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Abstract 
The main objective of this paper is to analyze a single-unit system with arbitrary 

distributions for all random variables associated with failure time, preventive maintenance (PM), 

maximum operation time (MOT), inspection and repair times. There is a single server who visits 

the system immediately whenever needed. The partially failed unit undergoes for PM after a 

MOT. The unit is considered as degraded after repair while preventive maintenance is perfect. 

Server inspects the degraded unit at its failure to see the feasibility of repair. If repair of the 

degraded unit is not feasible, it is replaced immediately by new one.  The expressions for some 

reliability measures are obtained in steady state using regenerative point technique. Giving 

particular values to various parameters and costs, the numerical results for mean time to system 

failure (MTSF), availability and profit function are obtained considering exponential and 

Rayleigh distributions for all random variables.  
 

Key Words: Single-Unit System, Preventive Maintenance, Maximum Operation Time, 

Degradation, Reliability Measures.  

 

1. Introduction 
Now a day’s single-unit systems are being preferred over standby systems by 

the users in every sphere of life because of their affordability and inherent reliability. 

And, most of these systems have been investigated by the researchers including 

Nakagawa and Osaki [7], Kuo and Liang [4], Chander [1], Malik [6], Savita et al. [8], 

Liu and Liu [5], Kaur et al. [3], and Kadyan and Ramniwas [2] under the following 

assumptions: 

i. The unit has a constant failure rate. 

ii. The unit can work as good as new after repair. 

iii. The unit can work forever without conducting preventive maintenance. 

iv. Repair of the unit is always feasible to the system. 

But the hazard rates of many components (or systems) such as rotating shafts, 

valves and cams are of linearly increased nature due to wear out under mechanical 

stress and so their failure times follow arbitrary distributions like Rayleigh distribution. 
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Again, the continued operation and ageing of systems gradually reduce their 

performance, reliability and safety. Therefore, PM of these systems may be conducted 

after a pre-specific period of time at any stage of their operation to slow the 

deterioration process as well as to restore the systems in a younger age or state. 

 

Further, sometimes, unit does not work as new after repair. Since the capability 

of the unit after repair depends on the repair mechanism adopted and unit may have 

increased failure rate, if it is repaired by an ordinary server. In such a situation unit 

becomes degraded. Furthermore, repair of a degraded unit is not always feasible to the 

system may because of its excessive use and high cost of maintenance. In such cases, 

the failed degraded unit may be replaced by new one and this can be revealed by 

inspection. 

 

In view of the above, here reliability measures for a single-unit system are 

obtained considering arbitrary distributions for random variables associated with failure 

time, PM, MOT, inspection and repair times. The unit may fail completely either 

directly from normal mode or via partial failure. A single service facility is provided 

immediately to the system as and when needed. The PM of the unit at its partial failure 

is conducted after a MOT. However, repair of the unit is done at its complete failure. 

The unit works as new after PM while it becomes degraded after repair. The degraded 

unit is inspected by the server to see the feasibility of repair at its failure. If repair of the 

degraded unit is not feasible, it is replaced immediately by new one in order to avoid 

the unnecessary expanses on repair. Various reliability measures such as mean sojourn 

times, MTSF, availability, busy period of the server due to repair activities, expected 

number of visits by the server to conduct repair activities and profit function are 

evaluated in steady state using regenerative point technique. Giving particular values to 

various parameters and costs, the numerical results for MTSF, availability and profit 

function are obtained considering  exponential and Rayleigh distributions for all 

random variables.  

 

•Methodology 
The system has been analyzed using well known semi-Markov process and regenerative 

point technique which are briefly described as: 

Markov Process: If {X(t), t∈T} is a stochastic process such that, given the value of 

X(s), the value of X(t), t>s do not depend on the values of X(u), u<s Then the process 

{X(t), t∈T} is a Markov process. 

Semi-Markov Process: A semi-Markov process is a stochastic process in which 

changes of state occur according to a Markov chain and in which the time interval 

between two successive transitions is a random variable, whose distribution may 

depend on the state from which the transition take place as well as on the state to which 

the next transition take place. 

Regenerative Process: Let X(t) be the state of the system of epoch. If t1, t2,… are the 

epochs at which the process probabilistically restarts, then these epochs are called 

regenerative epochs and the process {X(t), t = t1, t2………} is called regenerative 

process. The state in which regenerative points occur is known as regenerative state. 

 

2. System Description and Assumptions 
1) The system has a single unit may fail totally either directly from normal mode 

or via. partial failure. 
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2) There is a single server who visits the system immediately whenever needed. 

3) The partially failed unit undergoes for PM after a MOT.  

4) The unit is considered as degraded after repair while preventive maintenance is 

perfect.  

5) Server inspects the degraded unit at its failure to see the feasibility of repair. 

6) If repair of the degraded unit is not feasible, it is replaced immediately by new 

unit. 

7) Distributions for all random variables associated with failure time, PM, MOT, 

inspection and repair times are taken as arbitrary. 

8) All random variables are uncorrelated and mutually independent. 
 

3. Notations 
E Set of regenerative states. 

O The unit is new and operative  

Do The unit is degraded and operative. 

PFO The unit is partially failed and operative. 

DFUi Degraded unit is failed and under inspection. 

DFUr Degraded unit is failed and under repair. 

PFPm The unit is partially failed and under PM. 

Fur The unit is completely failed and under repair. 

f(t)/F(t), f1(t)/F1(t), 

f2(t)/F2(t) 

Probability density function (pdf)/cumulative distribution  

function (cdf) of failure time of the unit from normal mode to 

complete failure/Normal mode to partial failure/ partial 

failure  to complete failure. 

f3(t)/F3(t) pdf/cdf of failure time of degraded unit. 

z(t)/Z(t) pdf/cdf of the MOT after partial failure. 

g(t)/G(t) pdf /cdf of PM time of the unit. 

g1(t)/G1(t) pdf/cdf of repair time of the failed new unit. 

g2(t)/G2(t) pdf/cdf of repair time of the failed degraded unit. 

h(t)/H(t) pdf/cdf of inspection time of degraded unit. 

p/q Probability that repair of degraded system is feasible/not 

feasible. 

qij(t)/Qij(t) pdf/cdf of first passage time from regenerative state i to a  

regenerative state j or to  a failed state j without visiting 

any other regenerative state in (0,t]. 

Mi(t)  Probability that system is up initially in state Si ∈ E is up 

at time t without visiting to any  other regenerative sate  

Wi(t) Probability that server is busy in the state Si  up to time t 

without making any transition to any other regenerative 

state or returning to the same via one or more non-

regenerative states 

 

4. State Specification 
S0 :        The unit is new and operative. 

S1` :        The unit is partially failed. 

S2 :       The unit is completely failed and under repair. 

S3  :       The unit is partially failed and under PM 

S4  :       The unit is degraded and operative 

S5  :       Degraded unit is failed and under inspection 
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S6  :       Degraded unit is failed and under repair. 

The following are the transition states of the system model: 

Up states:   S0= (O),   S1= (PFO),    S4= (Do). 

Down states:   S2= (FUr),  S3= (PFPm),                     S5= (DFUi),  

   S6= (DFUr). 

All the transition states are regenerative. Thus E = {Si ; 0≤i ≤6}. The state transition 

diagram has been shown in Figure 1. 

 

5. Transition Probabilities and Mean Sojourn Times 
The transition probability matrix (t.p.m.) of embedded Markov-chain is 

( ) ))(QQ()p(p ijij ∞=∞==  

By probabilistic arguments, the non-zero elements ijp  are 

( ) ( )dttFtfp

0

101 ∫
∞

=

                                                                                        (**) 

Where p01 means that probability that the complete failure of new unit does not occur 

until time t and the new unit is partially failed at time t. 

All other transition probabilities can be explained in the same manner. 

dt)t(F)t(fp

0

102 ∫
∞

= , ( ) ( )dttZtfp

0
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0
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∞

= ,  

dt)t(gp

0
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= ,               dt)t(gp

0
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0
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= ,              
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0
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= ,  dt)t(php

0
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0

264 ∫
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For these transition probabilities, it can be verified that 

p01+p02=p12+p13=p24=p30=p45=p50+p56=p64=1 

 

5.1 Mean Sojourn Times 

The mean sojourn times (µi) in state Si are given by 
 

∫
∞

>==µ
0

dt)tT(P)T(E
i

; where T denotes the time to system failure.

 

∫
∞

=µ
0

10 dt)t(F)t(F ,                  ∫
∞

=µ
0

21 dt)t(F)t(Z , ∫
∞

=µ
0

12 dt)t(G  , 

∫
∞

=µ
0

3 dt)t(G ,   ∫
∞

=µ
0

34 dt)t(F ,               ∫
∞

=µ
0

5 dt)t(H , 

∫
∞

=µ
0

26 dt)t(G                                                                                                                (2) 

The unconditional mean (mij) time taken by the system to transit from any 

regenerative state Si when time is counted from epoch of entrance into state Sj is given 

by 
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5.2 Relationship between Unconditional Mean and Mean Sojourn Times 

00201 mm µ=+ ,  11312 mm µ=+   224m µ=

 334m µ= ,   445m µ=   55650 mm µ=+ , 

 664m µ=    

 

6. Reliability Measures 

6.1 Mean Time to System Failure (MTSF) 
Let φi(t) be the cdf of the first passage time from regenerative state i to a failed 

state. Regarding the failed state as absorbing state, we have the following recursive 

relations for φi(t) : 

      ( ) ( ) ( ) ( )∑∑ +φ=φ
k

k,i
j

jj,ii tQttQt                                                                          (5) 

where j is an operative regenerative state to which the given regenerative state i can 

transit and k is a failed state to which the state i can transit directly.  

Taking Laplace Stieltjes Transform of relations (5) and solving for φ
~

0(s).  

We have 

             s))s(
~

1()s(R 0
* φ−=                                                                                          (6) 

The reliability R(t) can be obtained by taking Laplace inverse transform of (6). 

1010 pMTSF µ+µ=
 

 

6.2 Availability Analysis  
Let Ai(t) be the probability that the system is in up-state at instant t given that 

the system entered regenerative state i at t=0. The recursive relations for Ai(t) are  given 

by  

     ( ) ( ) ( ) ( )∑ +=
j

jj,iii tAtqtMtA

     

                                                            (7)  

where j is any successive regenerative state to which the regenerative state i 

can transit. We have 

∫
∞

=
0

10 dt)t(F)t(F)t(M    ∫
∞

=
0

21 dt)t(F)t(Z)t(M

 

∫
∞

=
0

34 dt)t(F)t(M

 
Taking Laplace Transform of relations (7) and solving for A0*(s). 

The steady-state availability of the system can be given by 

 ( ) ( )
2

2*
0

0s
0

D

N
sAslimA ==∞

→
                                                                       (8) 

Where 

( ) [ ]130141010502 pp1ppN −µ+µ+µ=  

( )[ ] ( )[ ]6565425013013131010502 pppp1pppD µ+µ+µ+µ−+µ+µ+µ=
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6.3 Busy Period Analysis 

6.3.1 Busy Period Analysis Due to Repair 
Let BRi(t) be the probability that the server is busy in repairing the unit at an 

instant ‘t’ given that the system entered regenerative state i at t = 0. The recursive 

relations for BRi(t)  are given as 

( ) ( ) ( ) ( )∑ +=
j

jj,iii tBRtqtWtBR

    

                                                                           (9) 

where j is any successive regenerative state to which the regenerative state i 

can transit. We have  

∫
∞

=
0

12 dt)t(G)t(W  ,            ∫
∞

=
0

26 dt)t(G)t(W          

Taking Laplace Transform of relations (9) and solving for BR0*(s) and using this, we 

can obtain the fraction of time for which the repairman is busy in steady state  

 
2

3
00s0

D

N
)s(BR.slimBR == →

                                                                      

(10) 

Where 

( )( )25065613013 pppp1N µ+µ−= , 

D2 is already mentioned. 

 

6.3.2 Busy Period Analysis Due to PM 
Let )t(BPi  be the probability that the server is busy for PM at an instant‘t’ 

given that the system entered regenerative state i at t = 0. The recursive relations for 

)t(BPi  are given as 

( ) ( ) ( ) ( )∑ +=
j

jj,iii tBPtqtWtBP                                                                                 (11) 

where j is any successive regenerative state to which the regenerative state i 

can transit.  

∫
∞

=
0

3 dt)t(G)t(W , 

Taking Laplace Transform of above relations (11) and solving for BP0*(s)  we get in 

the long run time for which the system is under preventive maintenance as 

2

4
00s0

D

N
)s(BP.slimBP == →

                        (12)

 

where 

35013014 pppN µ= , 

D2 is already mentioned. 

 

6.3.3 Busy Period Analysis Due to Inspection 
Let BIi(t) be the probability that the server is busy for inspection at an instant 

‘t’ given that the system entered regenerative state i at t = 0. The recursive relations for  

BIi(t) are given as 

( ) ( ) ( ) ( )∑ +=
j

jj,iii tBItqtWtBI                                                                                 (13) 
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Where j is any successive regenerative state to which the regenerative state i 

can transit.  

We have  

∫
∞

=
0

5 dt)t(H)t(W , 

Taking Laplace Transform of above relations (13) and solving for BI0*(s), we get in the 

long run time for which the system is under preventive maintenance as 

2

5
00s0

D

N
)s(BI.slimBI == →

                                                                                        (14)

 

Where 

513015 )pp1(N µ−= , 

D2 is already mentioned. 

 

6.4 Expected Number of Visit by Server 

6.4.1 Expected Number of Visit by Server Due to Repair

 

Let )t(NR i be the expected number of visits by the server due to repair in (0, t] 

given that the system entered the regenerative state i at t = 0. The recursive relations for 

)t(NR i  are given as 

( ) ( ) ( )[ ]∑ +δ=
j

jjj,ii tNRtQtNR

 

                                                                            (15) 

Where j is any regenerative state to which the given regenerative state i  transits and 

iδ =1, if j is the regenerative state where the server does job afresh, otherwise iδ = 0.  

Taking Laplace Stieltjes Transform of relations (15) and solving for )(
~

0 sRN .  

We get the expected number of visits by server for repair per unit time as  

2

6
00s0

D

N
)s(NRlimNR == → , 

50026 ppN = , 

D2 is already mentioned. 

6.4.2 Expected Number of Visit Due to Inspection 
Let NIi(t) be the expected number of visits by the server due to inspection in (0, t] given 

that the system entered the regenerative state i at t = 0. The recursive relations for NIi(t) 

are given as 

( ) ( ) ( )[ ]∑ +δ=
j

jjj,ii tNItQtNI

 

                                                                               (16) 

Where j is any regenerative state to which the given regenerative state i transits and 

iδ =1, if j is the regenerative state where the server does job afresh, otherwise iδ = 0.  

Taking Laplace Stieltjes Transform of relations (16) and solving for )s(IN
~

0
.  

We get the expected number of visits by server for inspection per unit time as  

2

7
00s0

D

N
)s(NI.slimNI == →  
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)pp1(N 13017 −= , 

D2 is already mentioned. 

 

7. Profit Analysis 
Any manufacturing industry is basically a profit making organization and no 

organization can survive for long without minimum financial returns for its investment. 

There must be an optimal balance between the reliability aspect of a product and its 

cost. The major factors contributing to the total cost are availability, busy period of 

server and expected number of visits by the server. The cost of these individual items 

varies with reliability or mean time to system failure. In order to increase the reliability 

of the products, we would require a correspondingly high investment in the research 

and development activities. The production cost also would increase with the 

requirement of greater reliability. 

 

The revenue and cost function lead to the profit function of a firm, as the profit 

is excess of revenue over the cost of production. The profit function in time t is given 

by:- 

 P(t) = Expected revenue in (0, t] – Expected total cost in (0, t] 

 In general, the optimal policies can more easily be derived for an infinite time 

span or compared to a finite time span. The profit per unit time, in infinite time span is 

expressed as:   

t

)t(P
lim
t ∞→   

 

i.e. profit per unit time = total revenue per unit time – total cost per unit time. 

Considering the various costs, the profit equation is given as 

Profit incurred to the system model in steady state is given by 

060504030201 NIKNRKBIKBPKBRKAKP −−−−−=                                              

Where  

K1: Revenue per unit up-time of the system. 

K2: Cost per unit time for which server is busy in repair. 

K3: Cost per unit time for which server is busy in preventive maintenance. 

K4: Cost per unit time for which server is busy in inspection. 

K5: Cost per unit visit by the server for repair. 

K6: Cost per unit visit by the server for inspection. 

 

8. Results and Discussion 
To show the importance of results and characterize the behavior of MTSF, 

availability and profit of the system, here we assume that failure, MOT, PM, inspection 

and repair times as Weibull distributed with two parameters.  Probability density 

function of Weibull distribution with two parameters is given by 

   0t          
1b

texpt)t(f
1bb ≥





+
λ−λ=

+
 

Where λ and b  are positive constants and are known as shape and scale 

parameters respectively. From the properties of Weibull distribution, If b = 0, it become 

the exponential distribution and when b = 1, it become the Rayleigh distribution. 

Let  
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Giving particular values to various parameters and costs, the numerical results 

for MTSF, availability and profit function are obtained by considering exponential and 

Rayleigh distributions for all random variables associated with failure, preventive 

maintenance, inspection, maximum operation and repair times as shown in tables 1,2 

and 3. 
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Table 1 to table 3 reflect the behavior of MTSF, availability and profit of the 

system model with respect to maximum rate of operation time when the distribution of 

failure, maximum rate of operation, PM, inspection and repair times of the unit are 

taken as exponential and Rayleigh distribution. 

 

Tables 1 indicates that MTSF keeps on decreasing with the increase of 

maximum rate of operation (α). The same trends are found for MTSF in respect of 

failure rates (λ and λ1) for fixed values of other parameters. It is also observed that the 

value of MTSF is more for exponential distribution in comparision to Rayleigh 

distribution.  

 

The behavior of availability and profit of the system with respect to maximum 

rate of operation time is shown in table 2 and table 3 respectively. These tables show 

that availability and profit of the system decrease with the increase of maximum rate of 

operation (α) and failure rates  (λ and λ1) for fixed values of other parameters K1=5000, 

K2=500, K3=100, K4=75, K5=50, K6=25. Further, we found that availability and profit 

of the system increase with the increase of repair rate of new unit (θ1) for fixed values 

of other parameters including K1=5000, K2=500, K3=100, K4=75, K5=50, K6=25. It can 

also be seen that availability and profit of the system increase by interchange the values 

of probabilities (p and q)  of feasibility of repair or replacement of degraded failed unit  

 

From tables 1 to table 3 we examined that the behavior for MTSF, availability 

and profit of the system is same for both the distributions.  

 

9. Conclusion 
The measures of performance (MTSF, availability, busy period of the server 

due to repair, busy period of the server due to PM, expected number of visits by the 

server due to repair, busy period of the server due to inspection, expected number of 

visits by the server due to inspection and profit of the system) obtained in this paper by 

using arbitrary distributions will help the system analyst and reliability engineers to 

improve the system reliability in their respective fields. From the tables 1, 2 and 3, it is 

concluded that exponential distribution has more values for MTSF, availability and 

profit of the system as compare to the Rayleigh distribution under stated conditions. 
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Figure 1. State transition diagram 

 

Mean Time to System Failure (MTSF) 
 

α 

Exponential Distribution Rayleigh distribution 

λ =0.13 λ =0.15 λ1=0.20 λ =0.13 λ =0.15 λ1=0.20 

5 3.4421 3.2270 3.1466 2.5994 2.5073 2.5145 

10 3.3888 3.1770 3.0897 2.3437 2.2676 2.2411 

15 3.3706 3.1559 3.0701 2.3255 2.2505 2.2216 

20 3.3614 3.1513 3.0603 2.3163 2.2419 2.2117 

25 3.3558 3.1461 3.0543 2.3107 2.2366 2.2058 

30 3.3521 3.1426 3.0504 2.3070 2.2332 2.2018 

35 3.3494 3.1401 3.0475 2.3043 2.2307 2.1990 

40 

45 

3.3474 

3.3459 

3.1382 

3.1268 

3.0454 

3.0437 

2.3023 

2.3008 

2.2288 

2.2273 

2.1968 

2.1951 

 
Table-1: Comparison between the effects of the exponential and Rayleigh distributions with 

respect to maximum rate of operation (αααα) and other parameters (λ =0.13, λ1=0.17, λ2=0.21, 

λ3=0.27, θ=3.7, θ1=2.1, θ2=2.7, p=0.7, q=0.3, α=10) on the Mean Time to System Failure 

(MTSF) 
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Availability 
α Exponential Distribution Rayleigh distribution 

λ =0.13 λ =0.15 λ1=0.2

0 

θ1=2.5 p=0.3, 

q=0.7 

λ =0.13 λ =0.15 λ1=0.2

0 

θ1=2.5 p=0.3, 

q=0.7 

5 0.9089 0.9065 0.9066 0.9121 0.9211 0.7438 0.7394 0.7430 0.7467 0.7832 

10 0.9085 0.9061 0.9061 0.9117 0.9205 0.7360 0.7322 0.7340 0.7389 0.7722 

15 0.9084 0.9060 0.9059 0.9116 0.9203 0.7354 0.7317 0.7334 0.7384 0.7714 

20 0.9083 0.9059 0.9058 0.9115 0.9202 0.7352 0.7315 0.7331 0.7381 0.7710 

25 0.9083 0.9058 0.9058 0.9114 0.9201 0.7350 0.7313 0.7329 0.7380 0.7708 

30 0.9083 0.9058 0.9058 0.9114 0.9201 0.7349 0.7312 0.7328 0.7379 0.7706 

35 0.9083 0.9058 0.9057 0.9114 0.9201 0.7348 0.7312 0.7327 0.7378 0.7705 

40 

45 

0.9082 

0.9082 

0.9058 

0.9058 

0.9057 

0.9057 

0.9114 

0.9114 

0.9200 

0.9200 

0.7348 

0.7347 

0.7311 

0.7311 

0.7326 

0.7325 

0.7377 

0.7377 

0.7704 

0.7703 

 

Table 2: Comparison between the effects of the exponential and Rayleigh 

distributions with respect to maximum rate of operation (αααα) and other parameters 

(λ =0.13, λ1=0.17, λ2=0.21, λ3=0.27, θ=3.7, θ1=2.1, θ2=2.7, p=0.7, q=0.3, α=10) on the 

availability 

 

 

 

Profit of the System 
α Exponential Distribution Rayleigh distribution 

λ =0.13 λ =0.15 λ1=0.2
0 

θ1=2.5 p=0.3, 
q=0.7 

λ =0.13 λ =0.15 λ1=0.2
0 

θ1=2.5 p=0.3, 
q=0.7 

5 4529.4 4516.6 4517.5 4545.7 4590.5 3683.6 3660.7 3679.7 3698.5 3883.7 

10 4527.5 4514.7 4515.0 4543.7 4587.4 3643.6 3624.0 3633.6 3658.7 3827.7 

15 4526.8 4514.0 4514.2 4543.0 4586.2 3641.1 3621.7 3630.7 3656.2 3823.6 

20 4526.5 4513.6 4513.7 4542.7 4585.7 3639.8 3620.5 3629.1 3654.9 3821.6 

25 4526.3 4513.4 4513.5 4542.5 4585.3 3639.0 3619.8 3628.2 3654.1 3820.3 

30 4526.1 4513.3 4513.3 4542.3 4585.1 3638.4 3619.3 3627.6 3653.6 3819.5 

35 4526.0 4513.2 4513.2 4542.2 4584.9 3638.1 3618.9 3627.1 3653.2 3818.9 

40 

45 

4525.9 

4525.9 

4513.1 

4513.1 

4513.1 

4513.0 

4542.1 

4542.1 

4584.8 

4584.7 

3637.8 

3637.6 

3618.7 

3618.5 

3626.8 

3626.6 

3652.9 

3652.7 

3818.4 

3818.0 

 

Table 3: Comparison between the effects of the exponential and Rayleigh 

distributions with respect to maximum rate of operation (αααα) and other parameters 

(λ =0.13, λ1=0.17, λ2=0.21, λ3=0.27, θ=3.7, θ1=2.1, θ2=2.7, p=0.7, q=0.3, α=10, 

K1=5000, K2=500, K3=100, K4=75, K5=50, K6=25) on the profit of the system 
 


