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Abstract 
                 Intercropping data consists of multivariate observations of two or more crop-yields 

at different treatments (situations). Here, the problem is ordering these treatments with respect to 

the yields. At present land equivalent ratio  (LER) is used to order the treatments and finding out 

at which treatment the LER has maximum value, considering that treatment is best one, to those 

intercrops. But, two or more crop-yields are not necessarily additive but may be interactive, then 

applying of LER could be misleading. In the present paper, we propose an alternative approach 

which brings out natural ordering if any exists, among the treatments.  

 

Key Words: Ordering Multivariate Observations, Connectivity Approach, Principal 

Component Analysis, Inter cropping. 

 

1. Introduction 
          Intercropping is the agricultural practice of cultivating two or more crops in the 

same space at the same time (Andrews & Kassam 1976). A practice often associated 

with sustainable agriculture and organic farming, intercropping is one form of poly 

culture, using companion planting principles. It is commonly used in tropical parts of 

the world and by various indigenous peoples (Altieri 1991), but in the mechanized 

agriculture of Europe, North America, and parts of Asia it is far less wide spread. 

Intercropping may benefit crop yield or control of some kind of pest, or may have other 

agronomic benefits. 

 

 In intercropping, there is often one main crop and one or more added crops, 

with the main crop being the one of primary importance because of economic or food 

production reasons. The two or more crops used in an intercrop may be from different 

species and different plant families, or they may simply be different varieties or 

cultivars of the same crop species, such as mixing two kinds of wheat seed in the same 

field. 

 

 The most common goal of intercropping is to produce a greater yield on a 

given piece of land by making use of resources that would otherwise not be utilized by 

a single crop.  

 

2. Practices of intercropping cultivation  
             Finger millet is often intercropped with legumes such as peanuts, cowpeas, 

and pigeon peas, or other plants such as Niger seeds.   Although statistics on individual 

millet species are confused, and are sometimes combined with sorghum. In this way the 

practice of intercropping are taken world over. 
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          The Problem of ordering data is common enough to have attracted considerable 

attention of investigators. Generalizations of ANOVA and distribution free tests for the 

purpose have been in use for quite some time (Everitt and Dunn, 1999). 

 

A natural extension of the problem arises when the characteristics of interest 

are not one but many in number. In such cases, it is rather than an exceptional situation 

that one has multivariate data which admits of the same (or, equivalently, exactly 

opposite) ordering between points with respect to each variable. One can, ofcourse, use 

concordance measures (like the concordance coefficient) to examine the overall 

consistency of ordering of the data on the basis of the each of the different variables 

separately. But even this admittedly ‘weak’ nonparametric procedure, will be of some 

use only to examine if they are arranging the data in the same order with respect to each 

of the variables. Consistency of ordering among the variables by possible rank reversal 

(i.e., the case of high negative correlation) will not be detectable here. 

  

One natural way out, for solving this problem is to convert multivariate 

description of the data points into one variate description by a suitable transformation 

and solve this univariate ordering problem: Define a scoring function g(x1,x2,…..,xk) of 

the k variables which makes sense in given context and ‘reduce’ the problem to one of 

univariate ordering. Though attractive, this approach is to be faulted: Ordering by g(x) 

naturally depends on the function g chosen for the purpose. Thus it is not a data 

determined ordering that we get, but a ‘situation determined’ one. When the situation 

(i.e., essentially the objective) changes, the function (and hence the ordering) will 

change. This approach, therefore, is essentially ‘subjective’ and does not reveal any 

structure inherent in the data. 

  

In the context of intercropping, for instance, one may impute prices to the 

different output crops and use the net profit as the criterion for the ordering. This 

objective may be quite adequate if ‘net money value’ is the sole objective and stable. 

However, unless prices are stable enough, this criterion’s utility is very questionable. 

 

 One such experimentation of intercropping data is being evaluated by way of 

ordering the multivariate observations with a new approach of Minaddition and found 

this approach to be meaningful and better than the so called existing method of Land 

equivalent ratio (LER). 

 

3. Land equivalent ratio  
           One way to assess the benefits of intercropping is to measure productivity 

using the land equivalent ratio (LER). LER compares the yields from growing two or 

more crops together with yields from growing the same crops in monocultures or pure 

stands. Essentially the LER measures the effect of both beneficial and negative 

interactions between crops. 

 

 To calculate the LER, divide the intercrop yield of one crop by the yield of the 

pure stand and add that to the intercrop yield of the next crop divided by the yield of the 

pure stand and so on. The equation goes like this: 

            Intercrop1/Purecrop1 + Intercrop2 /Purecrop2 + etc. = LER 
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          The resulting number is a ratio that indicates the amount of land needed to 

grow both crops together compared to the amount of land needed to grow pure stands 

of each. An LER greater than 1.0 usually shows that intercropping is advantageous and 

less than 1.0 shows a disadvantage. LER, ofcourse is perhaps a better criterion since it 

is apparently not situation-dependent. The disadvantage of LER method is that the two 

or more crop yields are not necessarily additive but could be interactive, and the impact 

of this fact on summing of LER is not clear. This disadvantage made us to investigate 

the new method of ordering the multivariate observations. Thus, we discuss the new 

methodology, first by considering the Principal component analysis and then deduce the 

new method. 

 

4. Principal Component Analysis 
 Another approach which is data dependent is the Principal Component 

approach. It involves a mathematical procedure that transforms a number of possibly 

correlated variables into a smaller number of uncorrelated variables called principal 

components. The first principal component accounts for as much of the variability in 

the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible.  

 

 PCA involves the calculation of the eigenvalue decomposition of a data 

covariance matrix or singular value decomposition of a data matrix, usually after mean 

centering the data for each attribute. The results of a PCA are usually discussed in terms 

of component scores and loadings (Shaw, 2003). However, since the PC scores are 

highly scale dependent, there is a prima-facie case against their use except when the 

scales of measurement of the variables are pre fixed and unalterable. Also, when non-

linearities are present, this approach fails. One component may be very inadequate to 

reveal nonlinear data structure as when for instance, the points form a closed loop. 

Search for alternative approaches to the problem of ordering multivariate data points, 

therefore, has to continue. 

 

 One such approach, found to be useful in the context of pattern recognition is 

presented below. This is the ‘connectivity’ approach to ordering of data-points. The 

concepts and theory of this approach is first presented. It is applied to some inter 

cropping data sets and its usefulness (or otherwise) will be briefly discussed. This 

approach does not force an ordering among data points but, if any meaningful ordering 

(not necessarily linear but, even, an open curved or close curved ordering) exists in the 

data, it reveals that ordering; if no such ordering exists that fact is also revealed by this 

analysis. Thus, if points lie on an open or closed curve, in a   k-space that situation is 

revealed by this analysis. This approach has been found useful in Boundary alignment 

(or contouring) problems in Image processing, with considerable success (Pandit and 

Srinivas, 1989). In this illustrative case reports included in the sequel, we have only two 

dimensional data points and hence a visual display of the same is revealing. 

 

 The base for our procedure is the concept of Mahalanobis distances between 

data points. The k-vectors are utilized to obtain these distances in any meaningful way 

and the procedure take these distances as the base data. 
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 Before proceeding with this approach, it is perhaps useful, for the sake of 

completeness to make a brief reference to the problem of multidimensional scaling as in 

PC concepts and Mahalanobis distance is of some relevance in the present context. 

 

Mahalanobis distance is a distance measure introduced by Mahalanobis 

P.C. in 1936. It is based on correlations between variables by which different patterns 

can be identified and analyzed. It is a useful way of determining similarity of an 

unknown sample set to a known one. 

 

            Mahalanobis distance (or "generalized squared interpoint distance" for its 

squared value) can also be defined as a dissimilarity measure between two random 

vectors and of the same distribution with the covariance matrix S. 

             

In order to use the Mahalanobis distance to classify a test point as belonging to 

one of N classes, one first estimates the covariance matrix of each class, usually based 

on samples known to belong to each class. Then, given a test sample, one computes the 

Mahalanobis distance to each class, and classifies the test point as belonging to that 

class for which the Mahalanobis distance is minimal. 

 

5. The Connective Approach 
 Let di j be the ‘distances’ between point pairs (i, j), i, j =1, 2, ---, N. A chain of 

points α1, α2, - - -, αk is said to be constitute a path of  k steps and of total  distance       

di j 
(k)   

= di α1  +∑
−

=

1

1

k

i

d αi αi+1 + dαkj   connecting  i and  j .  A natural ordering among the 

points is obtained by choosing paths of smallest total distance (irrespective of step 

lengths) between point pairs. One can thus define shortest distances between point pairs 

and claim that the paths so obtained induce natural ordering among the points. These 

shortest distances and the paths to achieve the same can easily be obtained, by using the 

matrix operation of Minaddition (Pandit, 1962). Here, we first explain the method in 

detail with an illustration. 

 

Minition: Let A and B be two matrices of real elements, then C = A . B is defined as 

the minition of A and B where ),min( ijijij baC = e.g.   









−−
=

52101

4523
A  ,   









=

6723

64105
B    then          









−−
=

5221

4423
C  

It is obvious that minition is analogous to the usual addition of matrices. 

 Minition     (i) is defined only between matrices of the same order. 

      (ii) is commutative; ABBA .. =  

      (iii) is associative; )..()..( CBACBA =  

         And (iv) obeys the transposition law; 
TTT BABA .).( =   

Minaddition: Let A and B be two conformable matrices. Then, minaddition is defined 

as BAC ⊗= where )(min xjix
x

ij baC += . 
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Let us consider  








−−
=

9424

5321
A  and 



















−

−
=

273

141

626

359

B  then the minad 

product is 








−−−

−
=

383

414
C  

 

For instance, C (2, 3) = min (4+3, -2+6, -4+1, 9+2) = -3 

Minaddition is obviously analogous to the usual matrix multiplication and it is defined 

only for ordered pairs of matrices in which the first matrix has the same number of 

columns as the second has the number of rows. 

 

Minmaxion: Minmaxion is similar to minaddition except that, instead of taking the 

minima of sums, one takes the minima of the maxima in the pairs, and given by          

C = A  B  

i.e., )),min(max( xjixij baC =  

Let 

















=

539

631

253

A      and 

















=

9357

2437

5265

B     then minmax product of A and 

B is 

  

















=

3437

3235

5555

D  

For instance, D (1, 1) = )]7,2max(),7,5max(),5,3min[max( = 5. 

And it is defined only for the ordered pairs of matrices in which the first matrix has the 

same number of columns as the second has the number of rows. 

 

 A little modification of this concept of shortest distance between points leads 

to the proximity of ordering P items (points) on the basis of the degree of direct 

dissimilarity (distances) between them. Thus, for instance, let four items A, B, C, D 

have the mutual dissimilarities as given by the matrix entries d: 

 

03079

300203

720010

93100

D

C

B

A

DCBA
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Let 10 be a ‘threshold‘ score in that if two items have a dissimilarity of not 

more than 10, they are treated as ‘essentially equivalent‘. Thus on direct comparison C 

and D are most dissimilar with a score (distance) d =30 and are distinct from each 

other. But C and A have a dissimilarity of only 3 while A and D have a dissimilarity of 

only 9. Hence if one compares sequentially C and A, and A and D one can say that C, 

A, D are essentially equivalent, if one compares them in pairs, in that order. The 

definition of equivalence classes – through the chains of equivalent pairs of items is 

obviously useful in tracing an evolutionary chain among P items; (on the reasonable 

assumption that the evolutionary path is one with minimum dissimilarities along it). 

 

 In this context, we can also define a ‘connective distance‘ between the point 

pairs as the minimum score using which as a threshold we can say that the two points 

are equivalent. 

  

For our problem of 4 items above, we get this connectivity distance matrix as  

0979

9093

7909

9390

D

C

B

A

DCBA

  

Thus with a threshold value of  6 , we conclude that A and C are equivalent; 

with threshold 8 , that A and C are an equivalent pair , and B and D are another 

equivalent pair while with a threshold of 10 all the four points are equivalent . Also, this 

threshold induces the following ordering C - A- D – B with distances 3, 9, 7 

respectively. 

  

Putting in a figurative way, let A B C D be four islands and a swimmer has the 

threshold capacity T of swimming at one stretch, a distance of 10 km. but not longer 

distance. Then he cannot reach directly C from B or D from C but he can reach them 

via the route indicated, with one or two intermediate landings. Thus, in respect of a 

threshold, items may be dissimilar (not mutually approachable) or similar 

(approachable) when viewed in a sequence, so that one goes, at each step for one point 

to another ‘similar’ point, along the ‘similarity path’. Naturalness of ordering the points 

along the similarity path, in many contexts, is obvious. One can compute the similarity 

paths connecting distances between all pairs of points by the matrix operation of 

minmaxion (Pandit & Srinivas 1989)  C = A  B where 

 Cij = 
x

min (max (aix, bxj)). The mathematics of operation is very similar to that of 

minaddition and (Pandit 1961, Das (1976), T.C.Reddy (1988)) presented elsewhere 

(ibid). Using this operation, one can thus define paths between any pair of points, 

ordering among them being essentially unique. 

           

To recapitulate let a set of N data points be given. We first compute interpoint 

distances by employing suitable distance function like the Mahalanobis distance which 

is non-dimensional. Using the matrix minmaxion operation, we obtain the absolute 

connectivity level (the connective distance) between every pair of points. Choosing a 

threshold value we can partition (if so suggested by data) the given point set into 
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clusters of connected sets, within each of which one can obtain an ordering among 

these points which is expected to be more meaningful than some of the other 

approaches like linear ordering through component scores. 

 

            This approach allows the data to speak for themselves rather than force a 

linear ordering when there may be none. It also allows one to recognize the possibility 

of even a closed loop structure in the data. This approach also allows developing 

indices of ordering and connectivity in data-sets which are more revealing than any 

other available approaches. However, as this aspect of the problem is not germane to 

the present objective of looking for meaningful ordering among multivariate data 

points, we shall not discuss it here anymore.            

          

We shall now apply this method on three data sets from the field of 

intercropping. Data size is admittedly small, and each ‘point’ is an average vector of 

bivariate sample data. We shall not go into the reproducibility and other conventional 

inferential aspects; we shall rather illustrate our approach by using these data for 

analysis and comparing the results with those obtainable by PCA. 

           

Since the data are bivariate only, graphical display itself gives some useful 

information which can be used to examine the validity and sensibility of the results 

from these different approaches. 

 

For each data set of the dispersion matrix, the first principal component scores, 

and line diagrams for ordering the points as per these score differences then the 

Mahalanobis distance and connective matrices, followed by the tree diagram of the data 

as revealed by the connective distance matrix are presented.  

 

6. Computational procedure to obtain tree 
            From the distance matrix D of given N data points, by applying the Min-

Maxion operation on the distance iteratively, for some finite integer n, D
n
=D

n+1
. That 

D
n
 is the connectivity matrix C for given distance matrix D. The tree diagram can be 

obtained by defining the matrix P as follows, 

Pij=1 if dij = cij 

    =0, otherwise 

    If Pij = 1 means i and j are connected directly. Using this concept the tree can be 

constructed. 

 

We applied this method on three data sets and these data sets are collected from 

an agricultural experiment station in Andhra Pradesh during the year July 2006. 

 

Data set – I 
 Yields for different dates of transplantation of Finger millet intercropped   with 

Pigeon pea. 
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Treatment   

number                      Treatment 

              yield(q\ha) 

pigeon pea finger millet  

1 Sole pigeon pea (90x20cm2) sown on July 4 15.6 ---- 

2 Sole pigeon pea (75x25cm2) sown on July 4 14.8 ---- 

 Sole Finger millet   

3 
Transplanted 20 days after pigeon pea 

sowing 
---- 13.5 

4 
Transplanted 30 days after pigeon pea 

sowing 
---- 10.9 

5 
Transplanted 40 days after pigeon pea 

sowing 
---- 6.9 

 Intercropping   

6 Pigeon pea (90x20) + finger millet (20 days) 8.3 5.3 

7 Pigeon pea (90x20) + finger millet (30 days) 13.4 0.9 

8 Pigeon pea (90x20) + finger millet (40 days) 14.5 2.6 

9 Pigeon pea (75x25) + finger millet (20 days) 11.0 4.7 

10 Pigeon pea (75x25) + finger millet (30 days) 13.1 0.6 

11 Pigeon pea (75x25) + finger millet (40 days) 14.9 0.6 

 
Dispersion matrix 

     










−

−

48.2194.27

94.2719.42
 

   % of variation explains by the first PC: 96 

 

First PC scores 

 
1 2 3 4 5 6 7 8 9 10 11 

0.93 0.85 -1.68 -1.49 -1.20 -0.22 0.64 0.63 0.11 0.64 0.81 

 

The order of the treatments obtained by the first PC scores: 

 

      1 , 2 , 11 , 7 , 10 , 8 , 9 , 6 , 5 , 4 , 3  

 

In the distance and connectivity matrices, the lower diagonal values are identical to 

those of upper diagonal values.   

 
Distance Matrix 









































000.0

608.0000.0

046.1822.2000.0

114.1209.3337.0000.0

236.0094.0953.1205.2000.0

076.1455.1710.0729.1064.1000.0

471.10549.6677.12834.15720.7388.7000.0

858.5450.5586.3103.6151.5800.1898.5000.0

085.9062.11003.4105.6807.9494.4059.16492.2000.0

164.0177.0135.2128.2051.0468.1806.8158.6762.10000.0

020.0573.0561.1323.1240.0470.1675.10465.6054.10120.0000.0
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                                 Connectivity Matrix 

 









































000.0

020.0000.0

064.1064.1000.0

064.1064.1337.0000.0

020.0094.0064.1064.1000.0

064.1064.1710.0710.0064.1000.0

898.5898.5898.5898.5898.5898.5000.0

800.1800.1800.1800.1800.1800.1898.5000.0

492.2492.2492.2492.2492.2492.2898.5492.2000.0

120.0094.0064.1064.1051.0064.1898.5800.1492.2000.0

020.0120.0064.1064.1120.0064.1898.5800.1492.2120.0000.0

 

 

Tree Diagram  

 

 

Data Set II 
 

Yield values for various combinations of plant densities for Maize + Pigeon pea system 

 

Treatment 

number 

 

Treatment 

Yield (q/ha ) 

Maize Pigeon Pea 

1 Sole maize                    (60cm) 26.6 ----- 

2 Sole maize                    (75cm) 22.0 ----- 

3 Sole pigeon pea            (60cm) ----- 27.0 

4 Sole pigeon pea            (75cm) ----- 23.0 

 Maize + pigeon pea     

5 100%  +  100%             (60cm) 22.9 9.3 

6 100%  +  100%             (75cm) 18.7 19.4 

7  50%   +   50%              (60cm) 15.9 22.7 

8  50%   +   50%              (75cm) 11.8 17.3 

9 Paired row               (30/120cm) 12.8 13.7 

10 Paired row               (45/105cm) 22.5 7.6 
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  Dispersion Matrix 

 

             








−

−

20.9106.73

06.7375.86
 

 
% of variation explains by the first PC: 91 

First PC scores: 

 
1 2 3 4 5 6 7 8 9 10 

-1.41 -1.15 1.57 1.34 -0.67 0.11 0.45 0.37 0.12 -0.75 

 
The order obtained by the first PC scores: 

         3, 4, 7, 8, 9, 6, 5, 2, 1 

 

 
Distance Matrix 

 







































000.0

386.1000.0

484.1298.0000.0

967.3173.5151.3000.0

955.2709.4954.2134.0000.0

157.0938.1646.1737.2839.1000.0

956.6181.2456.2658.9008.10886.7000.0

491.6336.2785.1334.6967.6811.6599.0000.0

413.2411.2173.4029.12486.10799.3947.6886.8000.0

859.0601.2681.3484.8884.6607.1076.9853.9833.0000.0

 

 

Connectivity Matrix 

 







































000.0

366.1000.0

366.1298.0000.0

839.1839.1839.1000.0

839.1839.1839.1134.0000.0

157.0366.1366.1839.1839.1000.0

785.1785.1785.1839.1839.1785.1000.0

785.1785.1785.1839.1839.1785.1599.0000.0

859.0366.1366.1839.1839.1859.0785.1785.1000.0

859.0366.1366.1839.1839.1859.0785.1785.1833.0000.0
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Tree Diagram  

 
Data set III 

 
Yield values due to N levels for Sorghum + Pigeon pea system 

 

Treatment 

number 

Treatment 

N(kg/ha) 

Yield(q/ha) 

Sorghum Pigeon pea 

1 15 12.4 14.8 

2 30 16.4 16.4 

3 45 19.3 18.8 

4 60 20.1 17.9 

5 75 22.9 17.5 

6 90 24.6 17.0 

7 105 26.9 16.4 

8 120 28.7 15.0 

 

Dispersion matrix: 

 

            








89.110.0

10.073.29
 

 
% of variation explained by first PC: 94 

 
First PC scores: 

 
1 2 3 4 5 6 7 8 

-1.65 -0.91 -0.38 -0.23 0.27 0.58 1.01 1.33 

 
The ordering of treatments obtained by the first PC scores: 

            8, 7, 6, 5, 4, 3, 2, 1 
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Distance Matrix 

 

































000.0

318.1000.0

096.3427.0000.0

127.5364.1266.0000.0

025.8179.3285.1403.0000.0

265.12775.5076.3538.1517.0000.0
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Tree diagram  

 

 

 
     The first data set consists of yields for different dates of transplantation of finger 

millet intercrop with pigeon pea. The finger millet was transplanted at three different 

dates in standing crop of pigeon pea sown on with two geometries. 
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 By PCA it is found that the first principal component is enough to summarize 

the whole data since it explains 96% of the total variation. By the ordering of the first 

principal component scores, it is observed that at the two ends the sole crop treatments 

and in between the rest of the intercrop treatments are same. 

  

The connectivity approach reveals neither perfect linear ordering nor circular 

ordering exists among the treatments. The sole crop treatments stood at two ends of the 

dendogram and they are too far from the remaining treatments 6, 8, 9. The treatments 6, 

8 and 9 are formed as one more branch to the tree. 

 

The second data set consists of Maize and pigeon pea intercrops data. Since 

the first principal component explains 94% of total variation, and the first principal 

component scores are enough to order the treatments. As in the first data set the two 

sole crops treatments are same at two ends of that order sequence. 

              

By connectivity approach, it reveals neither linear ordering nor circular 

ordering exists among the treatments. In this also the sole crop treatments at the two 

ends and the rest of the treatments in between the sole crop treatments came in tree. The 

treatments 10, 5, 6, 7 formed one more branch to the tree. 

              

The third data set consists of intercrop yields of Sorghum and Pigeon pea. The 

first principal component of the data explains 94% of total variation and the treatments 

are ordered according to the magnitudes of first principal component scores. 

  

By the connectivity approach it reveals that there exists linear ordering and not 

circular ordering. In the tree structure the treatment 3 formed a branch but it is not too 

far to the stem of the tree. Except this treatment 3, the order of the remaining treatments 

is same as the ordering obtained by first PC scores. 

 

7. Conclusion 
 In all the data sets seen we find that by PCA it was observed that the first PC is 

enough to summarize the whole data, since it explains 96% of the variation for the first 

data set, 94% of the variation for second and third data sets. Whereas the connectivity 

approach reveals neither perfect linear ordering nor circular ordering exists among the 

treatments. Thus, PCA in all the data sets shows a linearing ordering. 

 

 Therefore, in summary the ordering obtained by PC scores of the first and 

second data sets (no sole crop in the third data set), the sole crops came at the two ends 

in the order sequence. Connectivity approach reveals that no perfect linear ordering 

exists in the first two data sets. Third data set analysis reveals the following: Except the 

treatment 3, the order of the remaining treatments obtained by Connectivity approach is 

same as the order obtained by the first PC scores.  
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