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Abstract 
In this investigation, we study the performance characteristics of (m,M) machining 

systems having warm spares and two heterogeneous servers. The first server is permanent and 

available full time in the system, whereas the second server takes vacation according to the 

specific threshold policy. In some real time systems, spares may or may not replace/switch in the 

system whenever an operating unit failure occurs, as such switching failure has been incorporated. 

In this paper, we consider a two dimensional continuous time finite state space Markov chain. The 

steady state queue size distribution for the Markovian machine repair problem, considering 

switching failure, is obtained computationally using matrix method based on successiveover 

relaxation. We derive various system characteristics namely, expected number of failed machines 

in the system, throughput of the system, probability that the server is on vacation, etc. In order to 

gain maximum net profit, a cost function is constructed in terms of different cost elements to 

determine the optimal threshold level for the server vacation. For illustration purpose, numerical 

results are provided. In order to examine the effects of system parameters, the sensitivity analysis 

has also been facilitated.  

 

Key Words: Machine Repair, Spares, Vacation, Heterogeneous Servers, Switching Failure, 

Queue Size Distribution. 

 

1. Introduction 
Machines are common components of all industries and these are also subject 

to failure. The operation of any machining system may be stopped due to the failure of 

the machines and in such a situation the repair facility should be made available so as to 

restore the functioning of the failed machines. The machine repair/failure problems 

occur in almost all the areas including the computer networks, communication systems, 

production systems, transportation systems, flexible manufacturing systems, etc. Due to 

wide applications, various researchers working in the area of queueing theory devoted 

their attention on this topic considering various concepts. 

 

In the year 1943, significant milestone for machine interference problem was 

achieved by Kroning and Mondria when they developed the technique to obtain the 
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steady state distribution of M/M/1 queue for the machine repair system taking different 

initial conditions. Later, a lot of works (cf. Pósafalvi and Sztrik, 1987; Jain, 1997; Jiang 

et al., 2001) was done on the machine interference problems by taking different 

parameters into consideration. Gray et al. (2002) and Masuyama and Takine (2003) 

studied different type of queueing models with server breakdowns. Jain el al. (2004) 

investigated a machine repair system, having the facility of spares and the reneging 

customers,which follows the N-policy. Wu (2010) gave computational algorithm and 

parameter optimization for the multi-server system with unreliable servers and 

impatient customers. Jain et al. (2012) analyzed unreliable M/M/K queueing system 

with controlled rates of failure of machines and arrivals of customers under (N,F) 

policy having multi–optional phase repair facility. Later, Jain et al. (2013) studied a 

machine repair problem with an unreliable server in which the arrival of failed 

machines is governed by F policy.  

 

Maintaining a high or required level of performance efficiency is often an 

essential requisite for production/manufacturing organizations. If the defective parts are 

found, the same should be replaced or repaired to get back the operational system. For 

the uninterrupted service and efficient utilization of installed units in the computer 

mechanized system these days, it is desirable to provide a spare part support. The 

machine repair problems including availability of warm spares or other type spares 

have attracted many researchers (cf. Goel and Gupta, 1983; Berg and Posner, 1990; 

Wang and Sivazlian, 1992; Gupta, 1994; Gupta and Rao, 1996) in the area of queueing 

theory to chalk out the better maintenance schedules so as to achieve desired grade of 

service.  Rao and Gupta (2000) established a model of the M/G/1 machine repairman 

problem with cold, warm and hot standbys and formulated various performance 

measures. Jain et al. (2007) performed thereliability analysis of k-out-of n: G machining 

systems with mixed spares and multiple modes of failure. A machine repair problem in 

production systems with spares and server vacations was investigated by Ke et al. 

(2009) and Maheshwari et al. (2010). An unreliable machine repair system with 

heterogeneous servers working under N-policy having warm spares and impatient 

customers was analysed by Jain et al. (2012). They have also analyzed the performance 

characteristics of the system. The availability of transient state system with warm 

standbys was studied using the Runge-Kutta method byJain and Rani (2013). 

 

It is not unusual to assume that the switching device may have a failure 

probability in real service systems due to error in handling, automation or some natural 

failures. Thus the switching failure of the spares is also an important factor in the 

proper functioning of the machining system.  Lewis (1996) first introduced the concept 

of the standby switching failures to facilitate the reliability indices for a standby system.  

Later this factor was also considered by many other researchers (cf. Wang et al.; 2006; 

Wang et al., 2007; Ke et al., 2007) in their research. Using the supplementary variable 

technique, Wang and Chen (2009) developed the explicit expressions for the steady-

state availability of three systems with general repair times, reboot delay and switching 

failures. Ke et al. (2011) formulated reliability measures for a repairable system with 

standby switching failures and reboot. Jain et al. (2012b) studied an unreliable server 

machining system by considering switching failure and common failure. 

 

In many real world repairable systems, it is economical that repairmen may 

not be available for a random period of time when there are no failed units in the 



Markov Model for Switching Failure of Warm Spares in... 59

system at a service completion instance. Sometimes, in many practical multiple server 

systems, only some servers perform secondary jobs or take vacations when they 

become idle, and other servers are always available for serving the arriving units. In a 

queueing system, this type of vacation is called the partial server vacation. In the past, 

a lot of work has been done on the machine interference problem where there is a 

provision for the server to go on vacation (cf. Gupta, 1997; Zhang and Tian, 2003; Jain 

et al., 2004; Ke and Wang, 2007). Wang and Chen (2009) studied a machine repair 

problem with working vacation which means that the server also performs its job at a 

different pace, even when it is on a vacation. They used Newton’s method for the 

optimal management of the machine repair problem. Jain and Upadhyaya (2009) 

suggested the threshold N-policy for degraded machining system having many type of 

spares and multiple vacations. Singh et al. (2012) investigated a queueing model with 

state dependent arrival of customers and the facility of second optional vacation after 

availing the first regular vacation by the server. 

 

In this paper, we develop a machine repair model with warm spares 

incorporating their probabilistic switching failure and facility of vacation for the server. 

The rest of the paper is organized as follows: In section 2, system description and 

notations have been given. We formulate the problem mathematically by constructing 

Chapman Kolmogrove difference equations governing the steady-state model(see figure 

1). In section 3, the solution technique is given to obtain steady-state probabilities of the 

number of failed unit in the system. In section 4, some performance indices are 

presented in terms of steady-state probabilities.  Numerical results are provided in the 

section 5. Finally, in the last section 6, conclusions are drawn and future scopes are 

discussed. 

 

2. System Description 
For the mathematical modeling of multi-component machining system 

consisting of M operating machine and S warm spares and two heterogeneous servers, 

the following assumptions and notations are used (refer Figure1). 

• The life time of operating machines and spares follow the exponential distribution 

with rate of λ and α (0 <α <λ), respectively. The life times of the operating 

machine or/and spare are independent of the state of the others. 

• For the normal functioning of the system, M operating machines are required. On 

the failure of the operating machines, the available warm spares are used one by 

one in the system with negligible switching time. Once a spare machine is put into 

the system in place of failed operating machine, its characteristics are same as that 

of the operating machine. The failed machine is immediately sent for repair to the 

server available. 

• If all the spares are exhausted and there are less than M but more than m (m<M) 

operating machines in operation, the system may also function in short mode 

following the (m,M) policy. Thus, the system breaks down if and only if L = M+S-

m+1 or more machines fail. 

• The switching of spares in place of failed operating machines may or may not be 

perfect due to mishandling or poor automation. It is assumed that the switching of 

machine has a failure probability q. If a warm spare fails to replace a failed 

machine, the next available spare attempts to switch. This process continues until 

switching is successful or all the warm spares are exhausted. 
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• The first server S1 is always available for repairing the failed machines. The 

second server S2 leaves for vacation according to the specified threshold policy for 

random duration, i.e. the server takes vacation on finding less than N failed 

machines in the system. The vacation time is exponentially distributed with rate θ. 

On returning from a vacation if server S2 finds more than or equal to N failed 

machines accumulated in the system, the server starts repairing of the failed 

machines, otherwise goes for another vacation. 

• The repair times of server S1 and server S2 are exponentially distributed with rates 

µ1 and µ2, respectively. 

• Both servers take failed machines for repair in the First Come First Serve (FCFS) 

fashion. 

• When the failed machine is repaired, it is as good as a new machine. The repaired 

machine is used for operation in the system if there are less than M operating 

machines; otherwise the repaired machine joins the spare machine group. The 

switching time is assumed to be negligible.  

 

Following notations are used for mathematical formulation of birth–death 

process in continuous time finite state space model: 

Pn,0=  The steady-state probability that there are n (0 ≤ n ≤ L) failed machines in the 

system and server S2 is in the vacation state. 

Pn,1=  The steady-state probability that there are n (0 ≤ n ≤ L) failed machines in the 

system and server S2 is in the working state.  

 

 
 

Using the quasi birth-death process and the above defined assumptions and 

notations, the Chapman-Kolmogroveequations governing the present machine repair 

model are constructed as follows: 
( ) 00,110,0 =++− PPSM µαλ

     
(1) 

( )[ ] ( )[ ] 011 0,210,110,0 =++−+−+− PPSMPSqM µµαλαλ
 

(2) 
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3. The Solution Technique 
The governing difference equations (1)-(15) of the present model can be 

expressed in the matrix form 

0AX =         (16) 

whereA is the coefficient matrix of an order 2L-N+2, X is the column vector having 

elements

T

LLNNN PPPPPPP 







− 1,0,100,11000 ,,...,,,...,,, and 0 is the null column vector 

of order 2L-N+2. Usingthe normalizing condition 
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(17) 

the system of linear equations in (16) can be expressed as 

BXA =*

        
(18) 

where
*A is the matrix A replacing the last row with a row vector having all unit 

elements and B is the column vector of the form [ ]T
1,0,...,0,0 of order 2L-N+2. 

 

Equation (18) has been solved using the numerical technique ‘Successive Over 

Relaxation (SOR) method’ in MATLAB 7.1. This technique is an extrapolation to 

Gauss-Seidal method which accelerate the convergence rate by taking the relaxation 

parameter w>1 (w=1.25) which is unity in case of the Gauss-Seidal method. 

 

4. Performance Characteristics 
Using the steady-state probabilities derived in the previous section, we 

compute some performance measures for queuing model under consideration in present 

study as follows: 

• The expected number of failed machines in the system is as follows 

( ) ∑∑
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(19) 

• The throughput of the system is derived as given below 
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• The expected number of spare units in the system is given by 
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• The probability that the second server S2 in on vacation is obtained using 
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• The probability that server S2 is in busy state is given by 
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=

=
L
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(23) 

• The steady state probability that at least m operating units are in operation to 

function properly (system availability) is 

1,0,1 LL PPA −−=
       

(24) 

• The steady-state failure frequency is determined as follows 

�� = �����	
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• The expected number of operating machines in the system is given by 
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• Since any one of the S spares machines in the queue may have switching failure, 

the average switching failure rate is given by 
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• The probability that the first server S1 is in idle state is 

	�
��� = ��,�       (28) 

• The probability that the first server S1 is busy is 

�
��� = 1 − �
���       (29) 

 

5. Numerical Results 
To validate the model, we compute various performance measures established 

in the previous sections, and display in tables and graphs. In tables 1-4, numerical 

results for E(O), E(S), P2(V), P2(B), P1(I), P1(B), SR and SF are summarized for varying 

values of various parameters. 

 

In table 1, performance measures are summarized for different values of M, S 

and λ by fixing m=12, α=0.1, µ1=2, µ2=3, q=0.8, N=4 and θ=0.6. It is clear that the 

E(O), E(S), P2(V), P1(I) and SR are decreasing with respect to failure rate (λ) but P2(B), 

P1(B) and SF are increasing with respect to λ. 

 

M S Λ E(O) E(S) P2(V) P2(B) P1(I) P1(B) SR SF 

20 

5 

0.2 17.72 0.1885 0.3561 0.6440 0.0019 0.9981 0.3389 0.0743 

0.4 14.21 0.0105 0.0350 0.9650 0.0000 1.0000 0.0457 0.8122 

0.6 12.46 0.0005 0.0021 0.9979 0.0000 1.0000 0.0035 1.8562 

15 

0.2 19.04 0.5322 0.0038 0.9962 0.0000 1.0000 0.6700 0.0211 

0.4 14.35 0.0155 0.0000 1.0000 0.0000 1.0000 0.0584 0.7903 

0.6 12.46 0.0006 0.0000 1.0000 0.0000 1.0000 0.0039 1.8554 

 

Table 1Performance measures by varying the number of operating machine (M), warm 

spares (S) and failure rate of operating machine (λλλλ) 
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In table 2 for given value λ= 0.3 and taking other parameters same as in table 

1, the value of E(O) is almost constant with respect to the failure rate of warm spares 

(α), which proves that the expected number of operating units in the system E(O) is not 

affected. The gradual increasing trends are observed for P2(B) and P1(B) with respect to 

the failure rate of warm spares (α) and gradual decrease is observed for E(S), P2(B), 

P1(I), SR and SF. These trends reveal that the failure rate of warm spares is not a 

sensitive parameter for the given model. 

 

M S Α E(O) E(S) P2(V) P2(B) P1(I) P1(B) SR SF 

20 

5 

0.05 15.96 0.0496 0.1333 0.8667 0.0002 0.9998 0.1498 0.3222 

0.15 15.96 0.0487 0.1327 0.8673 0.0002 0.9998 0.1486 0.3220 

0.30 15.96 0.0474 0.1318 0.8683 0.0001 0.9999 0.1469 0.3216 

15 

0.05 16.59 0.0978 0.0002 0.9998 0.0000 1.0000 0.2373 0.2548 

0.15 16.59 0.0950 0.0001 0.9999 0.0000 1.0000 0.2346 0.2549 

0.30 16.59 0.0911 0.0001 0.9999 0.0000 1.0000 0.2309 0.2550 

 

Table 2 Performance measures by varying the number of operating machine (M), warm 

spares (S) and failure rate of spare (α) 

 

By fixing λ=0.8 and α=0.5 in table 3 and keeping other parameters same as in 

table 1, we note the great differences in all performance measures with respect to the 

threshold value (m) which depicts that it is a very important factor of our study. P2(B) is 

decreasing with respect to m whereas E(O), SR, P2(B) and SF are increasing with 

respect to same parameters. 

 

M S M E(O) E(S) P2(V) P2(B) P1(I) P1(B) SR SF 

20 

5 

1 6.25 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0097 

6 7.28 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0270 

12 11.88 0.0000 0.0002 0.9998 0.0000 1.0000 0.0004 2.5536 

15 

1 6.25 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0097 

6 7.28 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0270 

12 11.88 0.0000 0.0000 1.0000 0.0000 1.0000 0.0004 2.5540 

 

Table 3 Performance measures by varying the number of operating machine (M), warm 

spares (S) and threshold number of operating units (m) 

 

In table 4, a gradual decrease is observed in E(O), E(S), P2(B) and P1(I) with 

respect to the probability of switching failure of warm spares (q). Also a gradual 

increase is seen in P2(B), P1(B), SR and SF with respect to same parameters , for the 

same data as chosen for table 3 and m=12. 

M S Q E(O) E(S) P2(V) P2(B) P1(I) P1(B) SR SF 

20 

5 

0.1 16.10 0.0959 0.1699 0.8301 0.0005 0.9995 0.0354 0.3126 

0.5 16.00 0.0646 0.1462 0.8538 0.0003 0.9997 0.1216 0.3189 

0.9 15.94 0.0450 0.1293 0.8708 0.0002 0.9998 0.1540 0.3229 

10 

0.1 16.96 0.4021 0.0377 0.9623 0.0001 0.9999 0.0897 0.2305 

0.5 16.68 0.1638 0.0118 0.9882 0.0000 1.0000 0.2237 0.2496 

0.9 16.54 0.0798 0.0042 0.9958 0.0000 1.0000 0.2304 0.2589 

 

Table 4 Performance measures by varying the number of operating machine (M), warm 

spares (S) and switching failure rate (q) 
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All tables reveal the increasing trends in E(O), E(S), P2(B), P1(B) and SR with 

respect to number of warm spares (S) but P2(V), P1(I) and SF are decreasing. On the 

other hand, the values of performance measures namely, E(S), P2(B), P1(I), SR and SF 

decrease with respect to the number of operating units (M) and rest of the performance 

measures show the increasing trends. From all tables, we conclude that there are major 

changes in the performance measures for failure rate of operating machine, service rate 

of both servers and the minimum number of operating units required for the system 

operation.  

 

Figure 2 depicts the relation between expected number of failed units in the 

system E(n) with respect to various input parameters for other default parameters fixed 

as in tables 1-4. In figure 2(i) we see that E(n) increases with high rate for lower values 

of λ but increases gradually for higher values of λ. Figure 2(ii), 2(iii), and 2(iv) 

respectively, show that there is not much significance changes in E(n) with respect to α, 

q  and θ.  

 

 
2(i) 

 
2(iii) 

 
2(ii) 

 
2(iv) 

Figure 2 Expected number of failed machines v/s (i) λ, (ii) α, (iii) q, (iv) θ

 

Figures 3 and 4 exhibit the behavior of throughput τ and availability A 

respectively with respect to various parameters. The throughput increases with the 

increment in λ but is almost constant with respect to α.. System availability A is 

decreasing with respect to λbut its values are almost constant for α. 
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3(i) 3(ii)

Figure 3: Throughput of the system v/s (i) λ, (ii) α 
 

 
4(i) 

 
4(ii)

Figure 4: Steady-state availability of the system v/s (i) λ, (ii) α 

 

From all tables and figures, we conclude that the major changes in various 

performance measures are observed for failure rate of operating machine and spre 

machines servers. Our recommendations from present study are that we have to 

evaluate various performance measures of the system concerned to examine the 

sensitivity of different input parameters. It is evident that just by increasing the service 

rate nominally after some extent we will not get the reduction in the workload of failed 

machines. We also have to determine the minimum number (m) of operating machines 

as well as the number of warm spares (S) required so that the system may run 

successfully without interruption. 
 

6. Conclusion and Future Scope 
In the present investigation, various performance indices of (m,M) machine 

repair problem are obtained to provide an insight into the performance and availability 

of such system. The machine repair problems are likely to be more complex in future, 

and as such it is natural to pay attention towards new technologies and congestion 

problems arising out of machine schedules which are prone to failure. Our study may 

be helpful to the system designers and decision makers to determine the optimal policy 

to achieve required efficiency and availability of the system under unavoidable techno-

economic constraints of spare provisioning and repair facility. 
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