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Abstract  

 This paper made an attempt on the weighted version of Hannan-Quinn information 

criterion for the purpose of selecting a best model from various competing models, when 

heteroscedasticity is present in the survey data. The authors found that the information loss 

between the true model and fitted models are equally weighted, instead of giving unequal 

weights. The computation of weights purely depends on the differential entropy of each sample 

observation and traditional Hannan-Quinn information criterion was penalized by the weight 

function which comprised of the Inverse variance to mean ratio (VMR) of the fitted log 

quantiles.The Weighted Hannan-Quinn information criterion was explained in two versions based 

on the nature of the estimated error variances of the model namely Homogeneous and 

Heterogeneous WHQIC respectively. The WHQIC visualizes a transition in model selection and 

it leads to conduct a logical statistical treatment for selecting a best model. Finally, this procedure 

was numerically illustrated by fitting 12 different types of stepwise regression models based on 

44 independent variables in a BSQ (Bank service Quality) study.  

 

Key Words: Hannan-Quinn Information Criterion, Weighted Hannan-Quinn Information 

Criterion, Differential Entropy, Log-Quantiles, Variance To Mean Ratio. 

 

1. Introduction and Related Work 
 Model selection is the task of selecting a statistical model from a set of 

candidate models, given data. Penalization is an approach to select a model that fits 

well with data which minimize the sum of empirical risk FPE (Akaike, 1970), AIC 

(Akaike. 1973), Mallows’ Cp (Mallows, 1973). Many authors studied and proposed 

about penalties proportion to the dimension of model in regression, showing under 

various assumption sets that dimensionality-based penalties like Cp are asymptotically 

optimal (Shibata, 1981, Ker-Chau Li. 1987, Polyak and Tsybakov, 1990) and satisfy 

non-asymptotic oracle inequalities (Baraud, 2000, Baraud, 2002, Barron, 1999, Birg´e 

and Massart, 2007). It is assumed that data can be heteroscedastic, but not necessary 

with certainty (Arlot, 2010). Several estimators adapting to heteroscedasticity have 

been built thanks to model selection (Gendre, 2008), but always assuming the model 

collection has a particular form. Past studies show that the general problem of model 

selection when the data are heteroscedastic can be solved only by cross-validation or 

resampling based procedures. This fact was recently confirmed, since resampling and 

V-fold penalties satisfy oracle inequalities for regressogram selection when data are 

heteroscedastic (Arlot 2009), there is a significant increase of the computational 

complexity by adapting heteroscedasticity with resampling. Inliers detection using 

Schwartz information criterion by illustrated with a simulated experiment and a real life 
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data. (Muralidharan and Kale Nevertheless, 2008). The main goal of the paper is to 

propose a WHQIC (Weighted Hannan-Quinn information criterion) if the problem of 

heteroscedasticity is present in the survey data. The derivation procedures of WHQIC 

and different versions of the criteria are discussed in the subsequent sections. 
 

2. Homogeneous Weighted Hannan-Quinn Information Criterion 
This section deals with the presentation of the proposed Weighted Hannan-

Quinn information criterion. At first the authors highlighted the Hannan-Quinn 

information criterion of a model based on log likelihood function and the blend of 

information theory is given as 

2log ( / ) 2 log(log )HQIC L X k nθ=− +ɵ                                                      … (1) 

 where θɵ is the estimated parameter, X is the data matrix, ( / )L Xθɵ is the maximized 

likelihood function and 2 log(log )k n  is the penalty function which comprised of 

sample size (n) and no. of parameters (k) estimated in the fitted model. From (1), the 

shape of HQIC changes according to the nature of the penalty functions. Similarly, we 

derived a Weighted Hannan-Quinn Information Criterion (WHQIC) based on the HQIC 

of a given model. Rewrite (1) as 
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i

i
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=
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From (2), the quantity 2log ( / ) (2 log(log ) / )if x k n nθ− +ɵ is the unweighted 

point wise information loss of an i
th

 observation for a fitted model. The proposed 

WHQIC assured each point wise information loss should be weighted and it is defined 

as 

1

( 2 log ( / ) (2 log(log ) / ))
n

i i

i

WHQIC w f x k n nθ
=

= − +∑ ɵ                            … (3) 

From (3), the weight of the point wise information loss shows the importance of the 

weightage that the model selector should give at the time of selecting a particular 

model. Here the problem is how the weights are determined? The authors found, there 

is a link between the log quantiles of a fitted density function and the differential 

entropy. The following shows the procedure of deriving the weights. 

 

Take mathematical expectation for (3), we get the expected WHQIC as 

                        

1

( ) (2 ( log ( / )) (2 log(log ) / ))
n

i i

i

E WHQIC w E f x k n nθ
=

= − +∑ ɵ               … (4) 
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where the term ( log ( / )) log ( / ) ( / )i i i i

d

E f x f x f x dxθ θ θ− = −∫ɵ ɵ ɵ  is the 

differential entropy of the i
th

 observation and d is the domain of ix , which is also 

referred as expected information in information theory. Now from (3) and (4), the 

variance of the WHQIC is given as 
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From (5) i j≠ , the variance of the WHQIC was reduced by using iid property of the 

sample observation and it is given as 

2

1

( ) 4( ( log ( / )))
n

i i

i

V WHQIC w V f x θ
=

= −∑ ɵ                                                   … (6) 

where 

2( log ( / )) ( log ( / ) ( log ( / ))) ( / )i i i i i

d

V f x E f x E f x f x dxθ θ θ θ− = − − −∫ɵ ɵ ɵ ɵ

is the variance of the fitted log quantiles which explains the variation between the 

actual and the expected point wise information loss. In order to determine the weights, 

the authors wants to maximize ( )E WHQIC  and minimize ( )V WHQIC , because if 

the expected weighted information loss is maximum, then the variation between the 

actual weighted information and its expectation will be minimum. For this, maximize 

the difference (D) between the ( )E WHQIC and ( )V WHQIC which simultaneously 

optimize ( )E WHQIC  and ( )V WHQIC  then the D is given as 

( ) ( )D E WHQIC V WHQIC= −                                                       … (7)        

2

1 1
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Using classical unconstrained optimization technique, maximize D with respect to the 

weights (w) by satisfying the necessary and sufficient conditions such as 0
i

D

w

∂
=

∂
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2

2
0

i

D
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 and it is given as 
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By solving (8), we get the unconstrained weights as 
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From (8) and (9), it is impossible to use the second derivative Hessian test to find the 

absolute maximum or global maximum of the function D with respect to iw ,because 

the cross partial derivative 
2 / i jD w w∂ ∂ ∂  is 0 and iw  is not existing in 

2 2/ iD w∂ ∂
.Hence the function D achieved the local maximum or relative maximum at the point 

iw .Then from (10) rewrite the expectation and variance in terms of the integral 

representation as 
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The equation (10), can also be represented in terms of VMR of fitted log quantiles and 

it is given as 

1
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 is the variance to mean ratio. 

From (10) and (11), the maximum likelihood estimate θɵ is same for all sample 

observations and the entropy, variance of the fitted log-quantiles are same for all i. 

Then iw w= , then (3) becomes  

1
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 for all i and substitute in (12), we get the 

homogeneous weighted version of the Weighted Hannan-Quinn information criterion as  
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Combining (1) and (13) we get the final version of the homogeneous Weighted 

Hannan-Quinn information criterion as  

4 ( log ( / ))

HQIC
WHQIC

VMR f x θ
=

− ɵ
                                                              … (13a) 

 

If a sample normal linear regression model is evaluated, with a single dependent 

variable ( Y ) with p regressors namely 1 2 3
, , ,...

i i i pi
X X X X  in matrix notation is 

given as 

Y X eβ= +                                                                                                   … (13b) 

where 
( 1)nX
Y  is the matrix of the dependent variable, 

( 1)kX

β is the matrix of beta co-

efficients or partial regression co-efficients and 
( 1)nX
e is the residual followed normal 

distribution N (0,
2

e n
Iσ ).From (13a), the sample regression model should satisfy the 

assumptions of normality, homoscedasticity of the error variance and the serial 

independence property. Then the WHQIC of a fitted linear regression model is given as 
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parameters estimated in the model (includes the Intercept and estimated error variance). 

From (14) VMR can be evaluated as 

��
��

��

2
2

2

( log ( / , , ))
( log ( / , , ))

( log ( / , , ))

e
e

e

V f Y X
VMR f Y X

E f Y X

β σ
β σ

β σ

−
− =

−
                               … (15) 

                  

� �

� � � � � �

� � � �

2 2 2 2

2

2 2

( log ( / , , ) ( log ( / , , ))) ( / , , )

( log ( / , , ))

log ( / , , ) ( / , , )

e e e

e

e e

E f Y X E f Y X f Y X dY

VMR f Y X

f Y X f Y X dY

βσ βσ β σ

βσ

β σ β σ

+∞

−∞
+∞

−∞

− − −

− =

−

∫

∫
 



22        Journal of Reliability and Statistical Studies, Dec. 2013, Vol. 6(2) 

  Where � �

�

�

� 2

2

1
( )

22

2

1
( / , , ) ,

2

e

Y X

e

e

f Y X e Y

β

σ
β σ

πσ

− −

= −∞< <+∞  is the fitted 

normal density function and the expectation and variance of the quantity 
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Substitute (16) and (17) in (15), then we get VMR for the fitted Normal log quantiles as 
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Substitute (18) in (14), we get  

�2(1 log(2 ))

4

eWHQIC HQIC
πσ+

=                                                                … (19) 

Where 
�21

(1 log(2 ))
4

ew πσ= +                                                                           … (20) 

From (19), WHQIC is the product of the weight and the traditional Hannan-Quinn 

information criterion. The WHQIC incorporates the dispersion in the fitted normal log 

quantiles and weighs the point wise information loss equally, but not with the unit 

weights. The mono weighted Hannan-Quinn information criterion works based on the 

assumption of the homoscedastic error variance. If it is heteroscedastic, then we get the 

variable weights and the procedures are discussed in the next section. 

 

3. Heterogeneous Weighted Akaike Information Criterion 
The homogeneous weighted Hannan-Quinn information criterion is 

impractical due to the assumption of homoscedasticity of the error variance. If this 

assumption is violated, then the weights vary for each point wise information loss, but 

the estimation of heteroscedastic error variance based on maximum likelihood 

estimation is difficult (cordeiro (2008), Fisher (1957)). For this, the authors utilize the 

link between the maximum likelihood theory and Least squares estimation to estimate 

the heteroscedastic error variance based on the linear regression model. 

 

Let the random error of the linear regression model can be given as 

( )e I H Y= −                                                                                                       … (21) 

From (21), the random errors are the product of actual value of Y and the residual 

operator ( )I H− where H is the Hat matrix. Myers, Montgomery (1997) proved the 

magical properties of the residual operator matrix as idempotent and symmetric. Based 
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on the properties they derived the variance-co-variance matrix of the random errors as 
2 ( )

e e
I Hσ∑ = −                                                                                                  … (22) 

where 
e
∑  is the variance-covariance matrix of the errors and 

2

e
σ  is the homoscedastic 

error variance of a linear regression model. The authors utilize the least square estimate 

of the variance-covariance matrix of the error and found the link between the 

heteroscedastic and homoscedastic error variance. From (27), the estimate of 
e
∑ is 

given as 

� �2 ( )
e e

s I H∑ = −                                                                                                  … (23) 

From (23), compare the diagonal elements of both sides, we get the estimated unbiased 

heteroscedastic error variance as  

� �2 2 (1 )
e e iii

s s h= −                                                                                                     … (24) 

where � �
2 2,
e ei

s s  are the unbiased estimates of heteroscedastic, homoscedastic error 

variance and 
ii

h  is the leading diagonal elements of the hat matrix, sometimes called as 

centered leverage values. We know that the least squares estimates of error variance is 

unbiased and estimation of error variance based on maximum likelihood estimation 

theory is biased (Greene,2011), so the authors remove the unbiaseness in the least 

squares estimate of the error variance and convert it as biased estimated, which is equal 

to the maximum likelihood estimates. From (24), it can be rewrite as 

� �2 2( ) ( ) (1 )
e e iii

n k n k
s s h

n n

− −
= −                                                                          … (25) 

� �2 2 (1 )
e e iii

hσ σ= −                                                                                                    … (26) 

From (26), the least squares estimate of error variance is transformed into maximum 

likelihood estimate and this relationship between the estimated heteroscedastic and 

homoscedastic estimated error variance was used to find the heterogeneous weights in 

the WHQIC. Combine (26) with (20), we get the weights for i
th

 point wise information 

loss in WHQIC under the assumption of the estimated error variances are 

heteroscedastic and it as follows 

 

�21
(1 log(2 ))

4 ii ew πσ= +                                                                                    … (27) 

�21
(1 log(2 (1 )))

4
i e iiw hπσ= + −                                                                       … (28) 

�21
(1 log(2 ) log(1 ))

4
i e iiw hπσ= + + −                                                            … (29) 

1
log(1 )

4
i iiw w h= + −                                                                                      … (30) 

From (30), the authors found the relationship between the variable weights with 

homogeneous weights and 
ii

h  is the centered leverage values which always lies 
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between the / 1
ii

p n h≤ ≤ ,where p is the no.of regressors. Hence, the authors proved 

from (29),if the estimated error variance is homoscedastic, we can derive the 

heteroscedastic error variance based on the hat values. Moreover, the variable weights 

gave importance to the point wise information loss unequally which the WHQIC can be 

derived by combining (3) and (29) in terms of the linear regression model as 

� � �2 21
((1 log(2 (1 )))( 2log ( / , , ) (2 log(log )/ )))

4
e ii e

i

WHQIC h f Y X k n nπσ β σ= + − − +∑
 

…(31) 

4. Results and Discussion 
In this section, we will investigate the discrimination between the traditional 

HQIC and the proposed WHQIC on the survey data collected from BSQ (Bank Service 

Quality) study. The data comprised of 45 different attributes about the Bank and the 

data was collected from 102 account holders. A well-structured questionnaire was 

prepared and distributed to 125 customers and the questions were anchored at five point 

Likert scale from 1 to 5. After the data collection is over, only 102 completed 

questionnaires were used for analysis. The following table shows the results extracted 

from the analysis by using SPSS version 20. At first, the authors used, stepwise 

multiple regression analysis by utilizing 44 independent variables and a dependent 

variable. The results of the stepwise regression analysis with model selection criteria 

are visualized in the following Table 1 with results of subsequent analysis. 
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Table 1: Stepwise Regression Summary, Traditional HQIC and Weighted HQIC 

 

Model 
Regression summary 

Homogeneous 

Weighted HQIC 

K EHEV R2
 F-ratio UWHQIC MAX(D) E(WHQIC) 

1 3 0.230 0.188 23.089* 147.962 27.15 51.15 

2 4 0.190 .331 24.485* 131.221 21.24 38.87 

3 5 0.177 .377 19.753* 127.038 19.76 35.30 

4 6 0.167 .410 16.842* 124.547 18.95 33.06 

5 7 0.164 .441 15.135* 125.638 19.11 32.69 

6 8 0.157 .489 15.140* 123.920 18.38 30.72 

7 9 0.147 .525 14.814* 121.944 17.26 28.14 

8 10 0.141 .565 15.083* 121.814 16.62 26.49 

9 11 0.133 .598 15.188* 120.102 15.60 24.26 

10 12 0.126 .615 14.542* 118.262 14.46 21.91 

11 13 0.123 .634 14.182* 120.426 14.46 21.52 

12 12 0.127 .630 15.466* 119.996 14.81 22.49 

 

 

            

Model 

Homogeneous Weighted 

HQIC 
Heterogeneous Weighted HQIC 

V(WHQIC) W WHQIC MAX(D) E(WHQIC) V(WHQIC) WHQIC 

1 24.00 0.343 50.751 26.738 50.350 23.612 50.239 

2 17.64 0.294 38.579 20.603 37.663 17.060 37.843 

3 15.54 0.276 35.062 18.870 33.623 14.753 33.914 

4 14.11 0.263 32.756 17.678 30.712 13.034 31.275 

5 13.58 0.258 32.415 17.541 29.824 12.283 30.606 

6 12.34 0.246 30.484 16.514 27.378 10.864 28.163 

7 10.88 0.231 28.169 15.105 24.350 9.245 25.480 

8 9.87 0.220 26.799 14.215 22.333 8.118 23.552 

9 8.66 0.206 24.741 12.937 19.740 6.803 21.285 

10 7.45 0.191 22.588 11.650 17.241 5.591 18.959 

11 7.06 0.186 22.399 11.312 16.381 5.069 18.100 

12 7.68 0.194 23.279 11.930 17.704 5.774 19.350 

 

*P-value <0.01              HQIC- Hannan Quinn Information Criterion                       

EHEV-Estimated homoscedastic error variance                        MAX (D)-Maximized difference            

W-Weights                     E(WHQIC)-Expectation of weighted Hannan Quinn information criteria                      

V (WHQIC)-Variance of Hannan Quinn information criteria 
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Table 2-Estimated Heteroscedastic Error Variance of Models 

 

 

Observation 
Models 

1 2 3 4 5 6 

1 .22981 .18738 .17348 .16360 .16046 .15234 

2 .22981 .18738 .17348 .16264 .15952 .15095 

3 .22467 .18347 .16254 .15310 .14459 .13776 

4 .22991 .18859 .17448 .16416 .16014 .15206 

5 .22991 .17892 .16491 .15443 .15038 .14309 

6 .22981 .18827 .17475 .16448 .15937 .15076 

7 .22497 .18471 .17095 .16045 .15718 .14937 

8 .22981 .18738 .17375 .16419 .15932 .15061 

9 .22497 .18265 .16946 .15964 .15648 .14510 

10 .22467 .18347 .16991 .15881 .15544 .14802 

11 .22981 .18827 .16815 .15095 .14775 .13967 

12 .22981 .18738 .17375 .16419 .15257 .14322 

13 .22991 .18710 .17316 .16299 .15866 .15012 

14 .22991 .18859 .17448 .16416 .16058 .15289 

15 .22991 .18859 .17448 .16416 .16014 .15206 

16 .22981 .18738 .16598 .15603 .15129 .14400 

17 .22991 .18710 .17316 .16299 .15866 .15012 

18 .22991 .18710 .17356 .16379 .15504 .14768 

19 .21449 .17511 .16169 .15283 .14924 .14179 

20 .22991 .18859 .17448 .16416 .15591 .14859 

21 .22991 .18859 .17448 .16416 .16058 .15289 

22 .22991 .18859 .16825 .15898 .15593 .14812 

23 .22981 .18827 .17412 .16412 .15786 .14860 

24 .22991 .18710 .16553 .15522 .14895 .14184 

25 .22991 .17892 .16631 .15719 .15415 .14674 

26 .22991 .18859 .17498 .16501 .16176 .15371 

27 .22981 .18827 .17412 .16412 .16095 .15317 

28 .21449 .17538 .16245 .15377 .15003 .12835 

29 .22991 .18710 .17356 .16250 .15856 .15107 

30 .22981 .18738 .17375 .16419 .16097 .15286 

31 .22991 .18859 .17498 .16501 .15826 .14949 

32 .22991 .18859 .17448 .16416 .16014 .15206 

33 .22991 .18859 .17498 .16501 .16176 .15371 

34 .22991 .18859 .17498 .15697 .15203 .13543 

35 .22991 .18859 .16825 .15898 .15345 .14609 

36 .22991 .18710 .17316 .16272 .15944 .15107 

37 .22467 .18378 .17062 .16067 .15723 .14910 
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Table 2 Contd........ 

 

 

Observation 
Models 

7 8 9 10 11 12 

1 .13420 .12727 .12003 .11297 .11057 .11440 

2 .14135 .13423 .12679 .11951 .11619 .11999 

3 .12918 .12284 .11588 .10883 .10310 .11838 

4 .14199 .13398 .12649 .11934 .11642 .12042 

5 .13262 .12685 .11981 .10881 .10433 .10867 

6 .14175 .13454 .12645 .11899 .11584 .11960 

7 .13993 .13398 .12651 .11895 .11600 .11975 

8 .14165 .13550 .12730 .11667 .10840 .11422 

9 .13494 .12921 .12201 .10846 .10526 .10938 

10 .13835 .13149 .12021 .11230 .10886 .11352 

11 .13111 .12133 .11155 .10502 .10226 .10728 

12 .13462 .12866 .12089 .11374 .09768 .10472 

13 .14114 .13491 .12725 .11929 .11556 .12110 

14 .14302 .13363 .12348 .11477 .11233 .11735 

15 .14199 .13560 .12798 .11227 .10986 .11365 

16 .13465 .12850 .12127 .11186 .10879 .11968 

17 .14114 .13491 .10853 .09876 .09664 .09976 

18 .13877 .13290 .12481 .11716 .11467 .11872 

19 .13291 .12687 .11879 .11209 .10862 .11217 

20 .13857 .13271 .12276 .11450 .11205 .11733 

21 .14302 .13693 .12686 .11807 .11513 .11953 

22 .13929 .12641 .11932 .11243 .10695 .11095 

23 .13826 .13240 .12494 .11719 .11446 .11835 

24 .13248 .12661 .11523 .10828 .10444 .11322 

25 .13766 .13125 .12357 .11483 .10908 .11433 

26 .14457 .13702 .12796 .12075 .11634 .12241 

27 .14340 .13721 .12925 .12171 .11860 .12244 

28 .12010 .11501 .10733 .10130 .09919 .10338 

29 .14176 .10486 .09848 .09258 .08888 .09195 

30 .14377 .13761 .12879 .12138 .11882 .12268 

31 .13660 .13038 .12231 .11541 .11215 .11577 

32 .14256 .13642 .12868 .12121 .11679 .12131 

33 .14205 .13523 .12603 .11840 .11389 .12076 

34 .12014 .11114 .10450 .09726 .09516 .09835 

35 .13737 .12947 .11960 .11183 .09419 .09838 

36 .14140 .13416 .12666 .11678 .11337 .11703 

37 .14004 .13288 .12465 .11757 .11474 .11844 
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Table 2 Cond........ 

 

 

Observation 
Models 

1 2 3 4 5 6 

38 .22991 .18859 .17448 .16407 .15988 .15134 

39 .21449 .17511 .16169 .15283 .14929 .14219 

40 .22991 .18710 .17356 .16250 .15856 .14947 

41 .22991 .18710 .17356 .16379 .15998 .15143 

42 .22467 .18347 .16991 .16046 .15007 .14124 

43 .22991 .18710 .17356 .16250 .15418 .14665 

44 .22467 .18378 .16985 .16035 .15717 .14947 

45 .22981 .18827 .17412 .16412 .15786 .14860 

46 .22981 .18827 .17412 .16334 .16021 .15213 

47 .22991 .18859 .17498 .16407 .14813 .14106 

48 .22981 .18738 .17375 .16221 .15907 .15139 

49 .22991 .17892 .16491 .15554 .15234 .14401 

50 .22991 .18859 .17448 .16407 .16060 .15264 

51 .22991 .18710 .17356 .16250 .15856 .15107 

52 .22991 .18859 .17498 .16407 .15700 .14963 

53 .22991 .18710 .17356 .15224 .14452 .13708 

54 .22991 .18859 .17448 .16416 .16058 .15289 

55 .22497 .18265 .16894 .15864 .15462 .14703 

56 .22991 .18710 .17316 .16299 .15866 .15012 

57 .22991 .18859 .17448 .16407 .16060 .15264 

58 .22991 .18859 .17448 .16416 .15591 .14647 

59 .22981 .18738 .17375 .15126 .14547 .13782 

60 .22497 .18471 .16446 .15290 .14962 .14133 

61 .22991 .18859 .16825 .15702 .15400 .14658 

62 .22981 .18827 .17412 .16334 .15053 .14128 

63 .22981 .18738 .17375 .16221 .15713 .14786 

64 .22981 .18738 .17375 .16419 .16097 .15286 

65 .22467 .18347 .17005 .16085 .15586 .14832 

66 .22497 .18265 .16946 .15964 .15648 .14510 

67 .22497 .18265 .16894 .15864 .15462 .14703 

68 .22981 .18738 .17375 .16221 .15907 .15058 

69 .22467 .18378 .17062 .16067 .15723 .14949 

70 .22467 .18378 .17062 .16067 .15723 .14910 

71 .22497 .18265 .16946 .15964 .15287 .13608 

72 .22991 .17892 .16631 .15719 .15415 .14579 

73 .22991 .18859 .17498 .15697 .15203 .13543 

74 .22991 .18859 .17448 .16416 .16014 .15206 
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Table 2 Cond........ 

 

 

Observation 
Models 

7 8 9 10 11 12 

38 .14117 .13460 .12662 .11876 .11547 .11920 

39 .13298 .12507 .11732 .11056 .10716 .11067 

40 .14045 .13270 .12466 .11668 .11330 .11733 

41 .14244 .13635 .12771 .11769 .11511 .11943 

42 .13227 .12465 .11560 .10196 .09371 .09681 

43 .13733 .13132 .12337 .11473 .11216 .11716 

44 .13349 .12694 .11789 .11100 .10851 .11396 

45 .13955 .13099 .12052 .11320 .10767 .11717 

46 .14287 .13564 .12747 .11915 .11544 .12034 

47 .12937 .12324 .11584 .10448 .10168 .10533 

48 .14189 .13552 .12664 .11926 .11642 .12018 

49 .13519 .12817 .12102 .11418 .11118 .11707 

50 .14190 .13547 .12750 .11989 .11696 .12076 

51 .14084 .13413 .12558 .11574 .11282 .11704 

52 .13881 .13282 .12448 .11548 .11158 .11588 

53 .12866 .12180 .10843 .10231 .10018 .10680 

54 .14314 .13684 .12916 .12191 .11933 .12354 

55 .13800 .13211 .12311 .11572 .11291 .11877 

56 .13913 .13261 .11911 .11187 .10889 .11257 

57 .14190 .13397 .12618 .11859 .11513 .12018 

58 .13608 .13033 .12308 .11608 .11366 .11781 

59 .12840 .12188 .11503 .10628 .10404 .10810 

60 .13293 .12676 .11176 .10383 .10148 .10578 

61 .13568 .12818 .11869 .11169 .10934 .11951 

62 .13222 .12556 .11760 .11054 .10800 .11219 

63 .13711 .12257 .11440 .10774 .10477 .10831 

64 .14121 .13309 .12486 .11776 .11531 .11949 

65 .12940 .12261 .11480 .10561 .10337 .10766 

66 .13494 .12921 .12201 .10846 .10526 .10938 

67 .13005 .12308 .11520 .10510 .10236 .10628 

68 .14139 .13488 .12547 .11753 .11502 .11874 

69 .14017 .13315 .12537 .11624 .11357 .11731 

70 .13867 .13083 .11575 .10917 .10384 .10746 

71 .12778 .12236 .11557 .10852 .10611 .10954 

72 .11861 .11360 .10728 .09676 .09377 .09688 

73 .12687 .12108 .11373 .10734 .10510 .10898 

74 .14256 .13642 .12868 .12121 .11679 .12131 
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Table 2 Cond........ 

 

 

Observation 
Models 

1 2 3 4 5 6 

75 .22991 .18859 .17448 .16416 .16014 .15206 

76 .22497 .18265 .16946 .15964 .15287 .13608 

77 .22991 .17892 .16631 .15719 .15415 .14579 

78 .22991 .18859 .17498 .15697 .15203 .13543 

79 .22991 .18859 .17448 .16416 .16014 .15206 

80 .22991 .18859 .17448 .16416 .16014 .15206 

81 .22991 .18710 .17356 .16250 .15856 .14947 

82 .22981 .18738 .17375 .16419 .16097 .15286 

83 .22981 .18827 .17412 .16334 .16021 .15213 

84 .22467 .18347 .16254 .15310 .14459 .13776 

85 .22981 .18827 .17412 .16334 .16021 .15213 

86 .22981 .18738 .17375 .16419 .15932 .14854 

87 .22991 .18710 .17356 .15224 .14452 .13708 

88 .22991 .18859 .17498 .16501 .16016 .15246 

89 .22467 .18378 .17062 .16067 .15723 .14949 

90 .22981 .18738 .17375 .16419 .16097 .15286 

91 .22497 .18265 .16946 .15964 .15287 .13608 

92 .21449 .17538 .16245 .15377 .15003 .12835 

93 .22991 .18859 .16825 .15898 .15593 .14812 

94 .22991 .18859 .17498 .16501 .16176 .15371 

95 .22991 .18859 .16825 .15898 .15593 .14812 

96 .22467 .18378 .17062 .16067 .15723 .14949 

97 .22981 .18738 .17375 .16419 .16097 .15289 

98 .22497 .18265 .16946 .15964 .15498 .14740 

99 .22991 .18859 .17448 .16416 .16058 .15289 

100 .22991 .18859 .17448 .16416 .16014 .15206 

101 .22981 .18738 .16598 .15603 .15129 .14400 

102 .22991 .18859 .17498 .16501 .16176 .15371 
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Table 2 Cond........ 

 

 

Observation 
Models 

1 2 3 4 5 6 

75 .14256 .13642 .12868 .12075 .11799 .12180 

76 .12778 .12236 .11557 .10852 .10611 .10954 

77 .11861 .11360 .10728 .09676 .09377 .09688 

78 .12687 .12108 .11373 .10734 .10510 .10898 

79 .14256 .13642 .12868 .12121 .11679 .12131 

80 .14256 .13642 .12868 .12075 .11799 .12180 

81 .14045 .13270 .12466 .11668 .11330 .11733 

82 .14377 .13761 .12879 .12138 .11882 .12268 

83 .14287 .13564 .12747 .11915 .11544 .12034 

84 .12918 .12284 .11588 .10883 .10310 .11838 

85 .14287 .13564 .12747 .11915 .11544 .12034 

86 .13961 .13369 .12580 .11851 .11585 .11958 

87 .12866 .12180 .10843 .10231 .10018 .10680 

88 .14339 .13590 .12749 .12019 .11472 .11976 

89 .14017 .13315 .12537 .11624 .11357 .11731 

90 .14121 .13309 .12486 .11776 .11531 .11949 

91 .12778 .12236 .11557 .10852 .10611 .10954 

92 .12010 .11501 .10733 .10130 .09919 .10338 

93 .13929 .12641 .11932 .11243 .10695 .11095 

94 .14457 .13702 .12796 .12075 .11634 .12241 

95 .13929 .12641 .11932 .11243 .10695 .11095 

96 .14017 .13315 .12537 .11624 .11357 .11731 

97 .14371 .13761 .12922 .12166 .11909 .12298 

98 .13859 .13273 .12492 .11731 .11484 .11877 

99 .14314 .13684 .12916 .12025 .11745 .12150 

100 .14256 .13642 .12868 .12075 .11799 .12180 

101 .13465 .12850 .12127 .11186 .10879 .11968 

102 .14457 .13702 .12796 .12075 .11634 .12241 
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Table 3: Variable Weights for Observations 

 

Observation 
Models 

1 2 3 4 5 6 

1 .34194 .29091 .27165 .25698 .25215 .23915 

2 .34194 .29091 .27165 .25551 .25067 .23687 

3 .33629 .28564 .25537 .24040 .22610 .21400 

4 .34205 .29252 .27308 .25784 .25165 .23870 

5 .34205 .27937 .25898 .24256 .23592 .22349 

6 .34194 .29211 .27347 .25833 .25044 .23655 

7 .33662 .28733 .26797 .25212 .24698 .23424 

8 .34194 .29091 .27204 .25789 .25036 .23630 

9 .33662 .28452 .26579 .25086 .24586 .22699 

10 .33629 .28564 .26645 .24956 .24419 .23198 

11 .34194 .29211 .26384 .23687 .23151 .21746 

12 .34194 .29091 .27204 .25789 .23954 .22373 

13 .34205 .29055 .27118 .25605 .24932 .23549 

14 .34205 .29252 .27308 .25784 .25232 .24006 

15 .34205 .29252 .27308 .25784 .25165 .23870 

16 .34194 .29091 .26060 .24515 .23744 .22509 

17 .34205 .29055 .27118 .25605 .24932 .23549 

18 .34205 .29055 .27176 .25727 .24354 .23139 

19 .32470 .27398 .25406 .23996 .23401 .22121 

20 .34205 .29252 .27308 .25784 .24495 .23293 

21 .34205 .29252 .27308 .25784 .25232 .24006 

22 .34205 .29252 .26399 .24982 .24499 .23213 

23 .34194 .29211 .27256 .25779 .24806 .23295 

24 .34205 .29055 .25992 .24385 .23354 .22131 

25 .34205 .27937 .26110 .24700 .24211 .22980 

26 .34205 .29252 .27380 .25913 .25416 .24139 

27 .34194 .29211 .27256 .25779 .25291 .24052 

28 .32470 .27437 .25522 .24149 .23534 .19633 

29 .34205 .29055 .27176 .25530 .24916 .23708 

30 .34194 .29091 .27204 .25789 .25294 .24001 

31 .34205 .29252 .27380 .25913 .24870 .23444 

32 .34205 .29252 .27308 .25784 .25165 .23870 

33 .34205 .29252 .27380 .25913 .25416 .24139 

34 .34205 .29252 .27380 .24664 .23866 .20974 

35 .34205 .29252 .26399 .24982 .24097 .22868 

36 .34205 .29055 .27118 .25564 .25055 .23706 

37 .33629 .28607 .26749 .25247 .24706 .23378 
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Table 3 Contd........ 

 

 

Observation 
Models 

7 8 9 10 11 12 

1 .20747 .19422 .17957 .16441 .15903 .16756 

2 .22043 .20752 .19326 .17848 .17143 .17948 

3 .19793 .18536 .17077 .15507 .14156 .17611 

4 .22158 .20705 .19266 .17812 .17193 .18038 

5 .20450 .19337 .17911 .15503 .14451 .15471 

6 .22115 .20810 .19259 .17740 .17068 .17866 

7 .21791 .20705 .19270 .17731 .17102 .17899 

8 .22097 .20987 .19426 .17247 .15408 .16716 

9 .20884 .19799 .18367 .15423 .14674 .15633 

10 .21507 .20237 .17994 .16293 .15514 .16563 

11 .20165 .18227 .16124 .14617 .13951 .15149 

12 .20825 .19692 .18135 .16611 .12806 .14544 

13 .22006 .20878 .19417 .17802 .17008 .18179 

14 .22338 .20640 .18666 .16835 .16299 .17392 

15 .22158 .21006 .19559 .16285 .15743 .16591 

16 .20830 .19662 .18213 .16194 .15498 .17884 

17 .22006 .20878 .15438 .13080 .12537 .13332 

18 .21583 .20503 .18933 .17352 .16815 .17682 

19 .20505 .19341 .17698 .16247 .15458 .16262 

20 .21548 .20466 .18520 .16777 .16238 .17388 

21 .22338 .21250 .19341 .17545 .16914 .17853 

22 .21676 .19252 .17808 .16321 .15072 .15990 

23 .21491 .20409 .18959 .17357 .16769 .17605 

24 .20425 .19290 .16937 .15381 .14479 .16497 

25 .21384 .20190 .18683 .16848 .15565 .16741 

26 .22606 .21266 .19556 .18106 .17175 .18448 

27 .22405 .21301 .19806 .18305 .17658 .18453 

28 .17971 .16889 .15161 .13714 .13188 .14223 

29 .22117 .14580 .13010 .11465 .10446 .11294 

30 .22469 .21375 .19717 .18236 .17704 .18502 

31 .21189 .20024 .18428 .16975 .16260 .17053 

32 .22257 .21157 .19697 .18201 .17272 .18223 

33 .22168 .20937 .19177 .17615 .16643 .18107 

34 .17979 .16034 .14493 .12697 .12153 .12976 

35 .21331 .19849 .17866 .16188 .11895 .12983 

36 .22053 .20740 .19301 .17271 .16529 .17324 

37 .21811 .20499 .18901 .17439 .16829 .17623 
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Table 3 Cond........ 

 

 

Observation 
Models 

1 2 3 4 5 6 

38 .34205 .29252 .27308 .25770 .25123 .23752 

39 .32470 .27398 .25406 .23996 .23410 .22192 

40 .34205 .29055 .27176 .25530 .24916 .23440 

41 .34205 .29055 .27176 .25727 .25139 .23767 

42 .33629 .28564 .26645 .25214 .23541 .22025 

43 .34205 .29055 .27176 .25530 .24217 .22964 

44 .33629 .28607 .26636 .25197 .24697 .23440 

45 .34194 .29211 .27256 .25779 .24806 .23295 

46 .34194 .29211 .27256 .25659 .25175 .23882 

47 .34205 .29252 .27380 .25771 .23215 .21992 

48 .34194 .29091 .27204 .25485 .24996 .23759 

49 .34205 .27937 .25898 .24435 .23917 .22510 

50 .34205 .29252 .27308 .25770 .25235 .23965 

51 .34205 .29055 .27176 .25530 .24916 .23708 

52 .34205 .29252 .27380 .25771 .24670 .23467 

53 .34205 .29055 .27176 .23899 .22599 .21276 

54 .34205 .29252 .27308 .25784 .25232 .24006 

55 .33662 .28452 .26501 .24929 .24288 .23028 

56 .34205 .29055 .27118 .25605 .24932 .23549 

57 .34205 .29252 .27308 .25770 .25235 .23965 

58 .34205 .29252 .27308 .25784 .24495 .22934 

59 .34194 .29091 .27204 .23738 .22763 .21412 

60 .33662 .28733 .25829 .24008 .23465 .22040 

61 .34205 .29252 .26399 .24672 .24187 .22952 

62 .34194 .29211 .27256 .25659 .23617 .22031 

63 .34194 .29091 .27204 .25485 .24690 .23170 

64 .34194 .29091 .27204 .25789 .25294 .24001 

65 .33629 .28564 .26665 .25275 .24486 .23247 

66 .33662 .28452 .26579 .25086 .24586 .22699 

67 .33662 .28452 .26501 .24929 .24288 .23028 

68 .34194 .29091 .27204 .25485 .24996 .23626 

69 .33629 .28607 .26749 .25247 .24706 .23444 

70 .33629 .28607 .26749 .25247 .24706 .23378 

71 .33662 .28452 .26579 .25086 .24003 .21095 

72 .34205 .27937 .26110 .24700 .24211 .22817 

73 .34205 .29252 .27380 .24664 .23866 .20974 

74 .34205 .29252 .27308 .25784 .25165 .23870 
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Table 3 Cond........ 

 

 

Observation 
Models 

7 8 9 10 11 12 

38 .22011 .20821 .19294 .17690 .16988 .17784 

39 .20517 .18985 .17386 .15902 .15121 .15927 

40 .21885 .20466 .18903 .17249 .16515 .17387 

41 .22236 .21144 .19507 .17464 .16911 .17832 

42 .20384 .18900 .17017 .13879 .11768 .12582 

43 .21323 .20203 .18643 .16828 .16262 .17351 

44 .20614 .19355 .17506 .16001 .15435 .16659 

45 .21724 .20142 .18059 .16493 .15240 .17354 

46 .22311 .21012 .19461 .17772 .16982 .18022 

47 .19830 .18616 .17068 .14487 .13810 .14691 

48 .22139 .20991 .19297 .17796 .17193 .17987 

49 .20930 .19596 .18162 .16708 .16041 .17332 

50 .22141 .20983 .19465 .17928 .17308 .18107 

51 .21955 .20734 .19086 .17048 .16408 .17327 

52 .21591 .20489 .18867 .16991 .16131 .17077 

53 .19692 .18323 .15415 .13964 .13438 .15037 

54 .22359 .21233 .19790 .18344 .17810 .18677 

55 .21445 .20354 .18591 .17043 .16429 .17692 

56 .21649 .20448 .17765 .16196 .15522 .16354 

57 .22141 .20703 .19205 .17654 .16915 .17988 

58 .21094 .20014 .18585 .17120 .16594 .17489 

59 .19643 .18339 .16893 .14914 .14383 .15340 

60 .20509 .19320 .16173 .14333 .13759 .14798 

61 .21020 .19600 .17676 .16155 .15625 .17848 

62 .20375 .19082 .17445 .15898 .15317 .16267 

63 .21282 .18480 .16756 .15256 .14558 .15388 

64 .22019 .20538 .18943 .17480 .16953 .17843 

65 .19836 .18489 .16844 .14756 .14220 .15238 

66 .20884 .19799 .18367 .15423 .14674 .15633 

67 .19961 .18583 .16929 .14635 .13976 .14914 

68 .22050 .20873 .19065 .17429 .16892 .17686 

69 .21835 .20549 .19045 .17155 .16574 .17383 

70 .21565 .20110 .17049 .15585 .14333 .15191 

71 .19521 .18438 .17011 .15436 .14875 .15671 

72 .17659 .16580 .15150 .12569 .11785 .12599 

73 .19341 .18175 .16609 .15164 .14637 .15541 

74 .22257 .21157 .19697 .18201 .17272 .18223 
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Table 3 Cond........ 

 

 

Observation 
Models 

1 2 3 4 5 6 

75 .34205 .29252 .27308 .25784 .25165 .23870 

76 .33662 .28452 .26579 .25086 .24003 .21095 

77 .34205 .27937 .26110 .24700 .24211 .22817 

78 .34205 .29252 .27380 .24664 .23866 .20974 

79 .34205 .29252 .27308 .25784 .25165 .23870 

80 .34205 .29252 .27308 .25784 .25165 .23870 

81 .34205 .29055 .27176 .25530 .24916 .23440 

82 .34194 .29091 .27204 .25789 .25294 .24001 

83 .34194 .29211 .27256 .25659 .25175 .23882 

84 .33629 .28564 .25537 .24040 .22610 .21400 

85 .34194 .29211 .27256 .25659 .25175 .23882 

86 .34194 .29091 .27204 .25789 .25036 .23284 

87 .34205 .29055 .27176 .23899 .22599 .21276 

88 .34205 .29252 .27380 .25913 .25167 .23935 

89 .33629 .28607 .26749 .25247 .24706 .23444 

90 .34194 .29091 .27204 .25789 .25294 .24001 

91 .33662 .28452 .26579 .25086 .24003 .21095 

92 .32470 .27437 .25522 .24149 .23534 .19633 

93 .34205 .29252 .26399 .24982 .24499 .23213 

94 .34205 .29252 .27380 .25913 .25416 .24139 

95 .34205 .29252 .26399 .24982 .24499 .23213 

96 .33629 .28607 .26749 .25247 .24706 .23444 

97 .34194 .29091 .27204 .25789 .25294 .24005 

98 .33662 .28452 .26579 .25086 .24346 .23092 

99 .34205 .29252 .27308 .25784 .25232 .24006 

100 .34205 .29252 .27308 .25784 .25165 .23870 

101 .34194 .29091 .26060 .24515 .23744 .22509 

102 .34205 .29252 .27380 .25913 .25416 .24139 
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Table 3 Cond........ 

 

 

Observation 
Models 

7 8 9 10 11 12 

75 .22257 .21157 .19697 .18106 .17529 .18323 

76 .19521 .18438 .17011 .15436 .14875 .15671 

77 .17659 .16580 .15150 .12569 .11785 .12599 

78 .19341 .18175 .16609 .15164 .14637 .15541 

79 .22257 .21157 .19697 .18201 .17272 .18223 

80 .22257 .21157 .19697 .18106 .17529 .18323 

81 .21885 .20466 .18903 .17249 .16515 .17387 

82 .22469 .21375 .19717 .18236 .17704 .18502 

83 .22311 .21012 .19461 .17772 .16982 .18022 

84 .19793 .18536 .17077 .15507 .14156 .17611 

85 .22311 .21012 .19461 .17772 .16982 .18022 

86 .21735 .20650 .19131 .17639 .17070 .17864 

87 .19692 .18323 .15415 .13964 .13438 .15037 

88 .22402 .21061 .19463 .17991 .16826 .17901 

89 .21835 .20549 .19045 .17155 .16574 .17383 

90 .22019 .20538 .18943 .17480 .16953 .17843 

91 .19521 .18438 .17011 .15436 .14875 .15671 

92 .17971 .16889 .15161 .13714 .13188 .14223 

93 .21676 .19252 .17808 .16321 .15072 .15990 

94 .22606 .21266 .19556 .18106 .17175 .18448 

95 .21676 .19252 .17808 .16321 .15072 .15990 

96 .21835 .20549 .19045 .17155 .16574 .17383 

97 .22458 .21373 .19800 .18294 .17760 .18563 

98 .21551 .20471 .18954 .17383 .16852 .17692 

99 .22359 .21233 .19790 .18003 .17413 .18261 

100 .22257 .21157 .19697 .18106 .17529 .18323 

101 .20830 .19662 .18213 .16194 .15498 .17884 

102 .22606 .21266 .19556 .18106 .17175 .18448 
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Lineplot shows the information loss of Models based on no.of parameters and 

Heteoscedastic error variance, Weights for observations 
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Table-1 exhibits the result of the stepwise regression analysis, the traditional 

unweighted Hannan-Quinn information criteria and weighted Hannan-Quinn 

Information criteria under two versions for the 12 fitted nested models. From the 

results, the authors found model 11 is having minimum homoscedastic error variance 0f 

0.123 with a high R
2
 of 63.4%, but the unweighted Hannan-Quinn information criteria 

is found to be a minimum of 118.262 for the 10
th

 model. This shows model 11 was 

penalized for utilizing more independent variables to improve the model fitness. Based 

on the unweighted HQIC, model 10 is the best when compared to others. As far as, the 

proposed homogeneous weighted HQIC is concern, model 11 achieved a homogeneous 

weight of 0.186 and we get the value of homogeneous WHQIC as 22.399 which is 

minimum when compared to other competing models. On the other hand, the 

heterogeneous weighted HQIC assumed that the point wise information loss should not 

be equally weighted and it should weighed with variable weights. The heterogeneous 

WHQIC is also minimum (18.100) for model 11 when it is compared with other fitted 

regression models. This resembles the homogeneous and heterogeneous weighted 

HQIC gives similar results and it is different from the results given by unweighted 

traditional HQIC. If the error variances of the fitted models are heteroscedastic, using 

the unweighted HQIC for model selection is impractical. Hence, the application of 

homogeneous and heterogeneous WHQIC helps the decision maker to select and 

finalize the best model as model 11 instead of selecting the 10
th

 model. Another 

important feature of the two versions of WHQIC is R
2
 supportive selection and the 

penalization of the model was balanced by the estimated weights proposed by authors. 

Finally, the authors emphasize, if the heteroscedasticity is existing in the survey data 

then using the weighted HQIC will give an appropriate and alternative selection of 

models among a set of competing models. The subsequent tables and line plots exhibit 

the estimated heteroscedastic error variance of 12 fitted models and the extracted 

variable weights for 102 observations. 

4. Conclusion  
This paper proposed new information criteria as weighted Hannan-Quinn 

information criteria which is an alternative to the traditional Hannan-Quinn information 

criteria existing in the literature. The proposed WHQIC is superior in two different 

aspects. At first the weighted Hannan-Quinn information criteria incorporates the 

heteroscedastic error variance of the fitted models and secondly it gives unequal 

weights to the point wise information loss to the fitted models. The authors’ emphasize, 

if the problem of heteroscedasticity is present in the data, the usage of traditional 

Hannan-Quinn information criteria for model selection will leads the researchers to 

select wrong model. Because the traditional Hannan-Quinn information criteria works 

perfectly when the error variance of the fitted model is homoscedastic and this 

assumption is violated, the application of alternative information criteria under two 

different versions namely Homogeneous and Heterogeneous WHQIC was proposed by 

the authors. For future research, the authors recommended that the derivation can be 

extended to the logical extraction of log-likelihood based information criteria. 
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