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Abstract 
 This paper concerns with estimation of parameter of Poisson type exponential class 

model of software evaluation. The Bayes estimators of parameters i. e. number of failures β0 and 

failure rate β1 have been obtained using non – informative and gamma prior respectively under 

squared error loss function. The obtained estimators have been compared with corresponding 

maximum likelihood estimators on the basis of their simulated risks (average loss). 
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1. Introduction:  
 A software reliability model has the form of a random process, which 

describes the behavior of failure with time and it is generally specified as a function of 

time. The time involved in the characterization of model is a cumulative time and the 

origin is the start of the system. 

 

 The first study of software reliability has been done by Hudson (1967) and he 

has viewed software development as a birth and death process. Jelinski and Moranda 

(1975) have proposed a model which assumes that hazard rate for failure is piecewise 

constant and proportional to the number of faults remaining. Further, Moranda has 

obtained maximum likelihood estimators for total number of faults existing in the 

software [See also Moranda (1975), Shooman (1972) and Shooman and Natrajan 

(1976)]. 

 

 The Poisson process provides a good approximation to the occurrence of   

many real life events. Under Poisson type model, software failure process is studied 

using non homogeneous Poisson Process [NHPP] with failure intensity λ (t). Let M (t) 

denote failure experienced by time‘t’ & M (t) increases by 1 whenever a failure occurs. 

 

                                                     Pm(t) = P[ M (t) = m] 

 

                                                  Pm(t) = 
!

)]([exp])([

m

tt m µµ −
                             ...(1.1) 
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Where,                             ∫=
t

dxxt
0

)()( λµ                                         ...(1.2)     

and λ (x) is a  failure intensity function .The NHPP { M(t);t≥0}  has mean and   

variance equal to mean  value function  µ(t) of  the process. 

 

 Musa and Okumoto (1983) described a classification scheme for software 

reliability models. The model is nominated according to the distribution of failures 

experienced by time‘t’ as [ type ] and functional form of failure intensity as [ class ]. In 

this paper we have considered Poisson type exponential class model. [ For details see 

Musa (1975), Schneidewind (1975), Moranda(1975), Goel & Okumoto(1979), Musa et 

al (1987), Malviya et al (1992), Musa(2004) and Pham(2006) ]. Ikemoto and Dohi has 

proposed exponential type software reliability model using regression technique. 

 

Poisson type –exponential class model (PTEC) 
 The exponential distribution is the first model in the field of reliability and life 

testing for which statistical methods have been developed. The initial work related to 

this model has been done by Sukhatme (1937) & later Epstein (1958).Let us assume 

that time to failure of an individual faults has an exponential distribution and per fault 

hazard rate is constant. The mean value function for this model is, 

                                    ])(exp1[)( 10 tt ββµ −−=                                              ... (1.3) 

and failure intensity function is, 

                                  0,;)(exp)( 10110 >−= βββββλ tt        ... (1.4) 

Where, β0 and β1 define total number of failures and failure rate respectively [see Musa 

et al (1987)]. 

Consider te is the total testing time and me failures are experienced at time         

t1, t2, t3...
emt . Since the conditional density function of Ti [time interval between failure 

Ti = ti –ti-1] depends only on previous failure time Ti – 1, and hence the likelihood 

function takes the form, 

                             L (β0 , β1)  = )]([exp
1

)( et
em

i
it µλ −







∏
=

                        ... (1.5)     

[For more details refer Musa et al (1987)]. 

Now, substituting λ(ti) and µ ( te ) from equation (1.3) and (1.4) respectively the  

likelihood function becomes  

  L (β0 , β1)  = )}]
1

exp(1{
0

[exp1
10 et

T
eemem

ββ
β

ββ −−−
−

                  ... (1.6) 

Where,                                            T = ∑
=

em

i it
1

 

The maximum likelihood estimators of β0   and β1 can be obtained and are the solution 

of given equations (1.7) and (1.8)  

                                                   

)
1

ˆ(exp10

ˆ

em
L

em
L β

β
−−

=                                          ...(1.7) 
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...(1.8) 

 

Need of Bayes approach 

Bayesian analysis provides better quality of inference, it reduces the sample 

size and thus time. Moreover, under natural identification and measurability conditions, 

Bayes estimators are consistent for all most all parameter values and very often enjoy 

small sample properties too. Perhaps, due to these reasons, this method is currently 

getting popularity in virtually all areas of statistical applications. [See for more details, 

Berger (1985)]. 

 

This approach is much more direct, that is deductive than classical approach 

which uses inductive reasoning. In fact, the use of past experience makes Bayes 

inference more informative particularly in those situations where prior distribution 

accurately reflects the verification of the parameter.  In the case of Poisson type 

exponential class model, if prior information about β0 & β1 are available certainly then 

obtained Bayes estimator will out perform over MLE’s. Thus, in view of this, suitable 

priors are selected and the Bayes estimators are proposed.  

 

Here in this paper for the considered PTEC model, the prior and posterior 

distribution has been established in the next section. The Bayes estimator of the 

parameters namely, total number of failures and failure rate has been obtained in 

section 3. To study the performance of the proposed Bayes estimator, these have been 

compared with corresponding MLE’s in section 4, and the last section provides the 

finding in the form of conclusion.    

 

2. The Prior and Posterior distributions: 
 

2.1 Prior distribution  
 Apriori information in the form of a prior distribution plays an important role 

in Bayesian analysis. The Bayesian approach, in addition to sample data, utilizes 

information about the parameter depending upon past experience in the form of prior. 

Generally, it is difficult to choose a prior which may be appropriate in all 

circumstances. But , a general class of priors called non-informative priors used in the 

cases when a little or no information about the parameter is known apriori.      [See 

Martz and Waller(1982) Box and Tiao (1973)  Berger(1985)].Suppose , in the present 

study, the information about the number of failures in the software is not available then, 

the general  class of non – informative prior for β0  becomes more suitable and it is,  

                               g1 (β0 ) = 
c

0

1

β
 ;        β0  > 0                                        ...(2.1)  

Where, c is constant and greater than zero. 

 In most of the testing problems one may have sufficient information about the 

scale parameter. These may come from previous data personal experience or from other 

relevant sources. In such situation, one would like to use an informative prior. 

However, one may restrict to the class of possible prior distribution those allow easy 

computations. In statistical literature a number of informative priors have been 



94        Journal of Reliability and Statistical Studies, Dec. 2013, Vol. 6(2) 

 

suggested by authors such as Zellner(1982), Leamer (1978) a conjugate prior by Raiffa 

Schlaffer (1961) etc. Perhaps the most widely used informative prior is conjugate prior. 

It may be noted that a prior distribution is said to be a conjugate prior if posterior 

distribution and prior distribution both belong to same family of distributions. 

 

 Authors such as Apostolakis and Mosleh (1979), Grohowski et. al. (1976) and 

other have found Gamma distribution to be sufficiently versatile for particle reliability 

applications in life testing. Here, an attempt is made to apply the same for the 

estimation of  β1 of software reliability. Such Gamma prior distribution for β1 is, 

   2g ( β1) =  
1

1
1 −−

Γ
ba

b

e
b

a
ββ

        ; a , b > 0 ,   β1 > 0                 ... (2.2)                                                     

 

Where, ‘a’ and ‘b’ are the parameters of prior distribution. Therefore joint apriori for β0     

and β1 will be 

                        g(β0 , β1 ) =  
c

0

1

β
1

1
1 −−

Γ
ba

b

e
b

a
ββ

   ; a , b,c > 0                   ... (2.3) 

                                                                                      0 < β0 < ∞ , 0 < β1<  ∞     

                                                    

2.2 The Posterior Distribution  
  Combining the likelihood function (1.6) with joint prior distribution (2.3), 

using Bayes theorem the joint posterior distribution of  β0  and β1  on given t is, 

])
1

(exp1(
0
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                                                                                                                               ...(2.4)            

                                               me ≤  β0 < ∞             

                                                                 0 < β1<  ∞  

where d = me + b, f = me - c and  

                                                                       

                                  m1 (t)  = ∑
∞
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is convergent and finite. 

Now from joint posterior (2.4) of β0  and β1 , the marginal posterior distribution of β0  

can be obtained by integrating (2.4) over the whole range of β1 i. e. 0 to ∞ and we get, 

 1])(
1

[)/
0

( −= tmtβπ !)1( −d ∑
∞

=0i d
eitaTi

e
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][!

0
0

++

−+ β
β     ;    me < β0 < ∞               

                                                ...(2.5) 



Estimation of Parameters of Poisson Type Exponential …                                                          95 

 

 

Similarly, the marginal posterior distribution of β1, obtained from the joint posterior 

distribution (2.4) by integrating out β0  is, 

 

    =)/( 1 tβπ )(1

1

1

1
1])([

Tad etm
+−−− ββ

1

)),1((
+

+Γ
f

e

W

Wmf
 ;     0 < β1<  ∞ 

 

...(2.6) 

Where,  

                                   W = ])(exp1[ 1 etβ−−  

 

3. Bayes Estimators 
 The Bayes estimators of β0  and β1  can be obtained with the help of posterior 

distributions given by equation (2.5) and (2.6) after selecting the appropriate loss 

function. Now consider in both the cases, the loss function is squared error loss the 

Bayes estimator becomes posterior mean. The consideration of squared error loss 

function can be justified by its simplicity thus 

                    ∑
∞

=

− >
++
++Γ

−=
0

1

10 1;
][!

),2(
)!1()]([

~

i
d

e

e d
itaTi

mif
dtmβ   ... (3.1) 

 

Similarly, the Byes estimation of β1 under the similar loss function is,  

                         
1)](

1
[

1
~ −= tmβ ∑

∞

= 0i !i
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e

e

itaT
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                 ... (3.2) 

 

4. Comparison 

 The proposed Bayes estimators 0

~
β    and 1

~
β   have been compared with the 

corresponding maximum likelihood estimators 1β̂   and 0β̂   in this section. This 

comparison is based on the risk efficiencies. The  risk  efficiencies of 0

~
β   i.e.  RE'

1
 and 

of 1

~
β   i.e. RE'

2
 have been calculated on the basis of Monte-Carlo simulation technique 

generating 1000 random samples for   te = 125 ,   0β  = 20 (5) 40 ,   
1β  = 0.007 (0.001) 

0.014 , a = 0.5 , b = 0.5,2,5  c = 0.25, 1.5, 2.25, which are summarized in table 1 to 9. 

 

 The tables 1, 2 and 3 give the risk efficiencies of 0

~
β  and 1

~
β  for the different 

values of 0β  ( = 20 (5) 40) ,  β
1
 (= 0.007 (0.001) 0.014) ,  a = 0.5 , b = 0.5, 2, 5 , te = 

125 and c = 0.25.   We can see from these tables that the risk efficiency of proposed 

estimator of 0β  is more than1 for all the choices of 0β  and
1β .  The risk efficiency 

first increases then decreases after attaining maxima for the variation of
1β .  This is true 

for all the choices of 0β .  The maximum risk efficiency is, when 
1β  is approximately 
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0.01 for all the values of 0β .  As 0β  increases, the risk efficiency RE'1 decreases for 

1β  < 0.01 and increases for 
1β ≥ 0.01.  This means the risk efficiency RE'

1
 will be 

maximum if  0β  and 
1β  both are small.  The risk efficiency RE'

2
 of 1

~
β  increases as 

0β  and 
1β  increase.  Here, it can be noted that the performance of the proposed 

estimator 1

~
β  is nearly same as MLE.  The performance of 1

~
β  can further be improved 

if the true values of 0β  and 
1β  are very large i.e. number of failures in a software is 

sufficiently large and failure rate is high. 

 

 From the table 1, 2 and 3, we see that as the value of ‘b’ increases the 

performance of both the estimators decline.  Therefore, for a small value of ‘b’ the 

proposed estimator 0

~
β  and 1

~
β  will perform better than MLE.  The variation of ‘a’ has 

also been considered and seen by calculating the risk efficiencies  for different choices 

but it has been observed that the variation of ‘a’ does not affect much the performance 

of both the proposed estimators, therefore, such  tables are not presented here. 

 

 The tables 4, 5 and 6 gives the risk efficiencies of 0

~
β  and 1

~
β  for the different 

values of 0β  (= 20(5) 40), 
1β  = (0.007 (0.001) 0.014) , a = 0.5, b = 0.5, 2, 5 ,  te = 125 

and c = 1.5. Similar trend is observed as in table 1,2 and 3.  For the choices of 0β  and 

1β  the risk efficiencies RE'
1
 of proposed estimator 0

~
β  is more than 1.  The risk 

efficiencies first increases, attains maxima for the variation of 
1β  , and then decreases. 

Similar trend is observed for other choices of 0β .  The maximum risk efficiency is, 

when 
1β  is near to 0.01 for all the values of 0β .  As 0β  increases, the risk efficiency 

RE'
1 

decreases for 
1β  < 0.01 and increases for 

1β ≥   0.01. 

 

 The risk efficiency RE'
2
 of 1

~
β  increases as 0β  and 

1β  increase, here it can be 

noted that the performance of proposed estimator 1

~
β  (for b = 0.5) is nearly same as 

MLE.  The estimator 1

~
β  is as good as MLE if the values of 0β  and 

1β  are very large.   

We can see from table 5 and 6 that as ‘b’ increases  

(b = 2, 5), MLE is better than proposed estimator 1

~
β .  Hence, the use of proposed 

estimator 1

~
β  is suggested for large values of 0β , 

1β  and small ‘b’. 

 

The table 7 , 8 and 9 present  the risk efficiencies of 0

~
β  and 1

~
β   for the 

different values of 0β  (= 20 (5) 40), 
1β  (= 0.007 (0.001) 0.014),  a = 0.5 , and b = 0.5, 

2.0, 5.0 of the proposed estimator of 0β  is more than 1 for all choices of 0β and 
1β .  
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The risk efficiency first increases then decreases after attaining a maxima for the 

variation of 
1β .  For all the choices of 0β  , the trend is same.  As 0β  increases, the 

risk efficiency RE'
1
 decreases for 

1β  < 0.01 and increases for 
1β  ≥  0.01. 

 

 We can see that as 0β  and 
1β  increase, the risk efficiency RE'2  of 1

~
β  

increases.  For b = 0.5, it can be noted that the performance of proposed estimator 1

~
β  is 

nearly same as MLE, also it can be improved further if  0β  and 
1β  are very large.  

From the table 8 and 9, we see that as the values of ‘b’ increases the performance of 

both the estimators decline.  Therefore, for small values of ‘b’, 0

~
β   and 1

~
β  performs 

better than MLE. 

 

 The tables 1 , 4 and 7 give the risk efficiencies for  0

~
β  and 1

~
β  for different 

values of c = 0.25, 1.5, 2.25 , a = 0.5 , b = 0.5 , 0β  (= 20 (5) 40) and   

1

~
β  = (0.007 (0.001) 0.014). As ‘c’ increases the risk efficiency  RE'1 decreases, that is, 

for small ‘c’, 0

~
β  performs much better than M.L.E.  Similar trend has been observed 

for a = 0.5, b = 2.0 and 5.0.  The variation in ‘c’ does not affect risk efficiency RE'
2
, 

that is, the performance of 1

~
β  is unchanged due to change in ‘c’. 

 

5.  Conclusion 

 The performances of the proposed estimators 0

~
β   and 1

~
β  in comparison with 

0Lβ̂   and 
1Lβ̂ respectively, have been discussed in the previous section.  On the basis 

of these discussions, we may conclude that the use of the proposed estimators 0

~
β  for 

total number of failures 0β  may be recommended, for small ‘c’. 

  

 For small ‘b’, and large 0β  , 1β , the proposed estimator 1

~
β  of failure rate 1β  

performs as good as MLE. Hence, when number of failures is 

sufficiently large, failure rate is high and ‘b’ is small , the use of proposed estimators 

can be recommended. 
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1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 2.1139 2.2047 2.1778 2.1141 1.9336 1.6503 1.4335 1.3391 

 RE'2 0.9332 0.9357 0.9398 0.9422 0.9454 0.9480 0.9499 0.9500 

25 RE'
1
 1.9331 2.0443 2.0947 2.1984 2.1549 2.0214 1.7087 1.6852 

 RE'
2

 0.9451 0.9481 0.9524 0.9542 0.9545 0.9580 0.9599 0.9645 

30 RE'
1
 1.8253 1.9465 2.0175 2.1978 2.1658 2.0762 1.8948 1.7343 

 RE'
2

 0.9542 0.9577 0.9605 0.9626 0.9846 0.9665 0.9678 0.9697 

35 RE'
1
 1.7542 1.9130 2.0194 2.0861 2.1554 2.1807 2.0798 1.9884 

 RE'
2

 0.9611 0.9648 0.9671 0.9693 0.9706 0.9722 0.9732 0.9769 

40 RE'
1
 1.6891 1.8189 1.9344 2.0642 2.1500 2.1404 2.1100 2.1039 

 RE'
2

 0.9668 0.9697 0.9723 0.9738 0.9753 0.9766 0.9775 0.9803 

Table 1: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 0.5  and  c = 0.25 

 

 

 

        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 2.0216 2.1409 2.1527 2.0811 1.9267 1.5652 1.3355 1.3011 

 RE'
2

 0.7324 0.7509 0.7599 0.7725 0.7805 0.7922 0.7980 0.7998 

25 RE'
1
 1.9275 2.0413 2.1212 2.1178 2.0749 1.9332 1.6693 1.5683 

 RE'
2

 0.7795 0.7945 0.8022 0.8135 0.8205 0.8258 0.8321 0.8366 

30 RE'
1
 1.8082 1.9471 2.1021 2.2140 2.1036 2.0618 1.8640 1.7509 

 RE'
2

 0.8126 0.8240 0.8354 0.8412 0.8486 0.8532 0.8578 0.8611 

35 RE'
1
 1.7445 1.8946 2.0033 2.1147 2.1658 2.1514 2.0484 1.8767 

 RE'
2

 0.8363 0.8485 0.8570 0.8637 0.8684 0.8732 0.8766 0.8834 

40 RE'
1
 1.6965 1.8109 1.9280 2.0952 2.1791 2.1943 2.0620 1.9189 

 RE'
2

 0.8562 0.8653 0.8737 0.8804 0.8844 0.8848 0.8918 0.8999 

Table  2: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te  =125,  a = 0.5, b = 2  and  c = 0.25 
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        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 2.0095 2.0847 2.1372 2.0314 1.9151 1.6383 1.5380 1.4899 

 RE'
2

 0.4857 0.5117 0.5287 0.5447 0.5580 0.5714 0.5940 0.6120 

25 RE'
1
 1.9253 2.0502 2.1343 2.1034 2.0681 1.9203 1.6483 1.5136 

 RE'
2

 0.5577 0.5768 0.5977 0.6061 0.6210 0.6301 0.6548 0.6698 

30 RE'
1
 1.8210 1.9741 2.0541 2.1614 2.1498 2.1460 2.1220 2.0081 

 RE'
2

 0.6097 0.6322 0.6433 0.6463 0.6562 0.6760 0.6890 0.6989 

35 RE'
1
 1.7408 1.8889 2.0282 2.1621 2.1533 2.1471 2.1366 2.0117 

 RE'
2

 0.6493 0.6683 0.6845 0.6976 0.7054 0.7153 0.7211 0.7338 

40 RE'
1
 1.6893 1.8117 1.9287 2.0469 2.1428 2.1485 2.1405 2.1229 

 RE'
2

 0.6829 0.7011 0.7167 0.7270 0.7375 0.7448 0.7585 0.7689 

Table  3: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 5.0  and  c = 0.25 

 

 

 

        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE1 1.8178 1.8675 1.9093 1.8679 1.7808 1.6476 1.3910 1.3521 

 RE2 0.9313 0.9361 0.9392 0.9424 0.9448 0.9476 0.9500 0.9511 

25 RE1 1.7239 1.8464 1.9614 1.9724 1.9943 1.7698 1.6850 1.5585 

 RE2 0.9446 0.9482 0.9516 0.9544 0.9562 0.9585 09599 0.9611 

30 RE1 1.6847 1.7951 1.8941 1.9951 2.0084 1.8972 1.7610 1.6621 

 RE2 0.9542 0.9578 0.9604 0.9633 0.9648 0.9664 0.9677 0.9743 

35 RE1 1.6406 1.7487 1.8445 1.9330 2.0081 1.9905 1.9062 1.8871 

 RE2 0.9661 0.9645 0.9669 0.9687 0.9703 0.9721 0.9733 0.9789 

40 RE1 1.5883 1.6926 1.8329 1.9166 1.9892 2.0669 1.9723 1.9131 

 RE2 0.9622 0.9697 0.9722 0.9738 0.9751 0.9764 09777 0.9787 

Table  4: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 0.5  and  c = 1.5 
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        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 1.7633 1.8631 1.9326 1.8935 1.7697 1.6636 1.3886 1.2331 

 RE'
2

 0.7315 0.7490 0.7624 0.7718 0.7822 0.7868 0.7966 0.8012 

25 RE'
1
 1.7203 1.8266 1.9305 1.9632 1.9356 1.8199 1.6495 1.5841 

 RE'
2

 0.7804 0.7934 0.8028 0.8129 0.8202 0.8251 0.8319 0.8491 

30 RE'
1
 1.6728 1.7785 1.8973 1.9727 1.9945 1.9507 1.8121 1.7301 

 RE'
2

 0.8101 0.8237 0.8333 0.8427 0.8487 0.8502 0.8575 0.8593 

35 RE'
1
 1.6341 1.7268 1.8374 1.9535 2.0060 1.9258 1.8705 1.8157 

 RE'
2

 0.8365 0.8472 0.8559 0.8616 0.8678 0.8736 0.8772 0.8899 

40 RE'
1
 1.5889 1.7179 1.8155 1.9462 1.9804 2.0178 1.9894 1.9157 

 RE'
2

 0.8551 0.8661 0.8738 0.8791 0.8845 0.8885 0.8920 0.8981 

Table  5: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with  

                te =125,  a = 0.5, b = 2  and  c = 1.5 

 

 

 

        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 1.8128 1.8405 1.8580 1.9318 1.7618 1.7318 1.3315 1.2065 

 RE'
2

 0.4931 0.5107 0.5284 05437 0.5584 0.5652 0.5844 0.5931 

25 RE'
1
 1.7321 1.8229 1.9267 1.9652 1.9001 1.8670 1.6508 1.4387 

 RE'
2

 0.5558 0.5749 0.5963 0.6087 0.6245 0.6300 0.6389 0.6456 

30 RE'
1
 1.6758 1.7835 1.9176 2.0101 1.9675 1.9442 1.8090 1.7765 

 RE'
2

 0.6087 0.6302 0.6446 0.6577 0.6683 0.6767 0.6860 0.6944 

35 RE'
1
 1.6292 1.7518 1.8556 1.9373 1.9552 1.9508 1.8933 1.8661 

 RE'
2

 0.6505 1.6685 0.6846 0.6971 0.7084 0.7153 0.7224 0.7385 

40 RE'
1
 1.5889 1.6988 1.8239 1.9295 2.004 1.9994 1.99709 1.9615 

 RE'
2

 0.6840 0.7023 0.7163 0.7278 0.7366 0.7453 0.7505 0.7654 

Table  6: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 5.0 and  c = 1.5 
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        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 1.5385 1.6310 1.6962 1.6578 1.6300 1.4810 1.3374 1.2330 

 RE'
2

 0.9314 0.9358 0.9394 0.9426 0.9448 0.9479 0.9504 0.9519 

25 RE'
1
 1.5190 1.5936 1.6539 1.6806 1.7099 1.6178 1.5313 1.3747 

 RE'
2

 0.9441 0.9486 0.9521 0.9544 0.9563 0.9587 0.9601 0.9620 

30 RE'
1
 1.4695 1.5458 1.6127 1.6730 1.7391 1.7431 1.6515 1.5266 

 RE'
2

 0.9530 0.9573 0.9604 0.9633 0.9648 0.9661 0.9676 0.9689 

35 RE'
1
 1.4505 1.5268 1.5976 1.6441 1.7017 1.7107 1.6840 1.6429 

 RE'
2

 0.9614 0.9442 0.9674 0.9690 0.9722 0.9722 0.9733 0.9743 

40 RE'
1
 1.4229 1.5134 1.5862 1.6323 1.7036 1.7236 1.7446 1.7322 

 RE'
2

 0.9669 0.9700 0.9723 0.9739 0.9768 0.9768 0.9777 0.9784 

Table 7: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te  =125,  a = 0.5, b = 0.5 and  c = 2.25 

 

 

 

        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 1.5481 1.5973 1.6609 1.6688 1.6361 1.5300 1.3278 1.221 

 RE'
2

 0.7323 0.7483 0.7666 0.7725 0.7814 0.7899 0.7981 0.8024 

 

25 RE'
1
 1.5079 1.5826 1.6426 1.6827 1.6684 1.6297 1.5703 1.3988 

 RE'
2

 0.7791 0.7935 0.8044 0.8134 0.8203 0.8248 0.8301 0.8343 

 

30 RE'
1
 1.4794 1.5452 1.6078 1.6858 1.7024 1.7294 1.6392 1.5139 

 RE'
2

 0.8120 0.8235 0.8334 0.8426 0.8479 0.8525 0.8568 0.8614 

 

35 RE'
1
 1.4469 1.5307 1.5982 1.6743 1.7308 1.7297 1.6892 1.6007 

 RE'
2

 0.8371 0.8479 0.8565 0.8623 0.8678 0.8722 0.8777 0.8801 

 

40 RE'
1
 1.4167 1.5039 1.5897 1.6494 1.7308 1.7477 1.7424 1.6980 

 RE'
2

 0.8546 0.8664 0.8740 0.8803 0.8845 0.8881 0.8921 0.8950 

Table  8: Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 2.0 and  c = 2.25 
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        1β  

0β  

 

0.007 

 

0.008 

 

0.009 

 

0.010 

 

0.011 

 

0.012 

 

0.013 

 

0.014 

20 RE'
1
 1.5489 1.6045 1.6604 1.6557 1.5811 1.5151 1.3279 1.1365 

 RE'
2

 0.4881 0.5115 05304 0.5434 0.5633 0.5730 0.5831 0.5980 

25 RE'
1
 1.4961 1.5798 1.6472 1.6753 1.6837 1.6542 1.5525 1.4024 

 RE'
2

 0.5572 0.5791 0.5936 0.6116 0.6221 0.6316 0.6401 0.6480 

30 RE'
1
 1.4776 1.5437 1.6271 1.7103 1.7120 1.6725 1.6199 1.5094 

 RE'
2

 0.6108 0.6306 0.6454 0.6564 0.6706 0.6788 0.6868 0.6932 

35 RE'
1
 1.4514 1.5243 1.5944 1.6627 1.7255 1.7307 1.7112 1.6168 

 RE'
2

 0.6508 0.6707 0.6839 0.6952 0.7061 0.7147 0.7209 0.7283 

40 RE'
1
 1.4212 1.5003 1.5870 1.6480 1.7123 1.7408 1.7530 1.6897 

 RE'
2

 0.6823 0.7018 0.7154 0.7286 0.7361 0.7440 0.7504 0.7560 

Table 9; Risk efficiencies of 0

~
β  and 1

~
β for the different values of 0β  and 1β with 

te =125,  a = 0.5, b = 5.0 and  c= 2.25 
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