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Abstract

Present study discusses the reliability analysis of a complex system which consists of two
repairable subsystems (namely L and M) connected in parallel. Subsystem L is of 2-out-of-3:
Gconfiguration which consists of 3 type-A components which are in parallel configuration and
subsystem M consists of Stype-B components which are in series configuration. A hot spare of
type-A and type-B is connected to the2-out-of-3: G subsystem and the series subsystem
respectively.By employing supplementary variable technique, Laplace transforms and Gumbel-
Hougaard family of copula various transition state probabilities, reliability, availability, MTTF,
cost analysis and sensitivity analysis have been obtained along with the steady state behaviour of
the system. At the end some special cases of the system have been taken.

Key Words: System, Reliability, Availability, MTTF, Cost Effectiveness, Sensitivity, k-out-
of-m: G, Gumbel-Hougaard Copula.

1. Introduction

The reliability of a system and its maintenance employs an increasing
important issue in modern day systems. As long as man has built things, he has wanted
to make them as reliable as possible. In practice, we come across with a number of
complex systems where failure of any of the parts results in the reduction of efficiency
of whole systems or the complete failure of the system and as a result of it, the
reliability of the system reduces. Introducing redundant parts and providing
maintenance and repair at the time of need can achieve high degree of reliability.
Usually, people use the redundancy design to improve the reliability of the system.In a
redundant system, some additional paths are created for the proper functioning of the
system. Redundancies can be classified as active, standby and partial. An active
redundant system with z-units is one which operates with every one unit. A standby
redundant system is the one in which one operating unit is followed by spare units
called standbys. The redundancy where in two or more redundant units are required to
perform function of k-out-of-m system is called the partial redundancy. k-out-of-
mmodels are among the most useful models to improve the reliability of electrical and
electronic devices/systems.

In the past several studies on reliability analysis of complex system have been
done. Yusuf et al. [13] analyzed the stochastic modelling of a two unit parallel system
under two types of failures. Coit ef al. [3]have studied the system reliability
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optimization withk-out-of-n subsystems and also investigated the reliability analysis of
k-out-of-n: G systems with dependent failures and imperfect coverage.Varma [12]has
analyzed the stochastic behaviour of a complex system with standby redundancy.Goel
et al. [6] have analyzed stochastic behavior of a two unit parallel system with partial
and catastrophic failures and preventive maintenance.Bazovsky [1]has discussed
reliability theory and practice. Oliveira et al. [10]also studied the system by using the
supplementary variable technique. Dhillon et al. [SThave studied the reliability of an
identical unit parallel systemwith common cause failures. Chung [2]has estimated the
reliability analysis of ak-out-of-n redundant system with the presence of chance with
multiple critical errors. Zhang [14] dealt with a repairable standby system consisting of
(n+1) units and a single repair facility, in which unit 1 has preemptive priority both in
getting operation and in getting repaired. Nailwal et al.[8]have studied performance
evaluation and reliability analysis of a complex system with three possibilities in repair
with the application of copula.Nailwal et al.[9]have applied copula in reliability
measures and sensitivity analysis of a complex matrix system including power
failure.Goel et al[7]analyzed a 1-out-of-3 warm standby system with two types of
spare units: a warm and a cold standby unit and inspection. A lot of literature is
available in the field of Markov repairable system, to cite a few,Zheng et al.[15]
discussed a single-unit Markov repairable system with repair time omission, and Cui et
al.[4] considered the several indexes including availability for aggregated Markov
repairable system with history-dependent up and down states. Ram and Singh [11] have
done study on availability, MTTF and cost analysis of complex system under
preemptive repeat repair discipline using Gumbel-Hougaard family copula.

In the above mentioned reliability analysis of repairable systems, we have
observed that researchers studied the complex system of k-out-of-m: G (k-out-of-m: F)
with different policies but they have paid no attention to the systems that can have the
k-out-of-m: G (k-out-of-m: F) system as a subsystem. In the present study we have tried
to focus on this issue while modelling a complex repairable system which consists of
standby and partial redundancies (k-out-of-m: G system with spare). In the present
study we have considered a parallel system with spares. The considered system
composed of two subsystems in which one subsystem L is 2-out-of-3: G and the other
M, is in series. The subsystem L consists of 3 type-A components which are in parallel
configuration and subsystem M consists of 5 type-B components which are in series
configuration. SA and SB denote two different types of spares that can replace only
own type components (SA can replace only A, SB can replace only B)in case of their
failure. A hot spare or hot standby is used as a failover mechanism to provide reliability
and security to the system. The hot spare is active and connected as a part of working
system. When a key component fails, the hot spare is switched into operation. Most
often hot standby refers to an immediate backup for a critical component, without
which the entire system would fail. The switchover may happen manually or
automatically. Furthermore, the hot standby component is designed to significantly
reduce the time required for a failed system to return to normal operation. In the
transition state diagram (see Figure 2) of the system, we denote A *B ”SA “SB " by the
joint state thatthere x type-A components,y type-B components, ztype-A spare
component andw type-B spare component are functional (x = 2, 3;y = 5;z; w = 0, 1).
Each component of the system has two modes- good and failed. Failure rates of
component of type-A and type-B are constant.All components of type-A/type-B are
repairable and repair rates follow general distribution in all the cases. We have used
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Gumbel-Hougaard family of copula to find joint distribution of repairs whenever both
the subsystems are being repaired simultaneously with two different repair rates. The
repair of the failed component is perfect. After repair each subsystem is as good as new.
By the help of Laplace transforms and supplementary variable technique the following
reliability characteristics of the system have been analyzed in this model:

(i)Transition state probabilities

(il)Asymptotic behaviour of system

(iii)Reliability measures such as availability, reliability, mean time to failure,cost
effectiveness and sensitivity with respect to different parameter of the system.

At last, some special cases of the complex system are taken to highlight the
reliability characteristics of the system. These are as follows:
Repairable and non-identical.
Repairable and identical.
Non-repairable and non-identical.
Non-repairable and identical.

Sowp

The state specification chart of the considered system is given in Table 1
Blockdiagram and transition state diagram of investigated system are shown in Figure 1
and Figure 2 respectively.

2. Assumptions
The following assumptions are associated with the model:

i) Initially the system is in perfectly good state, i.e. all the components
arefunctioning perfectly.

(il)) At =0 all the components are perfectly well and at £~ 0 they start operating.

(i)  The system consists of two subsystems L and M connected in parallel.

(iv)  Subsystem L is 2-out-of-3: G system of 3 components of type-A which
subsystem M is a series system of 5 components of type-B.

(v) A hot spare of type-A and type-B is connected to the 2-out-of-3: G subsystem
and the series subsystem. When a component fails in subsystem, the hot spare is
switched into operation.

(vi)  Each component is either functional or failed.

(vii) Failure rates of type-A component and type-B component are assumed as
constant.

(viii) Each subsystem on complete failure goes for repair.

(ix)  The repaired subsystem is as good as new and is immediately reconnected to the
system.

(x)  Transition from the completely failed state S, to the initial state S, follows

two different distributions.
(xi) Joint probability distribution of repair rate from S , to the initial state S, is

computed by Gumbel-Hougaard family of copula.
(xii) If both units fail, the system fails completely.

3. State Specification
G = Good state, F = Failed state
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S46

Qo

S36

S45

SZ()

S}S

Sus

Sl6

SZS

Sas

SlS

Sra

HlalH|alalH|alalalalala
ol nllelnlinllclInl[alinlia) o)
linlialialinlialalialialio!

Sia

Table 1: State Specification

4. Block and State Transition Diagram
Figure 1 and 2 represent the Block diagram and the state transition diagram of
investigated system respectively.

Subsystem L
C {2 -
n+l
. -
Z
: Subsystgm M
nt+l

Figure 1: Block diagram of system
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Figure 2. Transition State Diagram

5. Nomenclature

A,/ A, Failure rate of component of type-A/type-B.

U(x) : Repair rate of type-A component.

7 (y ): Repair rate of type-B component.

p, (r)  Probability that the systemisin S state at instant 7 for u=4 to 1 and v=6

to 4.
P, (s): Laplace transform of P (t)

P, (j, )+ The pdf (system is in state S and is under repair; elapsed repair time is /,

f),where j=x,, z.
&(z): Coupled repair rate.

Considering u, = n(x)and u, =y (y), the expression for joint probability
(failed state S, to good state S, ) according to Gumbel-Hougaard family of copula is

given by
&(z) = expl(log( u,))’ + (log( u,)’1°
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6. Formation of Mathematical Model
Using the supplementary variable technique, the following set of differential
equations associated with the model (as shown in the Figure 2) can be obtained

60, [P = [U OOy + [P, (510 + [ £GP o)

+ [E()Ps(z,0)dz + [E(2)P, (z,0)dz + [ £(2)P, (2, 1)z (1
0 0 0
57+ 30, + 64, |Py(t)=42,P, (1) ()
57+ 42, +515}P45(t) = 64,P, (1) )
57+ 20, + 64, |Py(t) =32,Py (1) 4)
%H/M +SAB}P35(t)=4AAP45 (1) + 42, Py (1) (%)
o @
7a—t+$+4h+w(y>}m(y,z)= 0 )
[0 o
St ot 6% +n(x)}Pm(x,z):o )
57+ 2/1A+5/13}P25(t): 42, P, (1) +64,Py (1) ®)
- P P -
5Tt 32, +§(z)_P34(z,t):0 )
0,0 .5, +§(z)—P (z,0)=0 (10)
| ot 0z i e
_i+i+21 +§(z)_P (z,0)=0 (1)
| ot 0z 8 IR
[0 o
_5+5+§(z)}a4(z,z) =0 (12)
Boundary conditions
P, (0,t)=51,P;(t) (13)
Ple(oat): ZﬂApze(t) (14)
P34(O,t) = 41AP44(t)+5ﬂ’BP35(Z) (15)
P (0,1) = 214P25 (1) + 62“BP16 () (16)
P24(O,t)=3/1AP34(I)+5/13P25(1‘) 7
P14(Oat):2/1AP24(I)+5/131)15(I) (18)

Initial condition
P, (0) = 1 and other probabilities are zero at t=0. (19)
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By employing Laplace transforms in the equation (1-18) and using the initial conditions
given in (19), we get

s+ 42, + 62, 1P () = 1+ [0 (0Po (7, 5)dy + [ 1(0) B (x)dx + [ £V (2, 5)dz

4 [EOPL )z + [ £GPy (220 + [ £GP, (2osyaz 20)

[S +34,+ 64, ]Ee (s) = 4/1,41746 (s) 21
[s +42,+54,|Py(s) = 62, Py (s) (22)
[S+2}“A +6ﬂ’B]fTZ(7(S):3ﬂ’AFT36(S) (23)
[s+32,+ 54, |Pis (5) = 44, Py () + 42, Py (s) (24)
S+%+4/1A +l//(y)}ﬁ44(y,S) =0 (25)
s+ 8i+ 64, +77(x)}316 (x,5)=0 (26)
L X
[S+2/1A+5/13]ﬁ25(s):4/1/1[7)45(3)'*'6/15?36(3) 27
s+ 4 34, +&(z) | Py, (z,8) =0 (28)
oz i
s+ai+5/13+§(z) P(z,5)=0 (29)
(. Z .
s+ai+ 24, +E(2) |Py(z,5) =0 (30)
(. Z =
s+i+§(z)}1714(z,s)=0 (31
| Oz
P,,(0,5) = 54,P;(s) (32)
FTIG (053)22/1/11?26 (s) (33)
}_)34 0,5) = 4/1,41?44 (S)+5/13F35 (s) (34)
}_)15 (0,5) = 21,4}_)25 (s)+ 6/13?16 (s) (35)
Fz4 (0,5) = 31,4’?34 (s)+ 513}_)25 (s) (36)
}_)14(0>S) = 22’AE4(S)+5/13F15 (s) (37)

The transition state probabilities for the system can be obtained as a result of solving
the set of equations (20-31) with the help of (32-37)

5 _ 1 38
P%(S)__D(s) ( )
— 44

- 4 39
P = 3+ 62,0D0) %
Py ( 645 (40)

= G541, +52,)00)
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= 3.44,°

P = 4 (41)
() =332, 762, )5+ 22, 1 64,)D()

_ 4.6,4

Py (s) = ——<275 (42)
TS0

B (5) - 5.64,°1-5, (s +44,)] 43)
W T a4, 152, )5+ 42,)D(5)

5 (o) 23.42,°[1-5, (s +64,)] (44)
0O = 3, 762,051 24, + 64, Xs +62,)D()

2
B (s) = 3.4.64, 4, 45)
B(s)D(s)

E () - 45624, [1-5.(s+32)][ 1 L 1-5,(s+42,) “6)
* (s+34,)D(s) As) (s+44,)s+44,+51,)

B (o) 23464, 2,1-5,(s+52, ) 1 . 1-5, (s +64,) 47)
S (s +54,)D(s) B(s) (s+64,)s+32, +64,Ns+24,+64,)

- 3.4561,°0,°

P — 4 ‘s (48)
7T 606)

» 234562, [1-S.(5)] 15, s+5%,)[ 1 1-3,(s+64,) 1] 49)
)= SI) (+5%,) | B6) (5464 Joa34, +64, Yo+ 2A, 264, | )

where

D(s)=(s+44,+61,)- [5.6/132@ (s+42,)+23.44,°5 (s+52,)+4.5.64,°1,5.(s+34,)

+3.4.5.64,° 2,8 (s+22,)+23.42,°S.(s+52,)+2.3.4.5.64,°1,S . (s) (50)
1 1 1 |

= + (5D

A(s) (s+3/1A+6/13)(s+3/1A+513) (s+4ﬂA+SﬂB)(s+3/1A+SﬂB)
1 1 1

Bls) (s34, +64,\s+24, +62,)s+24,+54,) (s+34, +64, \s+34, +54,)s+24, +54,)

+ ! (52)

(s+4/1A+5/13)(s+3/1A+5/13)(s+2/1A+5/13)
1 _[1—.575(s+2/1A)] 1 1—57;(s+3/1/1)[ 1 1-5,(s+44,) H (53)

(s)_ (s+2/1A) B(s)+ (s+32,) A(S)+(S+4/1A)(S+4/1A+5/15)

9

Transition state probability that the system is in up and down states are obtained as
F,(8) = Fi(8)+ Bg(5) + Pi5(5) + Py (8) + Bs () + Piy(8) + B (8) + Ps(8) + By (8) + Rs(5) + Py () (54)

up

P (s)= 1 . 42, . 64, . 3.42,° | 62,0
»2 7 D(s) (s+32,+64,) (s+44,+52,) (s+32,+64,)s+21,+64,)  Als)
N 5.62,2[1-5, (s+42,)] 23.42,°[1-5,(s+62,)] 3.4.60,°2,

(s+44,+54, Ns+44,) (s+3ﬂ,A+6ﬂB)(s+2},A+6},B)(s+62,B)D(s)+ B(s)
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+4.5.6@/1;[1—55(“3@)]{ L, 1-5,(s+44,) } 3.4.5.60,°4,°
A

+
(s+32,) (s) (s+44,)s+44,+52,) C(s)
L 23467, =55 +52,)[ 1 1-5, (s+64,) (55)
(s+52,)D () B(s) (s+6/1 s +32, +64, s +24, +64,)
5 _23456/1 ﬂ 1 5.6 §$€+5/1 | 1-5,(s+64,) !
o (5= (545 s)+(s+6/1 Yo+34, +61, Y5424, +64,) | C0)
(56)
It is worth mentioning that
1
P, (s)+ P, (s)= N
7. Asymptotic Behaviour of the System
Using Abel’s lemma in Laplace transforms,
lirr(l) sF(s)=lim A(t) =F (57)
RNard t—0

provided the limit on the right hand side exits, the time independent operational
probabilities are obtained as follows:
1

- (58)
P46 D(O)
44,
- (59)
* (32,+64,)D(0)
. 61, 60
Fis = (44, +52,)D(0) 0
3.42,°
- A (61)
Pag (B2, +64,)24,+64,)D(0)
4.6,
_ 7 4”B 62
P = 40D 0) “
P 5.6/132 (63)
Y@, 52, )42, +w (»)D(0)
o 2.3.44,° (64)
O BA, +62,)24, +64, )64, +n(x)D(0)
_3.4.64,74, 65
I TOI0) ©
456,40, 1 66)
" (34, +§(z))D(0) A(O) (42, +y ()42, +52,)
p o 23462, Ay 1 1 (67)
5= 62, + £G)D0) BO) (62, + n(x))34, + 64,24, + 64,)
3.45.61,°4,° 68)

* 77 ¢(0)p(0)
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:2.3.4.5.6,1;/1;{ 1 [ 1 1 } 1 } (69)
(52, +42)| BO) " (64, +1{(x))34, +64, 24, +64,) | C{0)
where

B,
D{0)2)
D(0)=(44, +64,)—[5.64,°S,(44,)+2.3.42,’S, (52, )+4.5.64,°4,S.(31,)+3.45.64,°2,’5.(24,)

+2.3.44,°S.(52,)+2.3.4.5.64,°2,°S.(0)] (70)
1 1 N 1 (71)
A(0) (32, +64, )32, +54,) (42, +54,)34,+54,)
1 1 1 1
B0) (34,464,024, +64, 24, +54,) (34, +64, )34, +54,\24, +54,) (42, +54, \3A, +54, |24, +54,)
(72)

1 1 1 1 [ 1 1 H (73)
c0) @a,+¢E)B0O) Ba,+¢EN40) @2, +v (¥)44,+52,)

8. Special Cases
When repair follows exponential distribution. In this case the result can be
derived by putting

S.(s) = ) g oo v o
T s srw(y)
S.(s) = P {log n(0)Y + (0g v (1)) I (74)

1
s+ exp {(log 7(x)) + (log v (1))}’
A. Repairable and Non Identical
When the considered system is assumed to be repairable and units are non-
identical then the transition state probabilities corresponding to present system are
given by

e =56 7
Py (s) = mim (76)
Pro(s) = mam (77)
P ()= 537, +63;4)é;2+2,1‘4 Toa ) e () 79
Py(s) = %Eﬁw (79)
Pu(s) = (s+42, +5/15t;6)(/18: 42, +1,//(y))}7“’(s) 5%
Pi() = (s +324, +64,)s +22-3l44i/{63/13 Yo + 64, + n(x))F% (s) ®D
O s (82)
B (s) = 4.5.61,4, P(s)| 1 1 (83)

G+34,+2() | AG) (s+44, v (0)o+ 44, +52,)
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Fo(s) = 2.3.4.61,°1,P,(5) o 1 (84)
1518) = (s+52,+&(2)) | B(s) (s+64, +n(x))s+34, +64, Ns+24,+64,)
Py (s) = %F (s) (85)
B(s)= 2.3.45.60, 4, Py (s) 1 1
S (s+&(2)) (s+52, +&(2))| (s +62, +7(x))s +32, +64, (s +24, +6,)
+ } N 17} (86)
B(s) C(s)

B. Repairable and Identical
When the considered system is taken to be repairable and units are identical
then the transition state probabilitiesof the present system are given by

n— ®7)

_ 42
P36(S) (S+9/1) 45(5) (88)
— _ 64 — (89)
P4S(S)_(S+9/1)P46(S)

5 (s 3.42° E (90)
P = oY s ey e )

Py (s) = 4;(1) Py (5) 1)
— 5.64° 5 92)
Pu ) = o s+ a2 vy Gy o)

— 2.3.44° (93)
P = o s ) s 6 A Gy e )

Py (5) = 3;‘8 Py (5) (04)
P (s) = 4.5614°P,(s) | 1 1 (95)

i (9+3/1+§(z)) A(s) (v+4/1+l//(y))(v+9/1)

B (s) = 23464 P, (s)| 1 1 } (96)

s (s+354+¢&(2)) B(s) (s+62+nE)s+92)s+82)

3.4564% 6/1“ 97)
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B (g)= 234568 P(s) 1 1 1 b (98)
BO="144) {Hsmg(z)){g(s) s+6/1+77(x))(s+9/1)(s+8/1)} C(s)}

C. Non Repairable and Non Identical
Had the considered system be non-repairable and units are non-identical then
the transition state probabilities corresponding to present system are given by

— 1
Py (s) = m 99)
— _ 42, = (100)

36 (5) (S+3/1A+6/18)P46(S)

5 _ 64, B (101)
Py (s) (S+4/1A+Sﬂ )P46(S)
= 3.41, (102)
Pa (s) = (s+32, +6/13)(s+2/1 +61,) Pus (9)

35(9)7 %P%(V) (103)
= 5.6, = (104)
P ) = e, v 54,06 + 47, )P% )

. (s) 2.3.42, P (s) (105)

10 (s+3/1 +6AB)(S+2/1 +6/IE)(S+6AB) Pao
— 3.4.64,°4, —

PZS(S):WP%(S) (106)

— 4.5.64,4, P (s)| 1 1 (107)
Pul)=—"00371)) {A(x)+(s+4/1A)(S+4/1A+5/13)}

B (s)= 23.4.61, 2, (s)] 1 1 (108)

o (s+5/18) B(s) ) (s+62, ) s+34,+64, (s+24,+64,)
= 34.561,°4,° &

Py (s) = - C(s/j £ Py (s) (109)
P (9)_2-3'4-5-6/724315236(5‘) 1 1 1 +L (110)
e s (s+54,) B(S)T(s+6ﬂB)(s+3ﬂA+6ﬁB)(s+21A+6/7,B) ds)

D. Non Repairable and Identical

When the considered system is assumed to be non-repairable and units are
identical then the transition state probabilities corresponding to present system are
given by

o= 5 an
N _ 42 N (112)
Py (s) (s+9ﬂ)P46(S)

— 64

P 64 (113)
4s () (S+9l) 46(s)

P (5) 3.42° 5) (114)

T G+94)Ns+84) P
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4.61°

1?35(3): A(S) F%(S) (115)
_ 5.64° _ (116)
Pul) = o s v an) e

— 2.3.42° > (117)
Pl = oG8 1 62) )

Fzs(s) = %EG (s) (113)
— _45.64P (s)| 1 1 (119)
Puls) =732 {A(S)WHM)(H%)}

o 23462'P ()] 1 1 (120)
s ) =="07757) {B(s)+(s+6l)(s+9ﬂ)(s+81)}

— 4561 —

P, (s) = %P% (s) (121)

5 o 2345.68P(s)] 1 1 1 1 (122)
Buts) s {(s " 54){3@ N7 RV E +u)} * C(s)}

9. Numerical Computation
The Maple software has been used to analyze reliability, availability, MTTF,
cost effectiveness and sensitivity of the system.

(I) Reliability Analysis

Let us fix failure rates as A =0.2 and 2Az=0.1, repair rates
n(x)= l//(J’)z §(Z)= 0,0=1,and x =y =z = 1. Also assume that the repair follows
exponential distribution, i.e. equation (74) holds. Now by putting all these values in
equation (55), using equation (74) and setting 1 =0, 1, 2, 3, 4,5, 6,7, 8, 9, 10, one can
obtain Table 2 and Figure 3 which represent how reliability varies as the time increases.

(II) Availability Analysis

Let the failure rates A3=0.2, Az=0.1, repair rates (x) =y (y) = 5(2) =1,0=
1 andx= y = z =1. Putting all values in equation and taking inverse Laplace
transformation, we get
Pup (1) = 6.785162075exp(-0.3982589672¢)-0.413918134exp(-1.72273319¢)-

28.5681895exp(0.97)-0.4178526776exp(-1.55997341¢)-0.153028 exp (-
1.4209496171)-2.417188899¢exp(1.3¢) +0.2820005597 exp(-2.563587411¢) -
12.25114855exp(-1.2¢) +34.225844exp(-1.1¢) +3.928319264exp(-
1.034497403¢) (123)
Now settings=0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, one can obtain Table 3
Figure 4 shows the variation of availability with respect to time.

(ITT) MTTF Analysis

Let us suppose that repair follows exponential distribution then using equation
(74) and fromthe following equation, MTTF can be obtained

MTTF = lim P, (s)
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We have the following three cases when repair rates n(x) =y (y) =& (z) =0,
0=landx=y=z=1:
(a) Let us set A,2=0.06 and varying the value of Az as 0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.10, one can obtain variation of MTTF with respect to Ap.
(b) Fixing 23=0.05 and varying A, as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.10, one can obtain changes of MTTF with respect to A,.
(¢) Increasing the value of A, and Ag from 0.01 to 0.10, we obtain the manner in
which MTTF varies with respect to A, and Ag simultaneously. Table 4 and Figure
5 show how MTTF varies with respect to different failure rate.

(IV) Cost Analysis

Setting 14=0.2, Az=0.1, repair rates 5 (x) =y (y): 5(2) =0,0=landx=y=z
= 1. Putting all these values and taking inverse Laplace transforms, one can obtain
equation (125). If the repair facility is always available, then expected profit during the
interval (0, 100] is given by

E, (1) = ¢, [P, (t)dt - c,t (124)
0

where c; and ¢, are revenue rate per unit time and service cost per unit time
respectively.
E (1) = ¢ (6.78516207 5exp(-0.39 82589672 1) - 0.41391813 dexp(-1.72 273319 1)
-28.5681895 exp(0.9 ) - 0.41785267 76exp(-1.5 5997 ¢) - 0.15303exp (-1.420949 67¢) (125)
S2.41718889 9exp(1.3 ¢)+ 0.28200exp (-2.563587 411¢)-12.2511485 Sexp(-1.2 ¢)
+34.225844e xp(-1.1 1) + 3.92831926 4dexp(-1.03 4497403 1)) — tc,

Taking ¢; =1 and ¢, = 0.1, 0.2, 0.3, 0.4, 0.5 and using equation (74), variation
of Ep(¢) with respect to time can be obtained. The computational values obtained are
given in Table 5 and depicted in Figure 6.

(V) Sensitivity Analysis
Performing sensitivity analysis for changes in R(#) resulting from changes in
system parametersi, and Ag yield

OR(1) 4(2sinh(12x1)exp((-7/2c-6y)t) + (-15xt + 1 )exp(-(4c+6y)t) 126
Py T+ (30xz - 1)exp(-(3x+6y)1))/x - 12texp(-2xt) + 24texp(-3xt) - 1 2texp(-4xt) ( )
N + 72texp(-(2c+5y)t) - 60texp(-(2c+6y)r) + 72texp(-(dc+5y)t) - 144texp(-(3x+5y)¢)
oR(1) _ O1-150exp((4x+6)0) + 25inh(1/2yt)exp(4:-11/27)) 127

EYN + (+15yt — Dexp(-(4x+5y)1))/y - 30texp(-5yt) + 180texp(-(2x+5y)¢)
-180texp(-(2x+6y)t) + 30texp(-6yt) - 240texp(-(3x+5y)t) + 240texp(-(3x+6y)t)
Numerical results of the sensitivity analysis for the system reliability with
respect to change in A, and Ag are given in Tables 6 and 7. Corresponding behaviour of
sensitivity has been shown in Figures 7 and 8.
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Table 3: Time vs. Availability  Figure 4: Time vs. Availability
N MTTF g MTTF Ay and A MTTF
0.01 108.3485 0.01 39.5842 0.01 111.2698
0.02 54.25319 0.02 24.57325 0.02 55.63492
0.03 36.32675 0.03 20.84832 0.03 37.08995
0.04 27.47102 0.04 19.47416 0.04 27.81746
0.05 22.25397 0.05 18.85782 0.05 22.25397
0.06 18.85782 0.06 18.54497 0.06 18.54497
0.07 16.49991 0.07 18.37163 0.07 15.89569
0.08 14.78722 0.08 18.26901 0.08 13.90873
0.09 13.50077 0.09 18.20501 0.09 12.36332
0.1 12.50899 0.1 18.16338 0.1 11.12698

Table 4: Failure rates vs. MTTF
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Figure 5: Failure rates vs. MTTF
Time Ep()
C,=0.1 C,=0.2 C,=0.3 C,=04 C,=0.5
0 0 0 0 0 0
10 0.988968 0.888968 0.788968 0.688968 0.588968
20 2.16E+00 1.959071 1.759071 1.559071 1.359071
30 3.31E+00 3.010643 2.710643 2.410643 2.110643
40 4.29E+00 3.888245 3.488245 3.088245 2.688245
50 5.04E+00 4.538272 4.038272 3.538272 3.038272
60 5.57E+00 4.971894 4.371894 3.771894 3.171894
70 5.93E+00 5.227133 4.527133 3.827133 3.127133
80 6.15E+00 5.346451 4.546451 3.746451 2.946451
90 6.27E+00 5.366954 4.466954 3.566954 2.666954
100 6.32E+00 5.317685 4.317685 3.317685 2.317685

Table 5: Time vs. expected profit



Reliability Analysis of a Complex Repairable System ... 35

7 A
c,=0.1
6 2
™
. c,=0.2
w
% 4
a c,=0.3
-3
9 c,=0.4
Q
2
% c,=0.5
w
1
0 .
0 20 40 60 80 100 120
Time
Figure 6: Time vs. expected profit
Time Value of OR (t)/ oA,
0 0 0 0
10 -1.28907 -2.85822 -2.15764
20 -9.82089 -12.3116 -12.33
30 -21.1004 -15.2452 -20.0326
40 -29.0596 -12.324 -21.0272
50 -32.3584 -8.19396 -17.98
60 -31.8758 -4.89597 -13.698
70 -28.9898 -2.73951 -9.69874
80 -24.9248 -1.46766 -6.53191
90 -20.56 -0.76285 -4.24426
100 -16.4323 -0.38794 -2.68569

Table 6: Sensitivity analysis of the system MTTF w. r. t. A,
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Figure 7: Sensitivity of system MTTF with respect to different values of A,

Time Value of OR (l‘)/ 0y

0 0 0 0

10 -1.12241 -0.75097 -0.97338
20 -6.50713 -1.47096 -3.27613
30 -9.37826 -0.72316 -2.75228
40 -7.86207 -0.2087 -1.35024
50 -5.00059 -4.61E-02 -0.50447
60 -2.71242 -8.75E-03 -0.1613
70 -1.33E+00 -1.52E-03 -4.69E-02
80 -6.15E-01 -2.48E-04 -1.28E-02
90 -2.71E-01 -3.90E-05 -3.37E-03
100 -1.16E-01 -5.99E-06 -9.74E-01

Table 7: Sensitivity analysis of the system MTTF w. r. t. Ay
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Figure 8: Sensitivity of system MTTF with respect to different values of Ay

10. Interpretation of the Result and Conclusion

In the present study different reliability measures of the complex system such
as transition state probabilities, asymptotic behaviour, reliability, availability, MTTF,
expected profit and sensitivity with respect to different parameters have been obtained.

The Table 2 gives the variation of reliability with respect to the time and the
Figure 3 shows the graph of “Reliability vs. Time”. At time ¢ = 0 the reliability of the
system is obtained to be 1 and it decreases with the increment in time.

Figure 4 shows the graph of “Availability vs. Time” and its value has been given
in Table 3. Critical observation of Figure 4 concludes that availability decreases fast in the
beginning but thereafter it decreases approximately in a constant manner.

Figure 5 is the graph of “MTTF vs. A,”, “MTTF vs. Ag” and “MTTF vs. A (Ap=
Ag)”. The corresponding values of MTTF have been given in Table 4. Observation of
the figure reveals thatbehaviour of MTTF is approximately same with respect to A, and
A but it is different with respect to Az. However in all three cases they decrease as failure
rates increase.One of the interesting facts is that at failure rate 0.05, MTTF with respect
to Axand A are same. But prior to failure rate 0.05, MTTF is higher with respect to A than A,
and after wards situation got reversed. We also observed that prior to failure rate 0.06,
value of the MTTF is higher with respect to A than A and after this the value of MTTF got
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reversed. It is worth mentioning that the value of MTTF with respect to Ag and A are the
same at the failure rate 0.06.

From the Table 5 one can observe the variation of effective profit with respect to
time. The corresponding Figure 6 has been drawn by keeping the revenue cost per unit
time C, set at 1.0, service cost C, is varied as 0.1, 0.2, 0.3, 0.4 and 0.5 and failure rates are
kept at constant value as A, = 0.2 and Az = 0.1. By observation of the figure, one can draw
the conclusion that expected profit decreases as service cost increases with respect to
time.

The sensitivities of the system reliability with respect to the system failure rates
Aa and Ap are depicted in Figures 7 and 8 respectively. In the Figure 7, along the time
coordinate, we show the sensitivity of reliability with respect to A, by varying A, from
0.02, 0.03 and 0.04 when the A is fixed at Az=0.03. In the Figure 8, along the time
coordinate, we show the sensitivity of reliability with respect to Az by varying Ag from
0.02, 0.03 and 0.04 when the A, is fixed at A,=0.03. We observe that influence of A,
and A on system reliability increases as A, and Ap decreases and the time with
maximum sensitivity delays. We observe that sensitivity of the reliability with respect
to Ag is more than sensitivity with respect to A, when other failure rate is fixed at 0.02
whereas when we decrease the value of fixed failure rate then sensitivity with respect to
Ag is less than sensitivity with respect to Ay. We can see that sensitivity of the system
reliability decreases with the increases in the value of A, and Ag. It reveals that the system
reliability is more sensitive with respect to Ap.
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