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Abstract  
For estimating finite population variance using information on single auxiliary variable 

in the form of mean, the Ratio-Product-Difference (RPD) type double sampling estimators d1 and 
d2 and their generalized estimators as d1g and d2g are proposed. The bias and mean square error 

(MSE) of the proposed estimators are found. Theoretical comparisons with the traditional 
estimator are carried out. By this comparison it is shown that the proposed estimators are more 
efficient than the traditional one. 

 

Key Words: Auxiliary Variable, Taylor’s Series Expansion, Bias, Mean Square Error (MSE), 

Efficiency. 

 
1. Introduction 

In sampling theory, auxiliary information is widely used at the stages of 
selection and estimation, at the selection stage the auxiliary information is used by 

designing various sampling schemes and at the estimation stage it is used in 

formulating various types of estimators of different population parameters with a view 

of getting increased efficiency. Estimators like ratio, product, difference, regression and 

the classes of ratio and product type estimators for population parameters mainly 

population mean and variance are studied by many authors and are available in the 

literature. But when parameters of one or more auxiliary variables are not available in 

advance then the alternative is to use double sampling or two phase sampling technique 

where we first take a preliminary large sample of size n (called first phase sample) on 

which only the auxiliary variable is observed and then from n  taking a sub-sample of 

size n  (called second phase sample) on which both the variables are observed. In such 

situations the different estimators known as double sampling ratio, product, difference 

and regression estimators were developed. This present paper too contributes to this 

area. 

 

Let a first phase simple random sample of size n  without replacement be 

drawn from a population of size N and a second phase simple random sample of size n 

without replacement be drawn from the first phase sample of size n . At first phase 

sample of size n , only the auxiliary character X is observed and at the second phase 

sub-sample of size n, both the study variably Y and the auxiliary character X are 

observed. 
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Let ),( XY  be the population means of (Y, X) respectively.   be the 

population correlation coefficient between (Y, X) and x  be the sample mean of the 

first phase n  sample values on the auxiliary character X. Let 
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where (
iY ,

iX ) are the values on (Y, X) respectively for the ith  (i = 1, 2, . . . , N) unit of 

the population. Also let ),( xy  be the sample means of ),( xy  based on second phase 

sample of size n. 

 

2. The Suggested Estimators 

For estimating the population variance 
2

Y  of the study (main) variable Y, the 

proposed double sampling estimators are defined as 
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  and  wf  is a bounded function of w  such that  1f  = 1 at the point  

w  =1  satisfying the regularity conditions for the validity of Taylor’s series expansion 

and having first two derivatives with respect to w  to be bounded. And  
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Let us generalize it as 

  2
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where  
x

x
w


  and  wf  is a bounded function of w  such that  1f  = 1 at the 

point w  =1 satisfying the regularity conditions for the validity of Taylor’s series 

expansion and having first two derivatives with respect to w  to be bounded. 

 

3. Some Theorems  

Theorem I : The bias in 1d  up to terms of order 
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Where as the mean square error of 1d  to the first degree of approximation for the 

optimum value of 1k is given by 
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, where   zi  =  yi
2  &  Zi  =  Yi

2 or 
2eZz   or 

2
ˆ e . 

For simplicity, we assume that the population size N is large enough as compared to the 

sample size so that finite population correction terms may be ignored. 

Now E (e0) = E (e1) = E (e1
') = E (e2) = 0           (3.3) 
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We have 
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Taking expectation on both sides of (3.6) and using values of the expectations given 

from (3.3) to (3.5), the bias in ))(( 2

11 YdEd   to the first degree of approximation 

is given by 
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Now squaring (3.6) on both sides and then taking expectation, the mean square error of 
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11 YdEd   to the first degree of approximation is given by 

MSE( 1d )=
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The optimum value of 
1k  minimizing mean square error of 1d  is given by  
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which when substituted in (3.8) gives the minimum value of mean square error as 
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showing that mean square error of the proposed estimator 1d  is less than that of usual 

conventional unbiased estimator  
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Theorem II: The bias in 
gd1
 up to terms of order 
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Where as the mean square error of 
gd1

 to the first degree of approximation for the 

optimum value of  1f   is given by 
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Proof : Let us consider (2.2) 

)(.ˆ 2

1 wfyd g   

For f´(1),  f´´ (1) and  f´´´(1) to be first, second and third order derivatives of  f( w ) at 

the point w  =1 respectively and w * = 1+ h ( w -1),  0 < h < 1 , expanding  f( w ) in  

gd1
 in third order Taylor’s series, we have 
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Taking expectation on both sides of (3.13), the bias in 
gd1
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Now squaring (3.13) on both sides and then taking expectation, the mean square error 

of  
gd1
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The optimum value of f  (1) minimizing the mean square error of 
gd1
 is given by  
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showing that mean square error of the proposed estimator 
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 is less than that of usual 

conventional unbiased estimator  
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Theorem III: The bias in 
2d  up to terms of order 
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Where as the mean square error of 2d  to the first degree of approximation for the 

optimum value of 2k  is given by 
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Proof : Now consider the proposed estimator in (2.3) 
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Taking expectation on both sides of (3.20), the bias in ))(( 2
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Now squaring (3.20) on both sides and then taking expectation, the mean square error 
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The optimum value of 
2k  minimizing the mean square error of 

2d  is given by  
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which when substituted in (3.22) gives the minimum value of mean square error as 
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showing that the mean square error of proposed estimator 
2d  is less than that of usual 

conventional unbiased estimator  
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Theorem IV: The bias in 
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 up to terms of order 
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Where as the mean square error of 
gd2
 to the first degree of approximation for the 

optimum value of  1f   is given by 

MSE (
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)min =  
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Proof: Let us consider (2.4) 
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Taking expectation on both sides of (3.27), the bias in 
gd 2
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Using values of the expectations given from (3.3) to (3.5), we have 
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Now squaring (3.27) on both sides and then taking expectation, the mean square error 

of gd 2  to the first degree of approximation is given by 
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Using values of the expectations given from (3.3) to (3.5), the mean square error of  
gd2
  

is given by 
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The optimum value of  1f   minimizing mean square error is given by  
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which when substituted in (3.29) gives the minimum value of mean square error as 

MSE (
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02

2

212

2040

111




 












nnn

           (3.31) 

showing that mean square error of the proposed double sampling estimator 
gd2

 is less 

than that of usual conventional unbiased estimator  
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4. Efficiency Comparison with the Traditional Estimator 
As we know that the mean square error of usual conventional unbiased 

estimator  
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showing that the proposed estimators have less mean square error than the usual 

conventional unbiased estimator  
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5. Empirical Study 
For comparing efficiency of the proposed estimator, Let us consider the data 

given in Cochran (1977) dealing with Paralytic Polio cases ‘Placebo’ Y group and 

Paralytic Polio cases in not inoculated group X. We have calculated the required values 

of  
rs  and a comparison is made. 

For  34n  and 50n (say), we have  

20 =  9.8894,               
02  =  7.1865882  107 

40  =  421.96088,        
21  =  93.464705  103 

 

Mean Square Error of usual conventional unbiased estimator = 9.534136697 

and Mean Square Error of the proposed estimators = 8.390090538. The percent relative 

efficiency (PRE) of the proposed estimators over the usual conventional unbiased 

estimator is 113.63568, Showing that the proposed estimators are more efficient than 

the usual conventional unbiased estimator. 

 

6. Conclusion 
 We have derived new double sampling estimators and their generalized 

estimators of population variance using auxiliary information in the form of mean, the 

bias and mean square error equations are obtained. Using these equations, MSE of 

proposed estimators are compared with the traditional estimator in theory and it is 

shown that the proposed estimators have smaller MSE than the traditional one. For the 

practical justification of the results, an empirical study is also included. It may be noted 

here that when the optimum value is replaced by the estimated optimum value 

depending on sample values, the resulting estimators based on the estimated optimum 
value attains the same minimum mean square error to the first degree of approximation 

as that of the estimators depending upon optimum value. The details are here omitted 

because of derivation being straight forward. 
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