
seismology, hydrology, sporting events, economics, life testing, oil and min-
ing surveys (Ahsanullah and Nevzorov, 2015). In statistics, Chandler (1952)
developed the concept of record statistics and also discuss record values,
record times and inter record times. After that numerous studies discussed
record values and related statistical inference. For instance, Dziubdziela and
Kopocinski (1976), Nagaraja (1977), Srivastava (1979), Nevzorov (1988),
Arshad and Jamal (2019), Yousaf et al. (2019), etc. For more detailed infor-
mation on record statistics, and their applications, we refer to Arnold et al.
(2011) and Ahsanullah and Nevzorov (2015). Soliman and Al-Aboud (2008)
used upper record values from a Rayleigh distribution and discussed Bayesian
and non-Bayesian approaches to obtain the estimators of the parameter. Seo
and Kim (2017) discussed objective Bayesian analysis based on upper record
values from two-parameter Rayleigh distribution with partial information.
The authors provided a pivotal quantity and an algorithm based on the pivotal
quantity to predict the behavior of future survival records. Al-Duais (2021)
used the inverse Weibull distribution for the Bayesian analysis of upper
record values using balanced loss function. Pak et al. (2022) considered the
records as well as the corresponding inter-record times to develop inference
procedures for R = P(X > Y) assuming X and Y come from Weibull
distribution. Kumar and Gupta (2023) discussed Bayesian analysis of inverse
Rayleigh distribution using noninformative prior for different loss functions.
Alhamidah et al. (2023) considered the problem of E-Bayesian estimation
and its expected posterior mean squared error (E-PMSE) in a Burr type XII
model on the basis of record values.
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The exponentiated Chen distribution (ECD) is introduced by Chaubey
and Zhang (2015), which is in fact is an extension of the two-parameter
Chen distribution (Chen, 2000). The ECD is a positively skewed and more
flexible than the two-parameter Chen model. The ECD has a bathtub hazard
function, which decrease initially, then remains constant, and finally increase.
In practice, the most accurate failure rate is bathtub-shaped, and in the
literature, many researchers proposed different models for bathtub-shaped
hazard rate, see, for example, Hjorth (1980), Rajarshi and Rajarshi (1988),
Xie and Lai (1996), Chen (2000), and references cited therein.

Suppose X1, Xo, ..., X, be the n upper record values from the ECD with
probability density function

9(x;7, 1, p) = vzt exp(at) exp(p(1 — exp(zh)))
(1 — exp(pp(1 — exp(a*)))) "™
x>0,7p0>0 (1)

where ¢ > 0 is the scale and ~y, ¢+ > 0 are the shape parameters. By setting
=1 in Equation (1), the distribution reduces to
g(z) = ppat " exp(at) exp(p(1 — exp(a”)))  z,p0 >0 (2)

which is the two-parameter Chen distribution. Thus, the Chen distribution is
a special case of the ECD. The distribution function of the ECD is given as

G579, 1, 0) = (1 = exp(p(l —exp(ah))))” x>0 (3)

The hazard, reliability, and quantile function of ECD are given, respec-
tively, by
vhprht exp(at) exp(p(1 — exp(z#)))
(1 — exp(p(1 — exp(z#))))7 "
1= (1 —exp(ip(1 — exp(z+))))7
R(z) =1— (1 —exp(e(1l — exp(z"))))” x>0,pu,0>0 “4)

1 1/u
Xy = |log (1 - - log(1 —w'/7)) w e (0,1) (5)

h(z) =

z>0,p,p>0
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Figure 1 Density and hazard plots for different parameter values.

The graphical depiction of the ECD and its failure is given in Figure 1.
To be more specific, the plot on the left, i.e., Figure 1(a), is the probability
density function plot of the ECD with parameters v = 35,4 = 0.25,p =1
plotted as the yellow solid line, v = 35,4 = 0.25, ¢ = 1.5 plotted as the
red dashed line, v = 35, 4 = 0.25,p = 2 plotted as the green dotted line,
v = 35,4 = 0.25,¢ = 2.5 plotted as the blue dot-dashed line and finally,
v = 35, = 0.25,p = 3 plotted as the gray long-dashed line. Similarly, in
Figure 1(b) the hazard function is plotted assuming the scale and the first
shape parameter fixed at v = 35, u = 0.25, while assuming the second shape
parameter ¢ = 1, 1.5, 2, 2.5 and 3, respectively.

The development of new probability models and studying their different
properties has gained a lot of attention from research during the last decade.
For example, Xie et al. (2002) introduced the three-parameter Weibull dis-
tribution by adding a new scale parameter to baseline distribution. Later,
Chaubey and Zhang (2015) also extended the Chen distribution by adding
the shape parameter and named the proposed distribution as the ECD. Dey
et al. (2017) studied different properties and estimation methods for the ECD
and concluded that the maximum product of spacing (MPS) method is more
efficient than the other estimation methods. Khan et al. (2016) introduced
the transmuted exponentiated distribution. Recently, Khan et al. (2018) intro-
duced a new five parameter Kumaraswamy exponentiated Chen distribution
by adding two new shape parameters to the base line ECD. Eliwa et al. (2021)
proposed exponentiated odd Chen-G family of distribution and studied differ-
ent properties. Later, Awodutire (2022) used the exponential distribution as
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a baseline distribution to study the properties of exponentiated odd Chen-G
family. Recently, Azimi et al. (2023) proposed inverted exponentiated Chen
distribution with application to cancer data. Méndez-Gonzalez et al. (2023)
introduced the additive Chen distribution and discussed its properties and
applications.

The aim of this study is to present parameter estimation of the ECD based
on upper record values under Bayesian and non-Bayesian methods. Further, a
framework for prediction of the future record observations is also discussed.
As we have shown in the next section, Bayesian computations cannot be done
in the traditional manner, a Markov Chain Monte Carlo (MCMC) algorithm
is devised to obtain different posterior summaries.

The rest of the study is organized as follows. Section 2 derives the esti-
mators of the unknown parameters for the ECD by the maximum likelihood
method. Section 3 discusses Bayes estimators under the squared error loss
function (SELF) using informative and non-informative priors. Sensitivity
analysis is discussed in Section 4. The prediction of future record values for
the ECD under Bayesian and frequentist approaches is discussed in Section 5.
The numerical results of simulated as well as for real data are presented in
Sections 6 and 7, respectively. Finally, Section 8 presents conclusion.

2 Maximum Likelihood Estimation

For the estimation of v, and ¢ assuming the upper record values using
the maximum likelihood estimation method, suppose X1, Xo, X3,... be a
sequence of independent and identically distributed (iid) random variables
with PDF g¢(x) and CDF G(x) from the Exponentiated Chen distribution.
Suppose Y;, = max(min){ Xy, X2, X3, ..., X, } for n > 0. The observation
X, is an upper(lower) record value of this sequence if Y;, > (<)Y;_1,k > 1,
i.e., Xy is the upper(lower) value if its value is greater(smaller) than that
of all the preceding observations, where X k(m) and k() denote the upper
record values and upper record times, respectively. Assuming a sample of
size n record values X = {ka s Xz ,Xk(n)} from Equation (1), the
likelihood can be written as (Ahsanullah, 1995).

9(Tr@iy; Vs 1 )
1- G(mk(z)v Yo My 90)

Ly, 1 0l2) = 9@y v 10) [ |

=1

0< Tr1) < T2) <0 < Tg(p) < OO (6)
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By replacing the PDF and CDF of the ECD in Equation (6), the likelihood
function can be written as

I, x‘k‘(;)l exp(:E'Z(i)) exp [cp{l — exp(a:’,:(i)) H
[1—exp {ip(1 — exp(afi;)) }]"

[T [ — {1 — exp((1 — exp(afi)))]
(7

L(y, p, p|x) = 4" "™

2.1 Likelihood Estimators

For deriving the maximum likelihood estimators (MLE), take the par-
tial derivatives of the logarithm of the likelihood function (v, i, p|z) =
log L(7y, i, ¢|x) with respect to unknown parameters. It is to be noted that
the terms without ~y, © and ¢ can be ignored.

1(y: 1, plw) = nlog(y) + nlog(u) + nlog() + Yz
=1

+ (7= 1)) log(1 — exp(p(1 — exp(};;))))
=1

+ (= 1)) log(a)
=1

n—1
= > log (1 — (1 - exp(p(1 — exp();)))7)
=1
+o ) (1—exp(ey,)) (8)
=1

Next, partially differentiate Equation (7) with respect to the parameters
and equating the resulting equations to zero. The resulting normal equations
can be written as.

n "1 og(1 — exp(¢(1 — exp(xg(i))))'y log(1 — exp(p(1 — exp(:c’,:(i))))
R 1—-(1- exp(gp(l - eXp(xl;i(i)»))v
+ > log(1 — exp(ip(1 — exp(a}))) = 0 ©)

=1
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n n n
; + Z log(mk(i)) + Z x’;(i) log(xk(i)) +(y—1)
=1 =1

n

3 Py iy Log(wr() exp(e(l — exp(ay ;) + T ;)
i1 1 —exp(p(1 — exp(xz(i))))

Yol log(ar(e) exp(ip(1 — explalt ) +al )
o1 (1 exp(ip(1 — exp(al;)))7 "

- ; 1— (1 —exp(p(1 — exp(ay ;)
+ Z; log(wr(i)) — Z; exp(avz(i))xg(i) log(wy(s) =0 (10)

(1 — exp(xz(i))) exp(p(1 — exp(xl]:(i))))
n e (I—exp(p(l —exp(zy;)))) T

-2

¢ & 1 (1 explp(l - exp(al, )T

n

370 - explaliy) — (v 1)

=1
no(1- eXP@Z(i))) exp(¢(1 — exp(mz(i))))
2 T exp(p(l— exp(af)))

=0 (11)

Solving Equations (9)—(11), one can get the MLE for the ECD parameters
v, i and ¢, denoted as YyrE, Ly and Oy E, respectively. An iterative
procedure like Newton Raphson is suggested to solve the above equations
because these equations do not have analytical solution.

2.2 Asymptotic Confidence Intervals

Since the MLE of y, 11 and ¢ cannot be solved analytically, the exact distribu-
tion of these estimators is difficult to obtain. Therefore, the exact confidence
intervals for the parameters 7, and ¢ cannot be obtained. Alternatively,
asymptotic confidence intervals are obtained by using the large sample
approximation. It is well known fact that the asymptotic distribution of the
MLE, say, 1 is () — 1) — N(2p, I71(3))) (Lawless, 2011), where I~1(v))
is the inverse of the observed Fisher information matrix of the unknown
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parameters ¢ = (7, i, ), defined as

CPlpelx)  Pllpelx) P\ |
0v? 0o AL
71— | _ &) CRICHIRELES) _ 2U(y,m0%)
opoy Ou? Ipdp
_ PU(ypeplx) _ PU(ypplx) _ PU(ypeplx)
0y O Op 0" (Vo1:0)=(3:0:)
or
var(y) cov (¥, fL) cov(¥, Q)
I = | cov(,9) var(f1) cov(fi, @)
cov(¢,)  cov(p, fi) var(p)
where
Uy, o plx) _ O (0L, p, pl)
o2 O o ’
Uy, pplx) _ O (OU(y, p, pl)
0O 0 ou
Uy, pplx) _ 0 (Ol(y, p, pl)
o o ou ’
Uy, pplx) _ 0 (Ol(y, p, pl)
oudyp ou dy
Uy s plx) 0 (Ol ppl)
0p? Do Do ’
O*Up, p,y%) 0 (Ol(y, ppl)
00y Oy vy

The asymptotic 100(1 — v)% confidence intervals of the parameter v, i
and ¢ are of the forms

Y £ 2y)2 var(9)

i 24 o/ 0ar ()
and
@ & 2y 2/ var(p)
where z,/, is the upper (1/2)th percentile of the standard normal
distribution.
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3 Bayesian Estimation

The aim of this section is to present Bayesian analysis for the unknown
parameters of the ECD based on the upper record values. Selection of a suit-
able prior for the unknown parameters is an important task in Bayesian infer-
ence. There are many types of priors, like informative and non-informative
priors which can be used in the Bayesian inference. A sufficient knowledge
about a problem at hand is known to be the informative prior while vice versa
for the noninformative prior case. The Bayes theorem is used to combine
the currently observed information with the prior information to get an
updated form of the information, which is known as the posterior distribution.
For simplicity, in this study it is assumed that the parameters vy, i and ¢
are independent and follow gamma distribution, i.e., v ~ gamma(a,b), p ~
gamma(c,d) and ¢ ~ gamma(e,f) with PDFs

9(v) ox 7" Lexp(—by) >0 (12)

g(p) oc p " exp(—dp) >0 (13)
and

9(p) o ¢ Lexp(—fe) >0 (14)

where a, b, c, d, e and f are known and non-negative hyperparameters. It is
worth mentioning that the gamma prior is considered for illustration and any
other suitable prior can be used instead of this. Furthermore, dependent type
priors can also be assumed. To this end, the joint prior distribution can be
written as follows.

Lexp(—by) ™! exp(—du) e exp(—fop)

Yk >0 (15)

The joint posterior distribution is obtained by combining Equation (7) and
Equation (15) and the resulting expression is given in Equation (16).

gy, i, ) oc ™

(7, 1 pl%) o L, ps plx) X g(, 1, )
(7, iy p[x) oc e et gt e L exp(—by —dp — fo)T  (16)
where
Yoy afz(_i)l exp(a:’k‘(i)) exp(p(1 — exp(mz(i))))
(1 — exp(ip(1 — exp(zy ;)

T = 17
ST (1 — (1= expl(1 — exp( ) )
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For deriving the marginal posterior distribution of the parameter of
interest, integrate the joint posterior distribution with respect to nuisance
parameters. The marginal posterior distribution of vy, i and ¢ can be written
as follows.

o0 [e.9]
m(y[x) o< " exp(—b7) / / prreTignrerd
0 0

ma(ufx) oc "< exp(—dp) /0 /0 prre et
x exp(—by — fo)Tdydyp (19)

and

m3(p]x) o< " exp(— f) /0 /0 e trtet
x exp(—by — du)Tdydp 20)

Next, the specification of a suitable loss function is required to estimate
the unknown parameters. In Bayesian, one of the most commonly used loss
function is the squared error loss function (SELF). Assuming the SELF, the
Bayes estimators for the parameter v, i1 and  can be obtained as Ypgr =

E,x(7), i = Eyx(p) and @BGE = E¢|>5(80), respecti'vely, provided
that F (), E(u) and E(yp) are finite and do exist. These estimators can be

written as Ypgr = T, fipge = 1), and ypgr = T, where

T, = /0 /U /0 yrepr et e exp(—by — dp — fo)Tdydpde
(2D

T, = /0 /O /0 YO e exp(—by — dp — fo)Tdydpdp
(22)
and

T, = /0 /0 /O AT O exp(—by — dp — fo)Tdrydpdep
(23)
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Since the Bayes estimators cannot be obtained analytically, a numerical
procedure is required to solve them numerically. To this end, the use of
Metropolis-Hastings (MH) algorithm is suggested to obtain the Bayes esti-
mators. Within Markov Chain Monte Carlo (MCMC), Metropolis algorithm
is a very flexible method to obtain Bayes estimates (Metropolis et al., 1953;
Hastings, 1970). We use MH algorithm to generate the parameter v because
its distribution is not a well-known distribution. We express the marginal
posterior distribution of each parameter as follows

n

gV, 0, %) ~ A" exp(—by) Y
=1

T (1 — expli(1 — explafy )

X exp(y ;) =
KO = (1= exp(e(1 — exp(afy ;))))
(24)
g(p|x) ~ Gamma <n +c¢, d+1n z:?_ll%> (25)
and
g(¢p|x) ~ Gamma(n +e, f— (1 — exp(:n‘,:(i))) (26)

To apply the MH algorithm, first, initialize the parameter ~y as the initial
value v, and draw the next value ' with probability density g(+'|y,) which
is known as the transition kernel. It is to be noted that gamma distribution
is taken as a transition kernel for illustration and any other suitable dis-
tribution can be considered. Then, calculate . = min(mimse, 1), where

m1 = g(v')/g(~.) defining the probability ratio between the present and

the last sample v, and my = 9071v) I the result of mg = 1, the density is

9(v'Ir)
symmetric. A new state is rejected if m = 1, v, 11 =7/, i.e.,

A with probability m
1= {% with probability 1-m
To diminish the effect of initial state, repeat the above process a large
number of times. To obtain more reliable results, some initial state values can
be discarded which is known as the burn-in period. The Markov Chain will
converge when the variance of the parameter values decreased or becomes too
small. We suggest the following steps to calculate the posterior estimates.
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(1) Guess the initial value of ~ as 7.
(2) Generate p and ¢ from g(u|x) and g(¢|x).

(a) To calculate +, estimate the acceptance probability by g(fy(i), v =
9(v'[x)9(v V17"
9(YDx)g(v' 7))

(b) Generate random numbers U(0,1).
© If (v, 7") > U, 10T = 50
(3) Suppose v, 1 and ¢ take the values ~;, u; and ¢; at the ith step. Now,
ppose 7, [ 2 Vis ¥ Y
one can generate §(Yi+1[i, i, Pi, X)-
(4) Repeat the above steps N-times.
(5) Obtain the Bayes estimators of h(~, u, ) by ﬁ ZfiLH 9(Vrs s
©r), where L denote the number of burn-in sample.

min | 1, , where g(7|x) has been defined above.

A great advantage of the MH approach over Gibbs sampler is that the
conditional distribution of parameters is notessential. In this study, we con-
sidered 50,000 as the MCMC iteration size and first 5,000 observations were
discarded as the burn-in samples.

3.1 Bayes Intervals

This section discusses the Bayes intervals, which give a probabilistic state-
ment with a specified probability whether a parameter of interest is included
in the intervals or not. Thus, Bayes intervals do not depend on the repetition
concept as the classical intervals and also known as the credible intervals.
After deriving the marginal posterior distribution of the parameter v, a
symmetric 100(1 — ¢)% two-sided Bayes interval estimate of ~, denoted by
[vL, U], can be obtained by solving the following two equations (Martz and
Waller, 1982).

L b
/ T (w]x)dw = = (27)
0 2
and ~
/ 1 (w|x)dw = ¢ (28)
W 2

for the limits ~7, and 7y, and subject to 71 (v |x) = 71 (yy|x). Similarly, a
100(1 — ¢/2)% two-sided Bayes interval estimate of y, denoted by [ur, prr]s
can be obtained by solving

/HL mo(w|x)dw = ¢ (29)
0 2



Parameters Estimation of the Exponentiated Chen Distribution 209

and

°° ¢
/ mo(uofx)deo = 3 (30)
fu
for the limits iz, and pur7 subject to mo(pr|x) = mo(per|x). Finally, a 100(1 —
¢/2)% two-sided Bayes interval estimate of ¢, denoted by [, pr] can be
obtained by solving

PL d)
/ ma(w|x)dw = = (31)
O 2
and ~
/ m3(w|x)dw = ¢ (32)
oU 2

for the limits ¢y and ¢y subject to m3(¢r|x) = m3(py|x). Since the equa-
tions of the Bayes intervals cannot be solved analytically, the aforementioned
steps can be used to compute them numerically, i.e., order the Bayes estimates
and then obtain the specified lower and upper quantile points.

4 Sensitivity Analysis

To assess the change in the output by changing the output(s) is known as the
sensitivity analysis. As the model is kept unchanged, this type of analysis
provides insights about the data that are used to estimate the unknown
quantities. For instance, if one model does not change too much by changing
its inputs is considered better than a model that changes a lot by changing its
inputs. In other words, the first model is less sensitive to the changes in the
input data.

Since the prior information plays a crucial role in the Bayesian analysis,
it is recommended to assess the effect of prior on the posterior summaries.
Hence, prior sensitivity can be assessed to select more appropriate hyperpa-
rameters. To this end, we recompute the Bayes estimates and other posterior
summaries by assuming different values of parameters of the gamma prior.
Then, we compare the results with the posterior summaries obtained assum-
ing informative prior. This aim of this sort of comparison is to find how
much the results deviate by changing the original prior. We discuss numerical
results of sensitivity analysis in the simulation study section.

5 Estimation of Future Record values

One of the aim of statistical inference is to make a prediction of a future
unknown value. Thus, this section discusses the prediction of future record
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values for the ECD under Bayesian and frequentist approaches. In the liter-
ature, Basak and Balakrishnan (2003) studied the problem of future record
statistic estimation by using the maximum likelihood method. Similarly,
Madi and Raqgab (2004) and Ahmadi et al. (2009) discussed the problem of
estimating future record statistic for geometric and Burr type XII distribution,
respectively.

Let n upper record values Xp,(1y, Xy (2); - - -, Xp(n) from a population with
density function f(x;¢) are available and our interest is to predict the mth
record value, say, y = Xj(y),m > n. To this end, Basak and Balakr-
ishnan (2003) defined the following joint predictive likelihood function of

Y = Xp(m)-
‘ [H (y;0) — H(Xpy(ny; 9)]" "

Liy, 0, X) = ][ hlXug, . 9) T(m —n)
=1

g(y; )

where

97, 1 0) = vyt exp(y*) exp(p(1 — exp(y™)))
(1~ exp(p(1 — exp(y)))" ™"
S(y; 7, 0) = 1= (1 —exp(p(1 — exp(y"))))”
G(y; 7y, ) = (1 — exp(p(1 — exp(y™))))”
H(y;9) = —In(1 — G(y;9))

Here H(y;?) denotes the cumulative hazard function and the hazard
function can be derived as

9(Xk(iy; Vs 1 )

The predictive likelihood function for the ECD is simplified as follows.

[phy exp(al;)) exp(p(l — exp(a)))) ]

n (1 —exp(p(l— eXp(x/’:(i)))))w—l

Ly, v, 1, ) = 11;[1 1—(1—exp(e(l — eXP(‘TZ(i)))))’Y
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_ ln(l - (1 — eXp(go(l _ eXp(y“))))'Y) (m—n—1)
+In(1 — (1 — exp(p(1 — exp(l"z(i)))))’Y)

x I'(m —n)

X gyt~ exp(y) exp(p(1 — exp(y")))
-1
X (1 —exp(p(l — exp(y“))))7 (33)
The logarithm predictive likelihood function is given as

log(L) = (n+1)log(y +u+¢)+ (p—1)

X (Z log(xk(i)) + log(y)> + Z log(xg(i)) + log(y")
i=1 i=1

+ Zcp(l - eXP<$z(i))) +(y+1)

=1

; (Z<1 — explip(1 — exp(etiy))

=1
+(1 — exp(p(1 - exp(zﬂ)))))

+ (1 —exp(y")) + (m —n —1)

(1— (1 - exp(p(1 — exp(ali;))7)
(1~ (1~ exp(e(1 - exp(y))))")

—logT'(m —n) (34)

x log [log

To obtain the maximum likelihood predictors of the ECD parameters v,
and ¢, partially differentiate Equation (34) with respect to ~,  and ¢ and
equating them to zero. As the resulting equations do not have explicit form, an
iterative procedure like Newton Raphson is required to obtain the numerical
values of predictions.



212 F Yousaf et al.

5.1 Bayes Prediction

This section presents prediction of future record values using the SELF. The
prediction of future record values using the Bayesian approach is discussed
by many scholars, see, for example, Mousa et al. (2002), Al-Hussaini and
Ahmad (2003), Madi and Raqgab (2004), EI-Din et al. (2015), and references
cited therein. Suppose n upper records Xp, 1y, Xg(2), - - - Xg(n) are available
from the ECD and our interest is to find the Bayes estimate and Bayesian
prediction intervals for the future upper record Xy,), for some m > n,
with a specified confidence. The conditional probability density function of
y = Xg(m) for a given z = Xy,,) can be written as (Ahsanullah, 1995)

[10g (237, 1, ) — 10g S (3 7, 11 2)] ™" g3 7, 11, )
Y>>z 35)

g(ylziy, pm @) =

where

S(z9, 1 0) =1 — (1 — exp(ep(1 — exp(z"))))”

and
S(y; v, 1, 0) =1 — (1 — exp(ip(1 — exp(y"))))”
log 1 — (1 — exp(p(1 — exp(z*)))) —1]™ "
—(1 —exp(p(1 —exp(y"))))”
9(ylzv, 1, 0) = Tlm = n)
Yupy" 1t exp(yt) exp(p(1 — exp(y*)))
(1 = explp(1 — exp(y))))"™ G6)

1 — (1 —exp(p(1 — exp(z+))))"

As the record values follow the Markovian property, the future upper
record y = Xy(y) given that X = Xy(1), Xp(2), ..., Xp(n) depends only
on the current upper record z = Xj,,,). Therefore, the conditional probability
density function of y given x and the conditional probability density function
of y given z is the same. The predictive probability density function of y
given x is

g*(ylx) = /O /O /0 9127 11, 0) X 7y s plx)dydudyp  (BT)
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where g(y|z, 7, i1, ¢) and 7 (7, p, p|x) are defined previously. To obtain the
100(1 — ¢)% two-sided Bayes predicted intervals, solve the following

yL
/z 9" (ylz)dy = %

and

/ 9" (ylz)dy = g

Yyu

where the lower limit is y7, and the upper limit is y;.

5.2 Median Prediction

For calculating the conditional median prediction of the future record value,
suppose that X 1), Xy (2), ..., Xg(n) be the upper record values from the
ECD and our interest is to predict 2 = Xj,,,), where m > n. As discussed
previously that the record values have a Markovian structure, the conditional
distribution of y given z is the same as given in Equation (36). The CDF of y
given z by assuming the parameters -, 1 and  are known, can be written as

Yy
G(zly, v, 1, ) = /0 g(71z,7, 1, p)dr (38)

Further, supposing the inverse of CDF exists, i.e., G~!(v), the 2 can be
obtained by solving G~!(v) = 1/2 for v. Since this cannot be calculated
easily in our case, a numerical procedure is used to compute it.

6 Results

Here, the results obtained by a simulation study are presented and discussed.
Furthermore, sensitivity analysis for evaluating the impact of hyperparame-
ters on the Bayes estimates is also discussed.

6.1 Simulation Study

Here, we present the performance of the maximum likelihood and Bayes esti-
mators for the ECD based on record values assuming different sample sizes.
Before presenting a detailed analysis, it is worth mentioning the generation of
upper record samples from the ECD. Abdi and Asgharzadeh (2018) discussed
a method for generating upper record values from any absolutely continuous
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distribution. To discuss Abdi and Asgharzadeh (2018) method for gener-
ating Ky, Ko, ..., K, upper record values from an absolutely continuous
probability distribution, the following steps are suggested.

(1) Generate m independent Exponential(1) observations 21, Zo, ..., Zy.

(2) Compute M; = Zy + Zy+---+ Z, forj=1,2,...,n.

(3) Calculate Y; = 1—exp(—M;)forj =1,2,...,m.Then, Y1,Y>,...,Y,
are the desired upper record values from the uniform(0,1) distribution.

(4) Finally, set W; = G1(Y;) for j = 1,2,...,n. Then, W1, Wa,..., W,
is the upper record values from the desired distribution.

For the ECD, W; = {log {1 — élog(l _ le/v)}} l/u.

An alternative procedure for generating upper record values is intro-
duced by Pakhteev and Stepanov (2016). To this end, suppose the sequence
Y1,Ys,... of iid random variables with a continuous distribution G(.). Fur-
thermore, we let the sequence Y7, Yo, . . . satisfies the Markov Chain property,
that is

G(Yn+1) = G(yn)
1- G(yn)

(Ynt1 > yn)
(39)

P(Yni1 < ynsa|Yim) = yn) =

Then, by using Equation (39), the formula to generate the future record values
from ECD can be written as.

Y; = |log |1— ;log 1- (H W, ((1—exp(p(1 — e:><p(a:’(‘n)))))ﬁY
i=1

1/~ p
+(1 — exp(p(1 - eXP(””an)))))V))

where W; € (0, 1) and Y; are the desired record values from the ECD. It is to
be noted that the accuracy of both methods is assessed and noticed that upper
records generated by these methods are almost the same.

To generate record values from the ECD, the parameters vy = 1, u = 1
and ¢ = 1 are fixed and different sample sizes, n = 10,20, 30,40 and
50 are generated to obtain the maximum likelihood and Bayes estimates.
Before proceeding further, it is worth mentioning that 50 is considered as the
maximum sample size in our analysis, although records are of small sample
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Table 1 Frequentist estimates of ECD with confidence intervals

n  AMLE AMLE PMLE CI, ClI, ClI,

1.77461 0.08225 1.04103 (0.0136, 3.5355) (0.0815, 0.0829) (0.9819, 1.1001)
(0.89844) (0.00037) (0.03016) (3.5219) (0.0014) (0.1182)

1.81214 0.09771 1.06165 (1.4575,2.1668) (0.0974, 0.09798) (1.0586, 1.0646)
(0.18099) (0.00014) (0.00056) (0.7093) (0.0005) (0.0060)

1.39382 0.13089 1.14443 (1.3155, 1.4720) (0.1302, 0.1315) (1.1413,1.1474)
(0.03992) (0.00035) (0.00155) (0.1565) (0.0013) (0.0061)

19193  0.23141 1.14219 (1.2062,2.6323) (0.2290,0.2337) (1.1187, 1.1656)
(0.36381) (0.00073) (0.01195) (1.4261) (0.0047) (0.0469)

1.9489  0.22391 1.65084 (1.8675,2.0302) (0.2235,0.2242) (1.6482, 1.6534)
(0.04150) (0.00017) (0.00131) (0.1627) (0.0007) (0.0052)

10

20

30

40

50

size in practice. As 50 is a large sample, we generated this to evaluate the
accuracy of our estimators. To compute the MLEs and their standard errors
along with 95% confidence limits, we use the Newton Raphson method.
The computed the maximum likelihood estimates and the 95% confidence
limits using different sample size are listed in Table 1, where the maximum
likelihood estimates are reported in the first row while the corresponding
standard error in the second row within parentheses. In addition, two-sided
95% confidence limits are also reported in the first row while the correspond-
ing confidence width in the second row. In the table, the abbreviation MLE
refers to the maximum likelihood estimates and the CI stands for confidence
intervals. As noticed previously, the estimates of the parameters increase with
the sample size increases and the standard errors also fluctuate. In particular,
the estimates of the parameters 1 and ¢ gradually increased by increasing
sample size. Columns 4-6 represent the confidence limits of the parameters
and the corresponding confidence width. It is noticed that the maximum
likelihood estimates are not consistent as claimed in the literature as they
increase by increasing sample size.

Modern Bayesian analysis is heavily dependent on the Markov Chain
Monte Carlo (MCMC) methods, which make this approach very flexible.
In the past, solving complex integration to have an analytical answer was
a major problem in Bayesian studies. Since the Bayes estimators cannot be
obtained in closed form, we use a Metropolis-Hasting approach to compute
the posterior summaries. Metropolis-Hasting is a powerful MCMC approach
that does not depends on the conditional distribution compared to the Gibbs
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Figure 2 Trace, density and history plots for simulated data.
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Table 2 Posterior summaries using informative prior

n Node Mean SD MC Error 2.5% Median 97.5%

vy 1.005 0.7078  0.00745  0.1191 0.8414  2.739
10 I 1.012 0.7124  0.00658  0.1262 0.8479  2.837
® 1.002 0.7149  0.00671  0.1186  0.8506  2.746
¥ 1.006 0.7093  0.00512  0.1222 0.8474  2.791
20 I 1.008 0.7150  0.00491  0.1204  0.8425  2.827
® 0999 0.7111  0.00453  0.1211 0.8456  2.747
¥ 1.003 0.7082  0.00412  0.1209 0.8470  2.768
30 W 1.004 0.7134  0.00419  0.1213  0.8369  2.824
@ 1.003 0.7128  0.00401  0.1213  0.8431  2.768
¥ 1.001 0.7067  0.00369 0.1218 0.8446  2.771
40 I 1.005 0.7163  0.00361  0.1207 0.8374  2.838
® 1.003 0.7132  0.00348  0.1211  0.8424  2.777
vy 0.997 0.7044  0.00329  0.1206 0.8421  2.767
50 I 1.002 0.7134  0.00325 0.1201  0.8357  2.822
® 1.004 0.7146  0.00302  0.1213  0.8416  2.784

sampling. In particular, informative prior with the hyperparameters a = b =
c=2and d = e = f = 2, which result into mean = 1 and variance = 0.5,
is used for the parameters v, 1 and ¢. The Bayes estimates are calculated
using the SELF and results are tabulated in Table 2. To asses the convergence
of the process, we also use graphical diagnostics, like trace, density, and
history plots of MCMC which are plotted in Figure 2. The trace plot are
depicted in Figure 2 for each of the parameters of the ECD to show the
behavior of different sampled values over time. The density plots reflect
the fact that the MH algorithm uses the proposal distribution to generate a
mixture distribution. History plot gives the detailed view of the trace plot for
each parameter. In our study, one can see from a graphical assessment that
the chains converge quite well.

To assess the effect of noninformative priors, the Bayes estimates are
also computed using a = ¢ = 1 and b = d = 0.75, which result into
mean = 1.33 and variance = 1.78. It is noticed that the results obtained
by using the non-informative prior, Table 3, are different than the informative
prior case, Table 2, in the sense of higher standard error and MC error. As
discussed in the previous section that proper assessment of prior sensitivity
is very important, we re-computed the Bayes estimates assuming different
hyperparameters values. The results are listed in Table 4 where the first row
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Table 3 Posterior summaries using non-informative priors

n Node Mean SD MC Error 2.5% Median 97.5%

vy 1.344 1337 0.01353  0.0325 09290 4.876
10 I3 1.332 1304 0.01167 0.0347 09412  4.809
) 1.332 1332  0.01307 0.0332 09159 4914
vy 1.335 1333  0.01023  0.0342 09213  4.857
20 I3 1.330 1.319 0.00817 0.0337 09351 4.903
@) 1.334 1332  0.00914 0.0342 09218 4.920
¥ 1.324 1321 0.00745 0.0347 09167  4.808
30 Iz 1.335 1326 0.00737 0.0330 09346 4.924
%) 1.341 1337 0.00773  0.0337 09304 4.933
vy 1.323  1.321  0.00698  0.0339 09124  4.822
40 I 1.335 1.329  0.00590 0.0329 0.9339 4.938
%) 1.344 1338 0.00613  0.0338 09331 4.954
vy 1.320 1317 0.00606 0.0344 09122 4.814
50 I3 1.335 1.327 0.00551 0.0330 0.9324  4.949
) 1.343 1335 0.00548 0.0338 09314  4.952

represents the Bayes estimates using hyperparameters that results 0.5 vari-
ance. Similarly, the other hyperparameters used in this study are listed in the
first cell of each row of Table 4. To discuss results more precisely, we restrict
our discussion to two cases, that is, informative versus non-informative prior.
It can be seen from rows 2—4 of the table that if the variance is between 0.5
and 1, the Bayes estimates are approximately the same whereas the standard
errors are slightly high. However, rows 5-6 indicate that when the variance of
the prior distribution exceeds 1, the Bayes estimates are noticed larger than
the prefixed nominal values and the standard errors are also quite large. Thus,
it is concluded that the first case is less sensitive because the change in the
priors from row 2—4 does not make any significant difference as compared to
the results of row 1. Contrary to this, the second case is more sensitive, as the
priors used in the last two rows produce different results than the rest.

To obtain the prediction of a future record value under the methods
discussed in Section 5, 50 random observations of upper record values are
generated from the ECD with v = p = ¢ = 1. The generated observations
are given below.

0.002274756, 0.006270403, 0.045944343, 0.051727181, 0.058437952,
0.063922531, 0.101346749, 0.108894021, 0.111617942, 0.146417615,
0.189417577, 0.192859033, 0.210283739, 0.231513991, 0.268381071,
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Table 4 Sensitivity analysis using different priors

Prior Mean SD MC Error 2.5% Median 97.5%
¥(2,2) 0.997 0.7044  0.00329 0.1206 0.8421 2.767
w(2,2) 1.002 0.7134  0.00325 0.1201 0.8357 2.822
©(2,2) 1.004 0.7146  0.00302 0.1213 0.8416 2.784

v(1.5,1.5) 1.001 0.7594  0.00341  0.0939  0.817 2.950
w(1.5,1.5)  1.004 0.7635 0.00337 0.0957 0.8212 2.961
©(1.5,1.5) 1.002 0.7576  0.00324  0.0987 0.8198  2.938

v(1.2,1.2)  1.002 09165 0.00377 0.0417 0.7386  3.446
w(1.2,1.2)  1.004 09124  0.00417  0.0442 0.7475  3.400
p(1.2,1.2)  1.004 0.9209 0.00369 0.0449 0.7438  3.439

v(1,1) 0989 09877 0.00454  0.0258 0.6841  3.611
w(1,1) 1.001 09955 0.00413  0.0248 0.6993  3.712
p(,1) 1.007 1.0010 0.00411  0.0253 0.6985 3.714

v(1,0.75) 1320 1.3170  0.00606  0.0344 09122 4.814
w(1,0.75) 1335 1.3271  0.00551 0.0330 09324  4.949
©(1,0.75)  1.343 13350  0.00548  0.0338 0.9314  4.952

v(2,1) 1.995 14091 0.00658 0.2412 1.6840  5.534
w(2,1) 2.004 14270 0.00650 0.2401 1.6711  5.645
p(2,1) 2.008 1.4290 0.00605  0.2427 1.6830  5.567

0.270724046, 0.294144448, 0.332739834, 0.359738550, 0.365599712,
0.381377851, 0.394667327, 0.401582031, 0.409507793, 0.453030212,
0.458217009, 0.459556415, 0.470093353, 0.476450090, 0.494024277,
0.536271210, 0.569521517, 0.614420238, 0.620284956, 0.627418804,
0.636715619, 0.637374831, 0.655008180, 0.656443801, 0.667602313,
0.673574564, 0.675018108, 0.675135805, 0.680501538, 0.681368387,
0.695071138, 0.711500379, 0.716533342, 0.726979873, 0.728704883.

Since the goal is to predict 51st record value on the basis of generated 50
upper record observations, weuse a = b =c=2,andd = e = f = 2 as
the hyperparameter values. The Bayesian future prediction is 1.796 while the
conditional median prediction is 1.421. The 95% Bayesian predictive interval
for the future record is (0.1048 — 5.5780).

7 Real Data Analysis

A real data set taken from Lawless (2011) to illustrate the proposed method-
ology. The data set comprises of 24 observations, 0.014, 0.034, 0.059, 0.061,
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Table 5 Model selection for the real data

Goodness-of-fit  ExpChen Chen Weibull Exp G Exp

AIC 13.60546  19.26221 21.84817 19.87926 21.86240
BIC 17.13962  21.61831 2420428 21.05731 24.21850
KS 0.126029  0.155553  0.167998  0.167247  0.166566
CVM 0.060910  0.135710  0.145850  0.138593  0.133706
AD 0.381488  0.871534 0.917504 0.861168  0.826501

Table 6 Estimates for ~y, ; and ¢ based on real data
Parameter MLE BIP BNIP

v 1.2643 0.99771 1.32001
(2.8127)  (0.70441)  (1.31701)

I 02127 1.00210 1.33511
(0.0036) (0.71342) (1.32702)

o) 1.0740 1.00402 1.34300
(0.1480) (0.71460) (1.33513)

0.069, 0.08, 0.123, 0.142, 0.165, 0.21, 0.381, 0.464, 0.479, 0.556, 0.574,
0.839,0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.27, which represents
the quantity of 1000s of cycles to failure for electrical appliances in a life test.

To assess the goodness of fit of the ECD and select appropriate model,
we compare ECD with two parameter Chen, Weibull, exponential and gen-
eralized exponential distributions using the real data set. For model selection
and goodness of fit assessment, we used Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS) statistic,
Cramer-von Mises (CVM) statistic and Anderson-Darling (AD) statistic. It
is noticed that among the mentioned distributions, Exponentiated Chen is a
decent contender to fit this data set as the least value of all information criteria
is observed in the case of ECD.

The frequentist and Bayes estimates are listed in Table 5. For the Bayesian
case, SELF is used to compute the Bayes estimates assuming informative and
non-informative priors. To be more specific, independent gamma priors with
with hyperparameters a = b =c=d=e = f =2anda = c = ¢ =
1,b = d = f = 0.75 to have informative and non-informative priors are
considered. In the table, the abbreviations MLE, BIP, and BNIP are used for
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Figure 3 Visual goodness of fit assessment.

the maximum likelihood estimates, Bayes estimates using informative prior
and Bayes estimates using non-informative prior, respectively.

The credible intervals for v, 1 and ¢ are (0.1191, 2.739), (0.1262, 2.837)
and (0.1186, 2.746), respectively. Similarly, the predicted future record value
is 1.954 while the conditional median prediction is 1.696. The 95% Bayesian
predictive interval for the future record value is (0.09344,4.4331). Thus,
both the future prediction and the future conditional median fall within the
95% Bayesian interval. In addition, the graphical diagnostics using the Trace,
Density and History plots are depicted in Figure 4. It is worth mentioning
that the trace plots of each parameter of the ECD tell about the values that the
parameter took during the runtime of the chain.
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Figure 4 Trace, density and history plots for real data.
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8 Conclusion

This study discussed the statistical inference for the three-parameter expo-
nentiated Chen distribution based on upper record values. The reason of
considering this positively skewed distribution is its flexibility in terms of
bathtub-shaped hazard rate. Bayesian and frequentist methods are used to
obtain the point estimates as well as the two-sided confidence intervals. To
be more specific, the Bayes estimates are computed by using informative and
non-informative priors, where independent gamma priors are assumed for
the scale and the shape parameters. As the Bayes and ML estimators cannot
be solved analytically, Newton Raphson and MCMC procedure are used to
calculate the MLE and Bayes estimators. To evaluate the impact of hyper-
parameters, a sensitivity analysis is also presented in this article. In addition,
two different methods for generating record values are presented in this study.
A simulation study as well as a real data set is used to assess the efficiency
of the numerical methods. For the real data set, the model selection is done
using AIC, BIC, KS, CVM and AD measures. The results suggest that the
exponentiated Chen distribution performs better than the other competitive
lifetime distributions. In the future, this work can be extended by using the
lower record values.
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