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Abstract 
The purpose of the study is to suggest test statistics for discriminating between linear 

failure rate distribution (LFRD) and Rayleigh distribution while considering these distributions as 

null and alternative populations respectively. To test statistics based on moments of order 

statistics and population quantiles are proposed and their percentiles are evaluated. The 

performance of the test procedures are also compared through computed power functions. 

 

Kew Words: Linear Failure Rate Distribution, Rayleigh Distribution, Order Statistics, 

Quantiles, Power Function. 

 

1. Introduction 
 In reliability studies series systems are one of many popular system 

configurations. If a series system has two components having independently distributed 

life time random variables with failure rate functions ℎ�(�) and ℎ�(�)then it is well 

known that the reliability of the series system is 

�(�) = 	�
�−
 �ℎ�(�) + ℎ�(�)����
� �                  (1) 

 The corresponding cumulative distribution function, failure density function 

and failure rate function are respectively given by 

�(�) = 1 − 	�
�−
 �ℎ�(�) + ℎ�(�)����
� �																																																																										(2) 

�(�) = �
�� �(�),																																																																																																																								(3) 

ℎ(�) = �(�)
�(�).																																																																																																																															(4) 

  

 Taking ℎ�(�), ℎ�(�), as the failure rates of the well known exponential and 

Rayleigh distributions in (1) we get the most commonly used Linear Failure Rate 

Distribution (LFRD). More specifically, if ℎ�(�) = �and ℎ�(�) =  �where (a>0,b>0) 

we get, the failure density function, cumulative distribution function, hazard or failure 

rate function of LFRD as: 

�(�) = (� +  �)	!"#�$%&'
' (; 	� > 0, � > 0,  > 0,																																																										(5) 

�(�) = 1 − 	!"#�$%&'
' (; � > 0, � > 0,  > 0,																																																																			(6) ℎ(�) = � +  �.																																																																																																																								(7) 
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 This distribution has non-zero density at the origin, so that it may be of 

important use in connection with those types of responses which take place even before 

observation begins. Listings of similar response time densities are given in Barlow and 

Proschan (1965). In that sense h(x) is also called the conditional mortality rate if 

response time is survival time. In the context of competing risks LFRD is the 

distribution of the minimum of two independent random variables of which one follows 

exponential and the other follows Rayleigh distribution. 

 

 Bain (1974) seems to be one of the earliest works that has touched upon LFRD 

as a model useful for analysis in life testing. 

 Some basic features of LFRD are as follows: 

Mean:  

, = -�.
/ 	#' �/⁄ 11 − ∅(� √ ⁄ )4,																																																																																													(8) 

where∅(. )denotes the cumulative distribution function of a standard normal variate. 

Variance:  

5� = �
/ (1 − �,) − ,�,                                                                                                 (9) 

Mode: 

6 = 7-�
/ − #

/8 9(�� <  ),																																																																																																					(10) 

where I(.) denotes indicator function. 

100 p
th
 Percentile: 

�!�(
) = -;#/<
� − �=>?	(�!@)

/ − #
/,																																																																																								(11) 

and hence median is 

6� = -;#/<
� − �=>?	(�.A)

/ − #
/,																																																																																																	(12) 

In biological sciences this is called 50% survival time denoted by t50. 

 Recurrence relation for raw moments is 

,B� = #
B$� ,B$�C + /

B$� ,B$�C ; D = 0,1,2….                                                                  (13) 

The second, third and fourth raw moments are  

,�C = �
/ (1 − �,),																																																																																																																			(14) 

,GC = G
/ ;, − #

/ (1 − �,)<																																																																																																				(15) 

,HC = I
/' + H#'

/J − , ;��#/' + H#J
/J <,																																																																																									(16) 

whereµ is the mean of the distribution given by (8).  

 

 It can be seen from (10) that LFRD has a non-zero mode only if its parameters 

‘a’ and ‘b’ satisfy the relation �� <  with a> 0, b> 0. 

 

 The graphs of density function of LFRD for various combinations of the 

parameters ‘a’, ‘b’ are shown in the following figures. 
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Fig. 1: Density function of LFRD for (a=2.5, b=0.5), (a=3, b=0.5), (a=5, b=0.5) 

 

 

Fig. 2: Density function of LFRD for (a=3.5, b=1), (a=5, b=1) 
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Fig. 3: Density function of LFRD for (a=0.1, b=2), (a=0.1, b=4), (a=0.1, b=6)  

 

 

Fig. 4: Density function of LFRD for (a=0.2, b=2), (a=0.2, b=4), (a=0.2, b=6) 

  

 In Figure 1 and 2,the combinations of ‘a’ and ‘b’ are bound by�� >  , 

accordingly the mode is zero and the graphs are similar to that of exponential 

distribution. On the other hand for figure 3,4 are the parameters satisfy �� <  resulting 
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in the respective non-zero modes. These chief characteristics of LFRD and its 

component distributions - exponential and Rayleigh motivated us to study the 

discriminatory aspect between LFRD and exponential/ Rayleigh through statistical test 

procedures. Such studies of discriminatory problems between probability models are 

made by Gupta et al. (2002), Gupta and Kundu (2003a), Gupta and Kundu (2003b), 

Kundu and Gupta (2004),Kundu and Raqab (2007), Arabin and Kundu (2009), Arabin 

and Kundu (2012) and the references therein. Recently Sultan (2007) developed a test 

criterion to distinguish generalized exponential distribution from Weibull, Normal 

distributions using moments of order statistics in samples drawn from generalized 

exponential distribution. In this paper we adopt the criterion suggested by Sultan (2007) 

and propose another test procedure based on quantiles of LFRD. LFRD is considered as 

Null population (P0), Rayleigh is considered as an alternative population (P1). The rest 

of the paper is organised as follows. A brief description of the procedure developed by 

Sultan (2007) and its application to our models is presented in Section 2. Our proposed 

test based on population quantile is given in Section 3. The powers of the test 

procedures and their comparison are given in Section 4.  

2. LFRD Vs Rayleigh Distribution using Moments of Order Statistics 
 Let ��, ��, . . �Kbe a random sample of size n. Here we test the Null hypothesis 

H0: The sample has come from LFRD against the alternative hypothesis 

H1: The sample has come from Rayleigh distribution 

Sultan (2007) suggested a test statistic given by the formula 

L = ∑ �(N)ONPNQR
-∑ �(N)'PNQR ∑ ON'PNQR

	,																																																																																																															(17) 

where ( )ix  - i
th

 ordered observation in the sample. 

ST - the expected value of i
th

 standard order statistic in a sample of size n from the null 

population. 

 

 If��, ��, . . �Kis truly a sample from the null population the formula for ‘T’ 

would serve as a test statistic to discriminate a null population and the corresponding 

alternative population with the help of its critical values. 

 

 Hence, the sampling distribution of ‘T’ and its percentiles therefrom are 

essential to make use of the test statistic ‘T’. In the present situation, because the null 

population is LFRD we need STfrom samples of LFRD which are available in Bakheet 

(2006). We borrow these ST to develop the percentiles of ‘T’. However, ‘T’ is an 

expression of non-linear terms of order statistics. Hence it is not feasible to work out for 

its sampling distribution analytically. We therefore, evaluated the empirical percentiles 

of ‘T’ for LFRD as follows: 

 

 In Bakheet (2006), ST are available for n=5, (a=0.1, b=2), (a=0.1, b=4), 

(a=0.1, b=6), (a=0.2, b=2), (a=0.2, b=4) and (a=0.2, b=6) in numerically evaluated 

form. We have generated 10,000 random samples of size 5 from LFRD with parametric 

combinations (a=0.1, b=2), (a=0.1, b=4), (a=0.1, b=6), (a=0.2, b=2), (a=0.2, b=4), 

(a=0.2, b=6) and evaluated ‘T’ for each ordered sample. Selected cut off points of ‘T’ 

are presented in the following Table -1 for n=5. 
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a b 
p 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.1 2 5 0.76334 0.77082 0.78667 0.79709 0.81672 0.8442 0.8677 0.89355 

0.1 4 5 0.76925 0.77604 0.7921 0.80226 0.82113 0.84838 0.8718 0.89665 

0.1 6 5 0.77129 0.77862 0.79416 0.80426 0.82318 0.8504 0.87382 0.89831 

0.2 2 5 0.74395 0.75376 0.76611 0.78124 0.80155 0.83012 0.85494 0.88321 

0.2 4 5 0.75505 0.76421 0.77663 0.79013 0.81024 0.83813 0.86228 0.88917 

0.2 6 5 0.76334 0.77082 0.78667 0.79709 0.81672 0.8442 0.8677 0.89355 

  
P 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

0.1 2 5 0.99285 0.99611 0.99767 0.99885 0.99919 0.99944 0.99961 0.99965 

0.1 4 5 0.99319 0.99632 0.99774 0.99889 0.99921 0.99946 0.99959 0.99963 

0.1 6 5 0.99338 0.9964 0.99777 0.99891 0.99922 0.99946 0.9996 0.99964 

0.2 2 5 0.99147 0.99541 0.9974 0.9987 0.99912 0.99934 0.99954 0.99959 

0.2 4 5 0.99228 0.99584 0.99757 0.9988 0.99916 0.9994 0.99956 0.99963 

0.2 6 5 0.99285 0.99611 0.99767 0.99885 0.99919 0.99944 0.99961 0.99965 

 

Table - 1: Percentiles of T Using Moments of Order Statistics 

  
 The percentiles of ‘T’ would serve as critical values to test null hypothesis that 

a given sample of size n=5, comes from LFRD.  

 

3. LFRD Vs Rayleigh Distribution using Population Quantiles 
 Expected values of the order statistics of LFRD are available in numerical 

form for n= 2 (1) 5 only. Hence, we propose a statistic similar to ‘T’ based on 

population quantilesin place of moments of order statistics. Our proposed statistic is  

L∗ = ∑ VN�(N)PNQR
-∑ �(N)'PNQR ∑ VN'PNQR

,(18) 

whereWT = �!�(
) = -;#/<
� − �=>?	(�!@N)

/ − #
/ with 
T = T

K$�. 
  

 We have tabulated the percentiles of empirical sampling distributions of ‘T
*
’ 

for n=5 (5) 20, (a=0.1, b=2), (a=0.1, b=4), (a=0.1, b=6), (a=0.2, b=2), (a=0.2, b=4), 

(a=0.2, b=6) through 10,000 Monte-Carlo simulation runs and are given in Table  2. 

 

a b 
P 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.1 2 5 0.40644 0.40929 0.4343 0.44706 0.46998 0.50303 0.53483 0.57441 

  10 0.58425 0.59901 0.62019 0.64228 0.66244 0.69022 0.717 0.74884 

  15 0.62114 0.62911 0.653 0.67318 0.69645 0.7253 0.74993 0.77794 

  20 0.6271 0.63808 0.65902 0.68001 0.7007 0.7313 0.76267 0.79112 

  
P 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.81026 0.83355 0.85373 0.87167 0.8814 0.89043 0.89498 0.90006 

  10 0.92571 0.93858 0.94779 0.95778 0.96159 0.96404 0.96687 0.96773 

  15 0.94532 0.95649 0.96419 0.97107 0.97378 0.97629 0.97769 0.97855 

  20 0.95212 0.96274 0.96962 0.97521 0.97834 0.98013 0.98178 0.98254 
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a b 
p 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.1 4 5 0.41737 0.42075 0.44602 0.45846 0.48041 0.5137 0.54532 0.58452 

  10 0.59449 0.61282 0.63325 0.65312 0.67216 0.70079 0.72566 0.75672 

  15 0.63176 0.64085 0.66508 0.68576 0.7071 0.73509 0.75931 0.78662 

  20 0.63767 0.65399 0.67392 0.69226 0.71402 0.74241 0.77259 0.80039 

  
p 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.81552 0.83825 0.85787 0.87533 0.88473 0.89359 0.89789 0.90289 

  10 0.92821 0.94047 0.94931 0.95888 0.96266 0.96505 0.96773 0.96853 

  15 0.94729 0.9579 0.96541 0.97191 0.97447 0.97692 0.97827 0.97923 

  20 0.95416 0.96424 0.97073 0.97612 0.9791 0.98074 0.98233 0.98308 

 

a b 
P 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.1 6 5 0.42239 0.42654 0.45119 0.46405 0.48561 0.51911 0.54986 0.58905 

  10 0.59962 0.61779 0.63951 0.65663 0.67634 0.70497 0.73007 0.76076 

  15 0.63592 0.64642 0.67114 0.69185 0.71233 0.73965 0.76368 0.79056 

  20 0.64525 0.6622 0.68125 0.6971 0.71935 0.74776 0.77694 0.80436 

  
P 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.81778 0.84041 0.85956 0.87699 0.88631 0.89494 0.89917 0.90414 

  10 0.92935 0.94138 0.94996 0.95939 0.96312 0.9655 0.96814 0.96888 

  15 0.94819 0.95856 0.96596 0.97233 0.97477 0.9772 0.97853 0.97953 

  20 0.95508 0.96492 0.97125 0.97647 0.97942 0.98104 0.98258 0.98332 

 

a b 
P 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.2 2 5 0.37181 0.37643 0.39863 0.41548 0.43547 0.46879 0.50205 0.54135 

  10 0.55412 0.56122 0.5889 0.61367 0.63268 0.6604 0.69052 0.72336 

  15 0.5895 0.59214 0.62338 0.64345 0.66783 0.69638 0.72385 0.75401 

  20 0.58513 0.59971 0.62045 0.64634 0.67036 0.70322 0.73389 0.76658 

  
P 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.79267 0.81735 0.83932 0.85984 0.87022 0.87965 0.88509 0.89041 

  10 0.91697 0.93196 0.94239 0.95366 0.95786 0.96075 0.96377 0.96495 

  15 0.93823 0.95131 0.9603 0.96795 0.97136 0.9737 0.97566 0.97655 

  20 0.9452 0.95745 0.96571 0.97232 0.97584 0.97772 0.98001 0.9808 

 

a b 
P 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.2 4 5 0.39057 0.3952 0.41919 0.43444 0.45542 0.48807 0.52072 0.56025 

  10 0.57138 0.58038 0.60389 0.62734 0.64901 0.67716 0.70561 0.7378 

  15 0.60504 0.61287 0.63967 0.65948 0.68369 0.71203 0.73793 0.76738 

  20 0.60811 0.62316 0.64184 0.66559 0.68694 0.71777 0.74979 0.77977 

  
p 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.80299 0.8268 0.84772 0.86662 0.87686 0.88595 0.89088 0.89605 

  10 0.92187 0.9358 0.94564 0.95606 0.96004 0.96266 0.96557 0.96659 

  15 0.94237 0.95444 0.96261 0.96967 0.9728 0.97532 0.97686 0.9777 

  20 0.94918 0.96058 0.96804 0.97405 0.97734 0.97909 0.98105 0.9818 
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a b 
P 

n 
0.001 0.00135 0.0027 0.005 0.01 0.025 0.05 0.1 

0.2 6 5 0.39929 0.40404 0.42843 0.44174 0.46458 0.49695 0.52947 0.56893 

  10 0.57902 0.59229 0.61383 0.63683 0.65721 0.68524 0.7129 0.74456 

  15 0.61249 0.62247 0.6479 0.66754 0.69109 0.72027 0.74545 0.77384 

  20 0.6194 0.63116 0.65285 0.67624 0.69592 0.72579 0.7576 0.78695 

  
P 

n 
0.9 0.95 0.975 0.99 0.995 0.9973 0.99865 0.99 

  5 0.80755 0.831 0.85148 0.86974 0.87971 0.88876 0.89345 0.89856 

  10 0.92423 0.93752 0.94699 0.95715 0.96101 0.9635 0.96638 0.9673 

  15 0.94427 0.95563 0.96359 0.9705 0.97342 0.97595 0.97738 0.97819 

  20 0.95103 0.96196 0.96903 0.97473 0.97806 0.97971 0.98151 0.98226 

 

Table -2: Percentiles of T* Using Quantiles 

 

 The percentiles of ‘T’ or ‘T
*
’ would serve as critical values to test null 

hypothesis that a given sample comes from LFRD. 

 

4. Comparative Study 
 The power of these test statistics with Rayleigh as alternative is evaluated as 

follows: 

 10,000 random samples of size n= 5 (5) 20 from Rayleigh (a=1, b=0) are 

generated and the values of ‘T’, ‘T
*
’are calculated at each sample retaining αi of ‘T’ or 

δiof ‘T
*
’ as those of the corresponding LFRD (which is the null population here) only. 

The proportions of values of ‘T’, ‘T
*
’ that fall above a specified percentile, say 95

th
 out 

of 10,000 are noted down which represent the power of the statistics ‘T’ or ‘T
*
’. These 

are given in Table - 3 for n=5 and in Table - 4 for other values of n=10,15,20. 

 
Parameter 

Combinations 
n=5 

a=0.1, b=2 0.0604 

a=0.1, b=4 0.0564 

a=0.1, b=6 0.0549 

a=0.2, b=2 0.0732 

a=0.2, b=4 0.0664 

a=0.2, b=6 0.0618 

 

Table -3: Powers of T Statistic at α = 0.95 based on Moments of Order Statistics 

 (Rayleigh Alternative) 
 

Parameter 

Combinations 
n=5 n=10 n=15 n=20 

a=0.1, b=2 0.0873 0.0778 0.0756 0.0773 

a=0.1, b=4 0.0744 0.0701 0.068 0.0676 

a=0.1, b=6 0.0683 0.0669 0.0651 0.0634 

a=0.2, b=2 0.1348 0.1107 0.1057 0.1096 

a=0.2, b=4 0.1048 0.0922 0.0868 0.0903 

a=0.2, b=6 0.0939 0.0835 0.0804 0.0823 

 

Table - 4: Power of T* Statistic at α = 0.95 based on Quantiles 
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 Table 4 reveals that at n=5 the power of ‘T
*
’ is more than that of ‘T’ at 5% 

level of significance. Had the moments of order statistics been available the same trend 

of ‘T
*
’ over ‘T’ might have been noticed. However, adopting the same procedure of 

rejection we found that the construction of ‘T
*
’ would be useful to test the other 

hypotheses also. Accordingly Tables - 3 and Table - 4 would be the indicator of 

performance of the test formula. This would be useful to develop test statistics for the 

other combinations of n. Because of lack of availability of moments of order 

statisticsevaluated in published form, one can depend on quantiles and such 

dependencemay give more accurate results. We therefore suggest that ‘T
*
’ can be used 

as an appropriate test statistic. 
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