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Abstract 
 In this paper, the estimation of R=Pr(Y < Y), when X and Y are two generalized 

inverted exponential distributions with different parameters is considered. The maximum 

likelihood estimator (MLE) of R and its asymptotic distribution are obtained. Exact and 

asymptotic confidence intervals of R are constructed using both exact and asymptotic 

distributions. Assuming that the common scale parameter is known, MLE, Bayes estimators and 

confidence intervals of R are investigated. Bayes estimators are based on informative and non-

informative priors of the unknown parameters. Monte Carlo simulations are performed to 

compare and to validate the different proposed estimators. 
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1. Introduction 
 The estimation of system reliability in statistical applications is very common 

and has much attention in literature. The most widely approach used for reliability 

estimation is the well-known stress-strength model. This model is used in many 

applications of physics and engineering such as strength failure and system collapse. In 

stress-strength modeling, R=Pr(Y < X) is a measure of component reliability when it is 

subjected to random stress Y and has strength X. In this context, R can be considered as 

a measure of system performance and naturally arise in electrical and electronic 

systems. Other interpretation can be that, the reliability, R, of the system is the 

probability that the system is strong enough to overcome the stress imposed on it. It 

may be mentioned that R is of greater interest than just reliability since it provides a 

general measure of the difference between two populations and has applications in 

many area. For example, if X is the response for a control group, and Y refers to a 

treatment group, R is a measure of the effect of the treatment. In addition, it may be 

mentioned that R equals the area under the receiver operating characteristic (ROC) 

curve for diagnostic test or biomarkers with continuous outcome (Bamber, 1975). The 

ROC curve is widely used, in biological, medical and health service research, to 

evaluate the ability of diagnostic tests or biomarkers to distinguish between two groups 

of subjects, usually non-diseased and diseased subjects. For more details, one can be 

advised to Kotz et. al., (2003). 

 

 Many authors have studied the stress-strength parameter R. Gogoi and Borah 

(2012) deals with the stress vs. strength problem incorporating multi-component for 

systems viz. standby redundancy in the case of Exponential, Gamma and Lindley 
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distributions. Singh et. al., (2011) have developed a re-modeling of stress-strength 

system reliability where they have defined the probability that the system is capable to 

withstand the maximum operated stress at its minimum strength when both stress and 

strength variables are Weibull distributed. Barbiero (2013) studied statistical inference 

for the reliability of stress-strength models when stress and strength are independent 

Poisson random variables, whereas, Ali et. al. (2010) have investigated the estimation 

of Pr(X < Y), when X and Y belong to different distribution families. Wong (2012) has 

constructed an asymptotic confidence interval for Pr(Y < X) where X and Y are two 

independent generalized Pareto random variables with a common scale parameters. 

Furthermore, Rubio and Steel, (2012) studied Bayesian estimation of the stress-strength 

model in the case when the marginal distributions of X and Y are independent 

/dependent random variables that belong to classes of distributions obtained by skewing 

scale mixtures of normal distributions and when the variable. 

 

 In this paper, estimation of the system reliability, R, when X and Y are 

independent but not identically distributed generalized inverted exponential distribution 

(GIED) variables is considered. The GIED distribution has the following cumulative 

distribution function (cdf) and probability density function (pdf) for X > 0: 
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where 0>λ  is the scale parameter and 0>α is the shape parameter (Abouammoh and 

Alshingiti, 2009). 

 The rest of the paper is organized as follows. In section 2, the system 

reliability is derived and in section 3, the maximum likelihood estimation of R is 

discussed. In section 4, asymptotic confidence interval of R is obtained while section 5 

is devoted to the Bayesian estimation of R. Numerical solutions and performance 

studies of the estimators are investigated ion section 6. Finally the paper is conclude. 

 

2. System Reliability (R) 
 Let X and Y be two independent GIED random variables with parameters 

( αλ, ) and ( βλ, ) respectively. The reliability of the system is defined as follows 
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3. Maximum likelihood estimation 

 Assume that two independent random samples ),...,,( 21 nXXX  and 

),...,,( 21 mYYY  are observed from GIED( αλ, ), and GIED( βλ, ) respectively. The 

likelihood function of αλ,  and β  for the observed samples is 
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Therefore, the log-likelihood function of αλ,  and β  will be  
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The estimators αλ ˆ,ˆ  and β̂  of the parameters ,λ  α  and β  respectively can be 

obtained as the solution of the likelihood equations 
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From Equations (7) and (8), the estimators of α  and β are give by 
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where λ̂  is the solution of the nonlinear equation  
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Once the estimators of α  and β , are derived and using the invariance property of the 

MLEs, the MLE of R becomes 
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Assuming that the scale parameter λ  is known, we have 
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 When the scale parameter λ  is known and equal to one, it can be easily shown 

that the random variable ]1log[
/1 ix
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where 10 << u . Based on this information a )1( τ− 100% confidence interval of R can 

be obtained as follows 
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where 2/,2,2 τmnF  and 2/1,2,2 τ−mnF  are the lower and upper τ /2th percentile of a Fisher 

distribution with 2n and 2m degrees of freedom respectively 

 

4. Asymptotic distribution and confidence interval of R 

 Based on the asymptotic properties and the general conditions of the MLEs λ̂ , 

α̂  and β̂  (Lehmann, 1999), the asymptotic distribution of the MLEs immediately 

follows from the Fisher information matrix of λ , α  and β . That is, when 

∞→∞→ mn ,  and 10,/ <<→ ppmn , it follows that  
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and the matrix )(ΩI  is the Fisher information matrix of the parameter vector 

),( λβα ,=Ω , and the ijth element is given by the second partial derivatives 
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A (1-τ)100% approximate confidence interval of R  can be constructed based on the 

asymptotic results obtained. This asymptotic confidence interval is given by 

ψτ ˆˆ
2/1−± ZR , (22) 

where ψ̂  is the asymptotic standard deviation of R̂ . 

 

5. Bayesian Estimation of R 

 In this section, the Bayes estimator of R  denoted as BSR̂  is obtained under the 

assumption that the shape parameters α  and β  are independent random variables with 

prior distributions ),( 11 baΓ  and ),( 22 baΓ  with pdf's respectively  
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Based on the above assumptions and from Equation (4), the joint density of the data, α 

and β can be obtained as 
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Therefore, the Bayesian estimator of R  under squared error loss function is given by 

∫==
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The Bayes estimate of R under squared error loss cannot be computed analytically. 

Alternatively, numerical solution based on MATHEMATICA program is employed to 

evaluate 
BSR̂  for different values of the parameters.  

 

6. Simulation study  
 In this section, Monte Carlo simulation is performed to test the behavior of the 

proposed estimators for different sample sizes and for different parameter values. The 

performances of the MLEs and the Bayes estimates are compared in terms of biases and 

mean squares errors (MSEs). Bayes estimates, are computed based on two type of 

priors, (i) non-informative priors, where 0001.02121 ==== bbaa , (Congdon, 2001, 

Kundu and Gupta, 2005). (ii) Informative priors, where it is assumed that there are 

some prior information about the parameters and 0,,, 2121 >bbaa  (for example, 

321 == aa , 221 ==bb ). The simulations are based on 1000 replications and the 

results are presented in Tables 1. In Table 2, we obtain both EXCI  and ASCI  using 

Equations (17) and (22) respectively. Both confidence intervals are based on MLEs of 

R. the results are shown in table 2. All simulations are based on the following sample 

sizes; n, m = 15, 25, and 50 and we assume 5.4,5.2,5.1,5.0=β , and 5.1=α , 

respectively. Table 3 shows the results of Bayes estimation of R.  

 

 It can be noted that even for small sample sizes, the performance of the Bayes 

estimator is better than the MLE of R in terms of biases and MSEs. It is also observed 

that when (n,m) increases, the MSE and biases decrease for both MLE and Bayesian 

estimators. In addition, it is noted that for fixed sample sizes and as the 

parameter β increases MSE and biases decrease for both MLE and Bayesian estimation 

methods. The confidence intervals ASCI , performs quite well as the sample sizes 

increases, while EXCI  have larger interval length comparing to ASCI . It is also 

observed that for the MLE of R there is overestimation for parameter values of 

5.00 << R , while for values 15.0 ≤≤ R , there is underestimation of the true value of 

R. 
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Table 1: MLE estimation of R when α is fixed and equal to one and scale parameter is known (λ=1). 

(n,m) β  R 
MLR̂  Bias MSE 

(10,10) 

0.25 0.2000 0.2101 0.0101 0.1061 
0.50 0.3333 0.3411 0.0078 0.0872 
1.00 0.5000 0.5005 0.0005 0.0843 
2.00 0.6667 0.6599 -0.0068 0.0626 
3.00 0.7500 0.7410 -0.0090 0.0527 

(10,15) 

0.25 0.2000 0.2087 0.0087 0.0485 
0.50 0.3333 0.3432 0.0099 0.0365 
1.00 0.5000 0.5019 0.0019 0.0640 
2.00 0.6667 0.6641 -0.0026 0.0401 
3.00 0.7500 0.7457 -0.0043 0.0337 

(15,15) 

0.25 0.2000 0.2044 0.0044 0.0232 

0.50 0.3333 0.3357 0.0024 0.0204 
1.00 0.5000 0.4977 -0.0023 0.0373 
2.00 0.6667 0.6603 -0.0064 0.0218 
3.00 0.7500 0.7427 -0.0073 0.0183 

(25,25) 

0.25 0.2000 0.2063 0.0063 0.0176 
0.50 0.3333 0.3403 0.0073 0.0148 

1.00 0.5000 0.5001 0.0001 0.0246 
2.00 0.6667 0.6600 -0.0070 0.0148 
3.00 0.7500 0.7427 -0.0073 0.0056 

(25,50) 

0.25 0.2000 0.2033 0.0033 0.0119 
0.50 0.3333 0.3345 0.0015 0.0098 

1.00 0.5000 0.5035 0.0035 0.0091 
2.00 0.6667 0.6664 -0.0003 0.0056 
3.00 0.7500 0.7456 -0.0044 0.0042 

(50,50) 

0.25 0.2000 0.2049 0.0049 0.0084 
0.50 0.3333 0.3350 0.0020 0.0077 
1.00 0.5000 0.4996 -0.0004 0.0063 

2.00 0.6667 0.6647 -0.0023 0.0035 
3.00 0.7500 0.7476 -0.0024 0.0028 

 

 

Table 2: Exact and asymptotic confidence intervals of R based on MLEs and at significance level 0.05 and 

scale parameter is known (λ=1) 

(n,m) R EXCI  
ASCI  

(10,10) 

0.2000 (0.1113, 0.3610) (0.1317, 0.2885) 

0.3333 (0.1960, 0.5237) (0.2666, 0.4156) 
0.5000 (0.3525, 0.6803) (0.4279, 0.5730) 
0.6667 (0.4774, 0.8047) (0.5952, 0.7246) 
0.7500 (0.5739, 0.8587) (0.6822, 0.7998) 

(10,15) 

0.2000 (0.1201, 0.3497) (0.1401, 0.2773) 
0.3333 (0.2129, 0.5159) (0.2824, 0.4039) 

0.5000 (0.3428, 0.6726) (0.4451, 0.5587) 
0.6667 (0.5058, 0.8013) (0.6131, 0.7151) 
0.7500 (0.6029, 0.8567) (0.7026, 0.7888) 

(15,15) 

0.2000 (0.1225, 0.3211) (0.1456, 0.2632) 
0.3333 (0.2154, 0.4819) (0.2808, 0.3906) 
0.5000 (0.3499, 0.6459) (0.4487, 0.5467) 

0.6667 (0.5136, 0.7816) (0.6172, 0.7034) 
0.7500 (0.6106, 0.8416) (0.7035, 0.7819) 
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Table 2 cont.: Exact and asymptotic confidence intervals of R based on MLEs and at 

significance level 0.05 and scale parameter is known (λ=1) 

(n,m) R EXCI
 ASCI  

(25,25) 

0.2000 (0.1398, 0.2937) (0.1534, 0.2592) 
0.3333 (0.2439, 0.4521) (0.2972, 0.3834) 

0.5000 (0.3848, 0.6154) (0.4589, 0.5413) 
0.6667 (0.5483, 0.7564) (0.6228, 0.6972) 
0.7500 (0.6434, 0.8220) (0.7133, 0.7721) 

(25,50) 

0.2000 (0.1439, 0.2835) (0.1641, 0.2425) 
0.3333 (0.2487, 0.4380) (0.3012, 0.3678) 
0.5000 (0.4004, 0.6113) (0.4741, 0.5329) 

0.6667 (0.5682, 0.7560) (0.6409, 0.6919) 
0.7500 (0.6587, 0.8197) (0.7241, 0.7672) 

(50,50) 

0.2000 (0.1562, 0.2640) (0.1755, 0.2343) 
0.3333 (0.2658, 0.4122) (0.3134, 0.3566) 
0.5000 (0.4177, 0.5815) (0.4819, 0.5172) 
0.6667 (0.5875, 0.7340) (0.6490, 0.6804) 

0.7500 (0.6803, 0.8048) (0.7378, 0.7574) 
 

Table 3: Bayesian estimation of R when the population value of α is one and the scale parameter is known 

(λ=1) 

(n,m) β  R 

Non-informative priors 
0001.02121 ==== bbaa  

Informative priors 

321 == aa , 221 ==bb  

Bias (MSE) Bias (MSE) 

(10,10) 

0.25 0.2000 0.0143 0.0148 0.0111 0.0130 
0.50 0.3333 0.0113 0.0144 0.0098 0.0104 

1.00 0.5000 0.0075 0.0113 0.0090 0.0091 
2.00 0.6667 0.0034 0.0081 0.0082 0.0085 
3.00 0.7500 0.0041 0.0075 0.0062 0.0077 

(10,15) 

0.25 0.2000 0.0073 0.0096 0.0094 0.0109 
0.50 0.3333 0.0084 0.0122 0.0089 0.0084 
1.00 0.5000 0.0061 0.0081 0.0075 0.0078 

2.00 0.6667 0.0025 0.0060 0.0051 0.0072 
3.00 0.7500 0.0021 0.0047 0.0046 0.0062 

(15,15) 

0.25 0.2000 0.0056 0.0072 0.0084 0.0096 
0.50 0.3333 0.0061 0.0067 0.0071 0.0077 
1.00 0.5000 0.0038 0.0053 0.0062 0.0074 
2.00 0.6667 0.0022 0.0041 0.0045 0.0064 

3.00 0.7500 0.0017 0.0030 0.0038 0.0051 

(25,25) 

0.25 0.2000 0.0044 0.0050 0.0069 0.0082 
0.50 0.3333 0.0058 0.0036 0.0053 0.0074 
1.00 0.5000 0.0030 0.0030 0.0047 0.0068 
2.00 0.6667 0.0021 0.0019 0.0038 0.0049 
3.00 0.7500 0.0019 0.0016 0.0031 0.0052 

(25,50) 

0.25 0.2000 0.0020 0.0035 0.0049 0.0073 
0.50 0.3333 0.0040 0.0028 0.0044 0.0057 
1.00 0.5000 0.0021 0.0019 0.0026 0.0041 
2.00 0.6667 0.0010 0.0016 0.0016 0.0036 
3.00 0.7500 0.0007 0.0011 0.0009 0.0030 

(50,50) 

0.25 0.2000 0.0021 0.0024 0.0041 0.0056 

0.50 0.3333 0.0016 0.0016 0.0033 0.0042 
1.00 0.5000 0.0012 0.0012 0.0018 0.0035 
2.00 0.6667 0.0007 0.0008 0.0011 0.0017 
3.00 0.7500 0.0007 0.0007 0.0007 0.0020 
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7. Conclusion 
 In this paper, the problem of estimating Pr(Y <X) for the generalized inverted 

exponential distribution has been addressed. The asymptotic distribution of the 

maximum likelihood estimator has been used to construct confidence intervals which 

function well even for small sample sizes. It has been observed that the Bayes 

estimators behave quite similarly to the MLEs. Moreover, the MSE of the estimates of 

R decreases as the parameter β  increases for fixed (m,n). Further, when (m,n), 

increases the MSEs of all the estimators decreases rapidly. The performance of the 

Bayes estimators is also quite well and the MSEs of the Bayes estimators are smaller 

than the MSEs of MLEs. Finally, the average lengths of all intervals decrease as (m,n) 

increases. 
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