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Abstract  
 This paper deals with the reliability analysis of a system having four components 

arranged in series. Subsystems A, B, C have single unit whereas subsystem D has three units 

where one unit is active and the other two are cold standby arranged in parallel. System can 

completely fail either due to the failure of subsystems A, B and C or due the failure of all units of 

subsystem D. All failure rates are constant and all repair rates follow the general time 

distribution. The analysis is carried out using the supplementary variable technique and Laplace 

transformation for evaluating the reliability measures. 

 

Key Words: System Availability, System Reliability, Sensitivity Analysis, Cost Analysis, 

Cold Standby. 
 

1. Introduction 
System reliability occupies increasingly more important issues in power plants, 

manufacturing systems, industrial systems, engineering systems, standby systems, etc. 

Maintaining a high or required level of reliability is often an essential requirement of 

the systems. The study of repairable systems is an important component in reliability 

analysis. Also repairman is one of the essential parts of repairable systems, and can 

affect the economy of the systems, directly or indirectly. The primary goal of reliability 

engineering is to improve the performance of a system. In the initial design activity, the 

redundancy allocation is a direct way of enhancing the reliability of any system. There 

are two types of redundancy strategies, active and standby. If all the redundant 

components operate simultaneously from time zero, even though the system needs only 

one at any given time, such an arrangement is called active redundancy. On the other 

side there are three variants of standby redundancy such as cold, warm and hot. In the 

cold standby redundancy, the component does not fail before it operates. In warm 

standby redundancy, the component is more prone to failure before operation than the 

cold standby components. In the hot standby redundancy, the failure pattern of 

component does not depend whether the component is inactive or in operation. The 

mathematical models for hot standby and active standby arrangements are the same. 

Lots of work has been done by many researchers in this area. Nakagawa, Osaki (1975) 

and Okumato (1997) have studied the behavior of a two unit redundant system under 

the assumption that whenever the operating unit fails, it goes to repair. Gopalan and 

Naidu (1981) investigated the stochastic behavior of a two unit repairable system under 

different inspection strategies. Singh and Srinivasu (1987) have analyzed a two unit 

cold standby system with the concept of preparation time for repair. Gupta and Bansal 

(1990) have analyzed the three unit standby system. Gupta and Sharma (1993) have 
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analyzed a two unit standby system with two types of repairs. Recently, Ram et al. 

(2013) have analyzed a standby system with waiting for repair strategy.  

 

This traditional system reliability measures including reliability, availability, 

mean time to failure and cost analysis. These are effective and efficient tool for 

probabilistic risk assessment in system design, operation and maintenance. Some earlier 

researchers including Gupta and Sharma (1993), Philip and Deans (1997), Bhardwaj 

and Malik (2011),  El-Damcese and Temraz (2012) developed different mathematical 

models with identical unit systems, common cause failure and they have computed the 

reliability measures such as availability, reliability, mean time to failure (MTTF), mean 

time between failure (MTBF) and profit function of complex engineering system with 

different type of failures [Guo and Yang (2008)] and one type of repair. Furthermore, 

Yeh (2011) studied reliability measures with different assumptions for repairable and 

non-repairable systems. Ram and Singh (2009, 2012) have analyzed the reliability 

characteristics by using the concept of copula.  

 

The present paper deliberates the concept of a repairable system, which can 

fail completely due to failure of its subsystems and failure of its last component (D) and 

both the cold standby units connected in parallel with that component. 

 

2. Mathematical Model Details 

 

2.1 Nomenclature 

 

2.2 Model Description and Assumptions 
 In the present paper, we have analyzed a repairable system which consists of 

four sub-systems namely A, B, C and D in series. Subsystems A, B, C are single unit 

arranged in series. Failure of any one of these causes the complete failure of the system. 

s  Laplace transform variable 

t  Time scale 

iλ  Failure rates of the system, where i=1,2,3,4 

jµ  Repair rates of the system from failed state to good state, 

where j=1,2,3,4 
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Transition state probabilities of states S4, S5, S6, S7, S8, S9, 

S10, S11, S12 respectively. 

Ep(t) Expected profit during the interval (0, t). 

K1, K2 Revenue and service cost per unit time respectively. 
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Subsystem D consists of three units. One unit of subsystem D is active and other two 

are in cold standby mode. Complete failure of the system will occur due to subsystem D 

when one active unit and two standby units of subsystem D failed at a time. We have 

assumed that the system can be repaired in both the cases. For the failures, the repairs 

are done absolutely, so after the repair every subsystem is as good as new. The state 

transition diagram of the proposed model has been shown in Fig. 1. Failure rates are 

assumed to be constant in general, while the repairs pursue general distribution. With 

the help of Supplementary variable technique and Laplace transformation, following 

reliability measures of the system have been evaluated: 

(i) Transition state probabilities of the system. 

(ii) A series of measures such as availability, reliability, MTTF, sensitivity analysis and 

cost effectiveness of the system. 

 

 Some numerical examples are also presented to illustrate the model 

mathematically. The state specification of the system is given in Table below: 

 

State State description 
S0 The system is in good working condition. 

S1 The system is in failed state due to failure of subsystem A. 

S2 The system is in failed state due to failure of subsystem B. 

S3 The system is in failed state due to failure of subsystem C. 

S4 The system is in good state due to failure of one of the unit of D. 

S5 The system is in failed state due to failure of subsystem A and active unit of 

subsystem D.  
S6 The system is in failed state due to failure of subsystem B and active unit of 

subsystem D. 

S7 The system is in failed state due to failure of subsystem C and active unit of 

subsystem D. 

S8 The system is in good state due to failure of one of the standby unit of 

subsystem D. 

S9 The system is in good state due to failure of subsystem A and one of the 

standby units of subsystem D.   

S10 The system is in failed state due to failure of subsystem B and one of the 

standby units of subsystem D. 

S11 The system is in failed state due to failure of subsystem C and one of the 

standby units of subsystem D. 

S12 The system is in failed state due to complete failure of subsystem D. 

 

The following assumptions are associated with the model: 

(i) Initially the system is in good state. 

(ii) The system has two states namely good and failed. 

(iii) The system has completely failed after the failure of subsystems A, B and C and failure 

of all the three units of subsystem D. 

(iv) All failure and repair rates are constant. 

(v) The system can be repaired, when it is in completely failed mode. 

(vi) The repaired system works like a new one. 
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2.3 State Transition Diagram of Model 

 
 

Fig. 1: State Transition Diagram 
 

2.4 Formulation and Solution of the Mathematical Model 
 By the probability of the considerations and continuity arguments, we can 

obtain the following set of difference differential equations governing the present 

mathematical model 
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Initial condition 
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 at t=0 and all other state probabilities are zero initially                       … (14) 

Taking Laplace transformation of equations (1-13), we get 
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Solving (15-27), one may get  
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The Laplace transformations of the probabilities that the system is in the up (i. 

e.  good state) and failed state at any time are as follows 
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3. Particular Cases 
 

3.1 Availability Analysis 
Availability is the probability that the system is operating at a specified time t. 

It is always associated with the concept of maintainability. Availability depends upon 

both failure and repair rates. Taking the values of different parameters as

1,40.0,30.0,20.0,10.0 43214321 ======== µµµµλλλλ  and putting all 

these values in (41) and then taking the inverse Laplace transform, we get 
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Now, varying time unit t from 0 to 10 in (43), we obtain Table 1 and 

correspondingly Fig. 2 representing the behavior of availability of the system with 

respect to time. 

 

Time (t) Pup(t) 

0 1.00000 

1 0.69827 

2 0.63402 

3 0.61916 

4 0.61484 

5 0.61300 

6 0.61193 

7 0.61120 

8 0.61068 

9 0.61031 

10 0.61004 

Table 1: Availability as function of time 

0 2 4 6 8 10

0.6

0.7

0.8

0.9
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P
u
p
(t

)

Time (t)

 
Fig. 2: Availability as function of time 

 

3.2 Reliability Analysis 

Reliability is defined as the probability that a device will perform its intended 

function during a specified period of time under stated conditions. It is always a 

function of time. It is also depends on environmental conditions which may or may not 
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vary with time. Taking all repairs equal to zero in (41) and after taking inverse Laplace 

transform, one may get 
( )

2)+t2+t(e(1/2))(
4

22
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- 4321 λλλλλλ t
tR

+++×=
                                                    

... (44) 

 

Let us fix the failure rates as 40.0,30.0,20.0,10.0 4321 ==== λλλλ . By 

putting all these values in (44) and varying time unit t from 0 to 10, one can obtain 

Table 2 and Fig. 3, which represents the reliability variation of the system. 

 

Time (t) Reliability R(t) 

0 1.00000 

1 0.54446 

2 0.28691 

3 0.14537 

4 0.07106 

5 0.03368 

6 0.01556 

7 0.00703 

8 0.00312 

9 0.00136 

10 0.00059 

Table 2: Reliability as function of time 

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

R
(t

)

Time (t)

 
Fig. 3: Reliability as function of time 

 

3.3 Mean Time to Failure (MTTF) Analysis 
Mean time to failures (MTTF) is the predicted elapsed time between inherent 

failures of a system during operation. MTTF can be calculated as the average time 
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between failures of a system. Taking all repairs to be zero in (41) as s tends to zero, one 

can obtain the MTTF as: 
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Setting 40.0,30.0,20.0,10.0 4321 ==== λλλλ  and varying 4321 ,,, λλλλ one by one 

respectively at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, one may obtain the variation of 

MTTF with respect to failure rates. 

 

Variation in 

4321 ,,, λλλλ
 

MTTF with respect to failure rates 

1λ  2λ  3λ  4λ  

0.1 1.56000 1.82441 2.18750 1.66180 

0.2 1.35987 1.56000 1.82441 1.64062 

0.3 1.20370 1.35987 1.56000 1.60493 

0.4 1.07874 1.20370 1.35987 1.56000 

0.5 0.97667 1.07874 1.20370 1.51014 

0.6 0.89185 0.97667 1.07874 1.45833 

0.7 0.82031 0.89185 0.97667 1.40646 

0.8 0.75921 0.82031 0.89185 1.35568 

0.9 0.70644 0.75921 0.82031 1.30666 

Table 3: MTTF as function of failure rates 
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Fig.4: MTTF as function of failure rates 



Reliability Analysis of a Two Unit Cold Standby …                                                                   75 

 

3.4 Expected Profit 
Cost control is critical to maintain product reliability. Clearly reliability alone will not 

guarantee product viability. Similarly arbitrary cost cutting can be detrimental to profit 

when the relating system reliabilities too low. Let the service facility be always 

available, then expected profit during the interval (0, t] is given as 

2

0

1 )()( tKdttPKtE
t

upp −= ∫                                                                                        … (46) 

Using (43) expected profit for the same set of parameters is given by 

[ 100t)(-2.254930163t)(-3.119081

1
79e0.2275845775e0.46670434-00t0.60937500)( += KtE

p

  

169t)(-.6717400533t)(-1.619714
69e0.436357476e.2538059780 +−

 

   

2

867t)(-.3345341 940.2888183593e0.57467369 tK−+−

  

 … (47)

 

Setting K1= 1 and K2= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, respectively in (47), one can get the 

Table 4. 

 

Time (t) 
Expected Profit Ep(t) 

K2= 0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 K2=0.6 

0 0 0. 0 0 0 0 

1 0.71123 0.61123 0.51123 0.41123 0.31123 0.21123 

2 1.26956 1.06956 0.86956 0.66956 0.46956 0.26956 

3 1.79451 1.49451 1.19451 0.89451 0.59451 0.29451 

4 2.31115 1.91115 1.51115 1.11115 0.71115 0.31115 

5 2.82497 2.32497 1.82497 1.32497 0.82497 0.32497 

6 3.33740 2.73740 2.13740 1.53740 0.93740 0.33740 

7 3.84895 3.14895 2.44895 1.74895 1.04895 0.34895 

8 4.35988 3.55988 2.75988 1.95988 1.15988 0.35988 

9 4.87037 3.97037 3.07037 2.17037 1.27037 0.37037 

Table 4: Expected profit as function of time 
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Fig. 5: Expected profit as function of time 

 

3.5 Sensitivity Analysis 
 

3.5.1 Sensitivity of Reliability 
 Sensitivity analysis is a technique to predict the conclusion of a decision if a 

state of affairs turns out to be different compared to the key prediction. Sensitivity 

analysis is very useful when attempting to determine the impact the actual outcome of a 

fastidious variable will have if it differs from what was previously assumed. Sensitivity 

analysis is used to determine how sensitive a model is to changes in the value of the 

parameters of the model and to change in the structure of the model. We first perform 

the sensitivity analysis for changes in reliability resulting from changes in the system 

parameters λ1, λ2, λ3 and λ4 by differentiating (44) with respect to failure rates

4321 ,,, λλλλ respectively and by putting 40.0,30.0,20.0,10.0 4321 ==== λλλλ we get 

the numerical values of 
4321

)(
,

)(
,

)(
,

)(

λλλλ ∂
∂

∂
∂

∂
∂

∂
∂ tRtRtRtR

.
 

 Now taking t=0 to 10 units of time in the partial derivatives of reliability with 

respect to different failure rates, we have obtained the Table 5 and Fig. 6 respectively. 
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Time (t) 
1

)(

λ∂
∂ tR

 
2

)(

λ∂
∂ tR

 
3

)(

λ∂
∂ tR

 
4

)(

λ∂
∂ tR

 

0 0 0 0 0 

1 -0.54446 -0.54446 -0.54446 -0.02943 

2 -0.57382 -0.57382 -0.57382 -0.08661 

3 -0.43613 -0.43613 -0.43613 -0.10754 

4 -0.28425 -0.28425 -0.28425 -0.09377 

5 -0.16844 -0.16844 -0.16844 -0.06737 

6 -0.09339 -0.09339 -0.09339 -0.04283 

7 -0.04927 -0.04927 -0.04927 -0.02502 

8 -0.02501 -0.02501 -0.02501 -0.01374 

9 -0.01230 -0.01230 -0.01230 -0.00719 

10 -0.00590 -0.00590 -0.00590 -0.00363 

Table 5: Sensitivity of Reliability as function of time 
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Fig. 6: Sensitivity of Reliability as function of time 

 

3.5.2 Sensitivity of MTTF 

 Sensitivity analysis for changes in MTTF resulting from changes in system 

parameters i.e. system failure rates ,
1
λ ,

2
λ ,

3
λ

4
λ . By Differentiating (45) with respect 

to failure rates ,
1
λ ,

2
λ ,

3
λ

4
λ respectively and putting the values as ,10.0

1
=λ

,20.0
2
=λ ,30.0

3
=λ 40.04 =λ , we get the values of ,

1
λ∂

∂MTTF

2
λ∂

∂MTTF
,,

3
λ∂

∂MTTF
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4

,
λ∂

∂MTTF
. Varying the failure rates one by one respectively as 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9 in the partial derivatives of MTTF with respect to different failure 

rates, one can obtain the Table 6 and Fig. 7. 

 

Variation in  

4321 ,,, λλλλ  
1λ∂

∂MTTF
 

2λ∂
∂MTTF

 
3λ∂

∂MTTF
 

4λ∂
∂MTTF

 

0.1 -2.28000 -3.06355 -4.29687 -0.12494 

0.2 -1.75534 -2.28000 -3.06355 -0.29296 

0.3 -1.38888 -1.75534 -2.28000 -0.41152 

0.4 -1.12391 -1.38888 -1.75534 -0.48000 

0.5 -0.92669 -1.12391 -1.38888 -0.51226 

0.6 -0.77629 -0.92669 -1.12391 -0.52083 

0.7 -0.65917 -0.77629 -0.92669 -0.51468 

0.8 -0.56632 -0.65917 -0.77629 -0.49979 

0.9 -0.49154 -0.56632 -0.65917 -0.47999 

Table 6: Sensitivity of MTTF as function of failure rates 
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Fig. 7: Sensitivity of MTTF as function of failure rates 

 

4. Conclusion 
 In this paper, we have evaluated various reliability indices such as availability, 

reliability, MTTF, cost function, sensitivity analysis, for the considered system by 

employing Markov Process. From the results and analysis of the designed system, one 

can conclude the following: 
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(i) Analysis of Table 1 gives us the idea of the availability of the stated system with 

respect to time t. Critical examination of corresponding Fig. 2 yields that the values 

of the availability decreases approximately in an even manner with the increment 

in time. 

(ii) Table 2 shows the trends of reliability of the designed system with respect to the 

time when all the failure and repair rates have some fixed values. From the graph 

(Fig. 3), we concluded that the reliability of the system decreases more sharply 

with the passage of time. Reliability may be improved by clarity of expression, 

lengthening the measure, and other informal means.  

(iii) Table 3 shows that MTTF of the above stated system with respect to various failure 

rates. A critical examination of Fig. 4 shows that the MTTF decreases with 

increment in failure rates 4321 ,,, λλλλ . 

(iv) Table 4 and corresponding Fig. 5 represent the cost function vs. time. Here, one 

can easily observe that increasing service cost leads decrement into expected profit. 

The study shows that minimum service cost leads to maximum expected profit on 

the other hand maximum service cost leads to minimum profit. From this one may 

conclude that by controlling service cost, high profit could be attained. 

(v) Furthermore, we evaluate sensitivity of reliability and MTTF of the system. The 

sensitivity analysis of the described system reliability with respect to 

4321 ,,, λλλλ  are shown in Table 5 and Fig.6. It reveals that sensitivity increases 

as time passes. It is clear from the graph that system reliability is more sensitive 

with respect to 4λ . Finally, Table 6 and Fig. 7 show the sensitivity of MTTF with 

respect to 4321 ,,, λλλλ which show that it increases with increment in failure rates

4321 ,,, λλλλ . Critical observation of the graph point out that MTTF of the system 

is more sensitive with respect to 4λ . From this we can conclude that the system can 

be made less sensitive by controlling its failure rates.  

 

From the hypothetical point of view, the research of this paper is based mainly 

on system reliability theory, and stochastic processes. The results achieved in this paper 

are valuable in a study of improving the reliability of the systems. Additionally, they 

can be extensively used in many engineering disciplines. 
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