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Abstract 
The purpose of the present study is to carry out cost-benefit analysis of a single-unit 

system subject to random shocks. The operative unit may be affected by the impact of random 

shocks with some probabilities. The unit may fail completely due to the reasons other than 

shocks. There is a single server who visits the system immediately. The maintenance of the unit 

is carried out by the server if it is affected by the impact of a shock. However, repair of the unit is 

done at its failure. Maintenance and repair are perfect. All the random variables are statistically 

independent. The shock and failure times of the unit are exponentially distributed whereas 

distributions of maintenance and repair times are taken as arbitrary. The expressions for various 

reliability measures are evaluated in steady state using semi-Markov process and regenerative 

point technique. The values of MTSF, availability and profit functions are obtained for a 

particular case to depict their graphical behavior with respect to shock rate.  
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1. Introduction 

No doubt that the technique of redundancy has been proved as one of the 

effective strategy for performance improvement of a system. But there are many 

systems in which a unit cannot be kept as spare due to its high cost. And, so single-unit 

systems are being preferred by the users due to their affordability and inherent 

reliability. Several authors including Chander and Bansal (2005) and Malik (2008) have 

analyzed single-unit reliability models considering different failure and repair policies.  

But most of these models have been probed under the common assumptions that 

failures occur in the system due to reasons other than shocks. In fact, shocks are the 

events which can be one of the causes of the system failure and deterioration. Murari 

and Al-Ali (1988) developed a reliability model of a single unit system with the impact 

of random shocks. Gupta and Chaudhary (1992) analyzed a two-unit priority standby 

system subject to random shocks and Rayleigh failure time distribution. Wu and Wu 

(2011) obtained reliability of a two-unit cold standby repairable system under Poison 

shocks. 

 

On the other hand, maintenance can be conducted to stop further damage of 

the system affected by random shocks. However, not much work related to the 

reliability modeling of single-unit systems subject to random shocks has been reported 
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so far in the literature of reliability using the concepts of maintenance and repair 

simultaneously. Malik and Chhillar (2012) tried to establish reliability model of a cold 

standby system under maintenance and repair subject to random shocks. 

 

While considering the above observations and facts in mind, here a shock 

model for a single unit system is developed under maintenance and repair. The operative 

unit suffers damage with the impact of random shocks with some probabilities. The unit 

may fail completely due to the reasons other than shocks such as wear out. There is a 

single server who visits the system immediately. The maintenance of the unit is carried 

out by the server if the unit is affected by the impact of a shock. Server repairs the unit 

at its failure. Repair, maintenance and switch devices are perfect. All random variables 

are statistically independent. The shock and failure times of the unit are exponentially 

distributed whereas distributions of maintenance and repair times are taken as arbitrary. 

To carry out cost-benefit analysis, the expressions for various reliability measures such 

as transition probabilities, mean sojourn times, mean time to system failure (MTSF), 

availability, busy period of the server due to repair and maintenance, expected number 

of maintenances, expected number of repairs and profit function are evaluated in steady 

state using semi-Markov process and regenerative point technique. The values of MTSF, 

availability and profit functions are obtained for a particular case to depict their 

graphical behavior with respect to shock rate. 

 

2. Notations 
O                       :    The unit is operative and in normal mode.  

p0                              :    The probability that shock is effective. 

q0                              :    The probability that shock is not effective. 

µ                        :    Constant rate of the occurrence of a shock. 

λ                        :    Constant failure rate of the unit. 

m(t)/M(t)           :    pdf / cdf of maintenance time of the unit after the effect of a shock. 

FUr                    :   The Unit is completely failed and under repair  

SUm                  :   Shocked unit under maintenance 

g (t) / G (t)        :   pdf / cdf of repair time of the completely failed unit 

qij(t) / Qij(t)       :   pdf and cdf of direct transition time from a regenerative state i to a 

                              regenerative state j without visiting any other regenerative state 

Mi(t)                  :  Probability that the system is up initially in state Si  E is up at 

                              time t without visiting to any other regenerative state. 

Wi(t)                 :  Probability that the server is busy in state Si up to time t without  

                             making transition to any other regenerative state or returning to 

                            the same via one  or more non regenerative states. 

mij                     :  Contribution to mean sojourn time (µi) in state Si when system 

                             transit directly to state Sj so that 
i ij

j

mµ = ∑  and  

                                  
* '( ) (0)ij ij ijm tdQ t q= = −∫  

(s) / ©              :   Symbol for Laplace Stieltjes convolution / Laplace convolution. 

 ~ / *                :   Symbol for Laplace Stieltjes Transform (LST) / Laplace 

                          Transform (LT).  

All the transitions states S0 , S1 and S2 are regenerative as shown in Figure 1.  
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3. Transition Probabilities and Mean Sojourn Times  
Simple probabilistic considerations yield the following expressions for the non-zero 

elements 

∫
∞

=∞=
0

)()( dttqQp ijijij   as 

 p00=
0q µ

λ µ+
, p01=

0p µ
λ µ+

, p02=
λ

λ µ+
, p10 = ( )* 0m and p20= ( )* 0g                     (1) 

 

 

 

 

 

 

 

 

 ● Transition point                         Up-State                           Completely Failed   

Fig. 1: State Transition Diagram 

 

It can be easily verified that 

 p00+p01 +p02= p10=p20=1                                                                                                 (2) 

The mean sojourn times (µi) in the state Si are 

00 01 02 0
m m m µ+ + = ,

10 1
m µ= , 

20 2
m µ=  

 

4. Reliability and Mean Time to System Failure (MTSF) 
Let  φi(t) be the cdf of first passage time from the regenerative state Si to a 

failed state. Regarding the failed state as absorbing state, we have the following 

recursive relations for φi (t): 

( ) ( ) ( ) ( ), ,i i j j i k
j k

t Q t t Q tϕ ϕ=  +∑ ∑                                                            (3) 

where Sj is an un-failed regenerative state to which the given regenerative state Si can 

transit and k is a failed state to which the state Si can transit directly. Taking LST of 

above relation (3) and solving for 0 ( )sφɶ , we have  

R*(s) = 01 ( )s

s

ϕ− ɶ
                                                                                                            (4) 

The reliability of the system model can be obtained by taking inverse Laplace transform 

of (4). 
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The mean time to system failure (MTSF) is given by 

MTSF =
s

s

os

)(
~

1
lim 0φ−

→
= 

1

1

N

D
                                                                                       (5) 

Where N1 = 0µ   and D1 = 001 p−  

 

5. Steady State Availability 
Let Ai(t) be the probability that the system is in up-state at instant 't' given that 

the system entered regenerative state Si at t = 0. The recursive relations for Ai (t) are 

given as 

( ) ( ) ( ) ( ),i i i j j
j

A t M t q t A t= + ∑                                                                                 (6) 

where Sj is any successive regenerative state to which the regenerative state Si can 

transit. Mi(t) is the probability that the system is up initially in state 
iS E∈  is up at 

time t without  visiting to any other regenerative state, we have 
t)(

0 e)t(M µ+λ−=                                                                                                          (7) 

Taking LT of above relations (6) and solving for *

0 ( )A s , the steady state availability is 

given by 

*

0 0
0

( ) lim ( )
s

A sA s
→

∞ =  2

2

N

D
=  , Where N2 = µ0 and D2 =1-p00-p10p01-p02p20  

 

6. Busy Period Analysis of the Server 

 

a. Due to repair 

Let )(tB Ri be the probabilities that the server is busy in repair at an instant ‘t’ 

given that the system entered state Si at t = 0. The recursive relations for ( )
R
iB t are as 

follows 

( ) ( ) ( ) ( ),
R R
i i i j j

j

B t W t q t B t= + ∑                                                                                (8) 

where Sj is any successive regenerative state to which the regenerative state Si can 

transit. Let Wi(t) be the probability that the server is busy in state Si due to  repair up to 

time t without making any transition to any other regenerative state or returning to the 

same via one or more non-regenerative states. We have W2(t)= 
( )G t

 

Taking LT of above relations (8) and, solving for ( )*B sR
i

the time for which server is 

busy due to repair is given by 

lim ( )* 3
0 0 20

N
B sB s

D

R
R R

s
= =

→
                                                                                         (9)

 
where 

N3 = p02 2w
∗

(s) and D2 is already defined. 
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b. Due to Corrective Maintenance 

Let ( )
M
iB t be the probabilities that the server is busy in Corrective 

maintenance at an instant ‘t’ given that the system entered state Si at t = 0. The 

recursive relations for 
  

( )
M
iB t are as follows 

( ) ( ) ( ) ( ),
M M
i i i j j

j

B t W t q t B t= + ∑                                                                           (10) 

where Sj is any successive regenerative state to which the regenerative state Si can 

transit. Let Wi(t) be the probability that the server is busy in state Si due to  corrective 

maintenance up to time t without making any transition to any other regenerative state or 

returning to the same via one or more non-regenerative states. We have  

W1(t)= 

( ) ( ) ( )

0

( )

0

( ) ( 1) ( ) ( 1) ( )

( 1) ( )

t t t

t

e M t e M t p e M t

q e M t

λ µ λ µ λ µ

λ µ

λ µ

µ

− + − + − +

− +

+  + 

+   

Taking LT of above relations (10) and, solving for ( )*MB s
i

the time for which server is 

busy due to corrective maintenance is given by 

lim ( )* 3
0 0 20

N
B sB s

D

M
M M

s
= =

→
                                                                                  (11)

 
where 

N4 = p01 1w
∗

(s) and D2  is already defined. 

 

7. Expected Number of Corrective Maintenance  

Let ( )
M
iN t be the probabilities that the server is busy in corrective 

maintenance at an instant ‘t’ given that the system entered state Si at t = 0. The 

recursive relations for ( )M
iN t are as follows 

( ) ( ) ( ),
M M
i i j j j

j

N t Q t N tδ =  +  ∑                                                                        (12) 

where Sj is any successive regenerative state to which the regenerative state Si can 

transit. Taking LST of above relations (12) and, solving for ( )*MN s
i

the time for which 

server is busy due to corrective maintenance is given by  

N
M

0 = 

*

0

0

( )
lim

M

s

N s

s→
= N4/D2 where N4 = p10 p01 and D2 is already defined. 

 

8. Expected Number of Repairs  

Let ( )
R
iN t be the probabilities that the server is busy in repair at an instant ‘t’ 

given that the system entered state Si at t = 0. The recursive relations for ( )R
iN t are as 

follows 

( ) ( ) ( ),
R R
i i j j j

j

N t Q t N tδ =  +  ∑                                                                          (13) 
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Where Sj is any successive regenerative state to which the regenerative state Si can 

transit. Taking LST of above relations (13) and, solving for ( )*N sR
i

the time for which 

server is busy due to repair is given by  

N
R

0 =

*

0

0

( )
lim

R

s

N s

s→
= N5/D2  

Where N5 = p20p02 and D2 is already defined. 

 

9. Profit Analysis 
The profit incurred to the system model in steady state can be obtained as 

P = 
0 0 1 0 2 0 3 0 4 0 5

M R M RK A K B K B K N K N K− − − − −                                          (14) 

where 

K0 = Revenue per unit up-time of the system 

K1 = Cost per unit time for which server is busy due to maintenance 

K2 = Cost per unit time for which server is busy due to repair 

K3 = Maintenance cost per unit  

K4 = Repair cost per unit  

K5 = fixed cost of the server and 0 0 0 0 0, , , ,M R M RA B B N N are already defined. 

 

 

 

Fig. 2: MTSF Vs. Shock Rate 
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Fig. 3: Availability Vs. Shock Rate 

 

 

Fig. 4: Profit Vs. Shock Rate 

 

10. Conclusion 

The results obtained for a particular case ( ) tg t e γγ
−

= , ( ) tm t e θθ −=  indicate that 

mean time to system failure (MTSF), availability and profit go on decreasing with the 

increase of shock rate (µ) and failure rate (λ) for fixed values of other parameters and 

costs as shown respectively in figures 2, 3 and 4. However, their values keep on 

increasing with the increase of maintenance rate and repair rate of the unit. It is 

interesting to note that MTSF decreases by interchanging the values of p0 and q0, i.e., 

p0=0.4 and q0= 0.6 while availability and profit increase. Hence, the study reveals that a 

single- unit system subjected to random shocks can be made more profitable and 

reliable to use by increasing the maintenance rate of the shocked unit. 
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