ESTIMATION OF PARAMETERS OF POISSON TYPE EXPONENTIAL CLASS MODEL USING NON-INFORMATIVE AND GAMMA PRIOR

Rajesh Singh¹, Neeta Andure² and Umesh Singh³ ¹Department of Statistics, SGB Amravati University, Amravati ²Department of Statistics, Govt. College of Arts & Science, Aurangabad ³Department of Statistics, Banaras Hindu University, Varanasi

(Received February 15, 2013)

Abstract

This paper concerns with estimation of parameter of Poisson type exponential class model of software evaluation. The Bayes estimators of parameters i. e. number of failures $\beta 0$ and failure rate $\beta 1$ have been obtained using non – informative and gamma prior respectively under squared error loss function. The obtained estimators have been compared with corresponding maximum likelihood estimators on the basis of their simulated risks (average loss).

Key words: Software Reliability, Poisson Type Exponential Class, Non – Homogeneous Poisson Process, Bayes Estimator, Maximum Likelihood Estimator, Non Informative Prior and Gamma Prior.

1. Introduction:

A software reliability model has the form of a random process, which describes the behavior of failure with time and it is generally specified as a function of time. The time involved in the characterization of model is a cumulative time and the origin is the start of the system.

The first study of software reliability has been done by Hudson (1967) and he has viewed software development as a birth and death process. Jelinski and Moranda (1975) have proposed a model which assumes that hazard rate for failure is piecewise constant and proportional to the number of faults remaining. Further, Moranda has obtained maximum likelihood estimators for total number of faults existing in the software [See also Moranda (1975), Shooman (1972) and Shooman and Natrajan (1976)].

The Poisson process provides a good approximation to the occurrence of many real life events. Under Poisson type model, software failure process is studied using non homogeneous Poisson Process [NHPP] with failure intensity λ (t). Let M (t) denote failure experienced by time't' & M (t) increases by 1 whenever a failure occurs.

$$P_{m}(t) = P[M(t) = m]$$

$$P_{m}(t) = \frac{[\mu(t)]^{m} \exp[-\mu(t)]}{m!} \qquad \dots (1.1)$$

Where,
$$\mu(t) = \int_{0}^{t} \lambda(x) \, dx \qquad \dots (1.2)$$

and λ (x) is a failure intensity function. The NHPP { M(t);t \ge 0} has mean and variance equal to mean value function $\mu(t)$ of the process.

Musa and Okumoto (1983) described a classification scheme for software reliability models. The model is nominated according to the distribution of failures experienced by time't' as [type] and functional form of failure intensity as [class]. In this paper we have considered Poisson type exponential class model. [For details see Musa (1975), Schneidewind (1975), Moranda(1975), Goel & Okumoto(1979), Musa et al (1987), Malviya et al (1992), Musa(2004) and Pham(2006)]. Ikemoto and Dohi has proposed exponential type software reliability model using regression technique.

Poisson type – exponential class model (PTEC)

The exponential distribution is the first model in the field of reliability and life testing for which statistical methods have been developed. The initial work related to this model has been done by Sukhatme (1937) & later Epstein (1958).Let us assume that time to failure of an individual faults has an exponential distribution and per fault hazard rate is constant. The mean value function for this model is,

$$\mu(t) = \beta_0 [1 - \exp(-\beta_1 t)] \qquad ... (1.3)$$

and failure intensity function is,

$$\lambda(t) = \beta_0 \beta_1 \exp(-\beta_1 t)$$
; $\beta_0, \beta_1 > 0$... (1.4)

Where, β_0 and β_1 define total number of failures and failure rate respectively [see Musa et al (1987)].

Consider te is the total testing time and me failures are experienced at time $t_1, t_2, t_3... t_m$. Since the conditional density function of T_i [time interval between failure $T_i = t_i - t_{i-1}$] depends only on previous failure time T_{i-1} , and hence the likelihood function takes the form,

$$L(\beta_{0},\beta_{1}) = \begin{bmatrix} m_{e} \\ \prod_{i=1}^{m} \lambda(t_{i}) \end{bmatrix} \exp[-\mu(t_{e})] \qquad \dots (1.5)$$

[For more details refer Musa et al (1987)].

Now, substituting $\lambda(t_i)$ and $\mu(t_e)$ from equation (1.3) and (1.4) respectively the likelihood function becomes

L
$$(\beta_0, \beta_1) = \beta_0^m e \beta_1^m e e^{-\beta_1 T} \exp[-\beta_0 \{1 - \exp(-\beta_1 t_e)\}]$$
 ... (1.6)
Where, $T = \sum_{i=1}^{m_e} t_i$

The maximum likelihood estimators of β_0 and β_1 can be obtained and are the solution of given equations (1.7) and (1.8)

$$\hat{\beta}_{L_0} = \frac{m_e}{1 - \exp(-\hat{\beta}_{L_1} m_e)} \qquad \dots (1.7)$$

Estimation of Parameters of Poisson Type Exponential ...

$$\frac{m_e}{\hat{\beta}_{L_1}} - \frac{m_e t_e}{\exp(\hat{\beta}_{L_1} t_e) - 1} - \sum_{i=1}^{m_e} t_i = 0 \qquad \dots (1.8)$$

Need of Bayes approach

Bayesian analysis provides better quality of inference, it reduces the sample size and thus time. Moreover, under natural identification and measurability conditions, Bayes estimators are consistent for all most all parameter values and very often enjoy small sample properties too. Perhaps, due to these reasons, this method is currently getting popularity in virtually all areas of statistical applications. [See for more details, Berger (1985)].

This approach is much more direct, that is deductive than classical approach which uses inductive reasoning. In fact, the use of past experience makes Bayes inference more informative particularly in those situations where prior distribution accurately reflects the verification of the parameter. In the case of Poisson type exponential class model, if prior information about $\beta_0 \& \beta_1$ are available certainly then obtained Bayes estimator will out perform over MLE's. Thus, in view of this, suitable priors are selected and the Bayes estimators are proposed.

Here in this paper for the considered PTEC model, the prior and posterior distribution has been established in the next section. The Bayes estimator of the parameters namely, total number of failures and failure rate has been obtained in section 3. To study the performance of the proposed Bayes estimator, these have been compared with corresponding MLE's in section 4, and the last section provides the finding in the form of conclusion.

2. The Prior and Posterior distributions:

2.1 Prior distribution

Apriori information in the form of a prior distribution plays an important role in Bayesian analysis. The Bayesian approach, in addition to sample data, utilizes information about the parameter depending upon past experience in the form of prior. Generally, it is difficult to choose a prior which may be appropriate in all circumstances. But, a general class of priors called non-informative priors used in the cases when a little or no information about the parameter is known apriori. [See Martz and Waller(1982) Box and Tiao (1973) Berger(1985)].Suppose, in the present study, the information about the number of failures in the software is not available then, the general class of non – informative prior for β_0 becomes more suitable and it is,

$$g_1(\beta_0) = \frac{1}{\beta_0^c}; \qquad \beta_0 > 0 \qquad ...(2.1)$$

Where, c is constant and greater than zero.

In most of the testing problems one may have sufficient information about the scale parameter. These may come from previous data personal experience or from other relevant sources. In such situation, one would like to use an informative prior. However, one may restrict to the class of possible prior distribution those allow easy computations. In statistical literature a number of informative priors have been

suggested by authors such as Zellner(1982), Leamer (1978) a conjugate prior by Raiffa Schlaffer (1961) etc. Perhaps the most widely used informative prior is conjugate prior. It may be noted that a prior distribution is said to be a conjugate prior if posterior distribution and prior distribution both belong to same family of distributions.

Authors such as Apostolakis and Mosleh (1979), Grohowski et. al. (1976) and other have found Gamma distribution to be sufficiently versatile for particle reliability applications in life testing. Here, an attempt is made to apply the same for the estimation of β_1 of software reliability. Such Gamma prior distribution for β_1 is,

$$g_{2}(\beta_{1}) = \frac{a^{b}}{\Gamma b} e^{-a\beta_{1}} \beta_{1}^{b-1} ; a, b > 0, \beta_{1} > 0 ... (2.2)$$

Where, 'a' and 'b' are the parameters of prior distribution. Therefore joint apriori for β_0 and β_1 will be

$$g(\beta_{0}, \beta_{1}) = \frac{1}{\beta_{0}^{c}} \frac{a^{b}}{\Gamma b} e^{-a\beta_{1}} \beta_{1}^{b-1} ; a, b, c > 0 \qquad ... (2.3)$$
$$0 < \beta_{0} < \infty, 0 < \beta_{1} < \infty$$

2.2 The Posterior Distribution

Combining the likelihood function (1.6) with joint prior distribution (2.3), using Bayes theorem the joint posterior distribution of β_0 and β_1 on given <u>t</u> is,

$$\pi \left(\beta_{0}, \beta_{1}/\underline{t}\right) = \left[m_{1}(\underline{t})\right]^{-1} \beta_{0}^{f} \beta_{1}^{d-1} e^{-\beta_{1}(a+T)} \exp\left[-\beta_{0}\left(1 - \exp\left(-\beta_{1}t_{e}\right)\right)\right] \dots (2.4)$$

 $\begin{array}{l} m_e \ \leq \ \beta_0 < \infty \\ 0 < \beta_1 < \ \infty \end{array}$

where $d = m_e + b$, $f = m_e - c$ and

$$m_{1}(t) = \sum_{i=0}^{\infty} \frac{(d-1)!}{i!} \frac{\Gamma((f+i+1), m_{e})}{[T+a+it_{e}]^{d}}$$

Since $\left|\frac{(d-1)!}{i![T+a+it_{e}]^{d}}\right| < 1$ and $\Gamma[(f+i+1), m_{e}] < \Gamma(f+i+1)$

t	6	2
Ļ	١	-

Now from joint posterior (2.4) of β_0 and β_1 , the marginal posterior distribution of β_0 can be obtained by integrating (2.4) over the whole range of β_1 i. e. 0 to ∞ and we get,

$$\pi \left(\beta_0 / \underline{t} \right) = [m_1(\underline{t})]^{-1} (d-1)! \sum_{i=0}^{\infty} \frac{\beta_0^{f+i} e^{-\beta_0}}{i! [T+a+it_e]^d} ; m_e < \beta_0 < \infty$$
...(2.5)

Similarly, the marginal posterior distribution of β_1 , obtained from the joint posterior distribution (2.4) by integrating out β_0 is,

$$\pi \left(\beta_{1} / \underline{t}\right) = \left[m_{1}(\underline{t})\right]^{-1} \beta_{1}^{d-1} e^{-\beta_{1}(a+T)} \frac{\Gamma((f+1), Wm_{e})}{W^{f+1}}; \quad 0 < \beta_{1} < \infty$$
...(2.6)

Where,

$$W = [1 - \exp(-\beta_1 t_e)]$$

3. Bayes Estimators

The Bayes estimators of β_0 and β_1 can be obtained with the help of posterior distributions given by equation (2.5) and (2.6) after selecting the appropriate loss function. Now consider in both the cases, the loss function is squared error loss the Bayes estimator becomes posterior mean. The consideration of squared error loss function can be justified by its simplicity thus

$$\widetilde{\beta}_{0} = [m_{1}(\underline{t})]^{-1} (d-1)! \sum_{i=0}^{\infty} \frac{\Gamma(f+i+2,m_{e})}{i! [T+a+it_{e}]^{d}} \quad ; \quad d > 1 \dots (3.1)$$

Similarly, the Byes estimation of β_1 under the similar loss function is,

$$\widetilde{\beta}_{1} = [m_{1}(\underline{t})]^{-1} \sum_{i=0}^{\infty} \frac{d!}{i!} \frac{\Gamma((f+i+1), m_{e})}{[T+a+it_{e}]^{d+1}} \qquad \dots (3.2)$$

4. Comparison

The proposed Bayes estimators β_0 and β_1 have been compared with the corresponding maximum likelihood estimators $\hat{\beta}_1$ and $\hat{\beta}_0$ in this section. This comparison is based on the risk efficiencies. The risk efficiencies of β_0 i.e. RE'₁ and of β_1 i.e. RE'₂ have been calculated on the basis of Monte-Carlo simulation technique generating 1000 random samples for t_e = 125, $\beta_0 = 20$ (5) 40, $\beta_1 = 0.007$ (0.001) 0.014, a = 0.5, b = 0.5, 2.5 c = 0.25, 1.5, 2.25, which are summarized in table 1 to 9.

The tables 1, 2 and 3 give the risk efficiencies of β_0 and β_1 for the different values of β_0 (= 20 (5) 40), β_1 (= 0.007 (0.001) 0.014), a = 0.5, b = 0.5, 2, 5, t_e = 125 and c = 0.25. We can see from these tables that the risk efficiency of proposed estimator of β_0 is more than 1 for all the choices of β_0 and β_1 . The risk efficiency first increases then decreases after attaining maxima for the variation of β_1 . This is true for all the choices of β_0 . The maximum risk efficiency is, when β_1 is approximately

0.01 for all the values of β_0 . As β_0 increases, the risk efficiency RE'₁ decreases for $\beta_1 < 0.01$ and increases for $\beta_1 \ge 0.01$. This means the risk efficiency RE'₁ will be maximum if β_0 and β_1 both are small. The risk efficiency RE'₂ of β_1 increases as β_0 and β_1 increase. Here, it can be noted that the performance of the proposed estimator β_1 is nearly same as MLE. The performance of β_1 can further be improved if the true values of β_0 and β_1 are very large i.e. number of failures in a software is sufficiently large and failure rate is high.

From the table 1, 2 and 3, we see that as the value of 'b' increases the performance of both the estimators decline. Therefore, for a small value of 'b' the proposed estimator $\tilde{\beta}_0$ and $\tilde{\beta}_1$ will perform better than MLE. The variation of 'a' has also been considered and seen by calculating the risk efficiencies for different choices but it has been observed that the variation of 'a' does not affect much the performance of both the proposed estimators, therefore, such tables are not presented here.

The tables 4, 5 and 6 gives the risk efficiencies of β_0 and β_1 for the different values of β_0 (= 20(5) 40), β_1 = (0.007 (0.001) 0.014), a = 0.5, b = 0.5, 2, 5, t_e = 125 and c = 1.5. Similar trend is observed as in table 1,2 and 3. For the choices of β_0 and β_1 the risk efficiencies RE'₁ of proposed estimator β_0 is more than 1. The risk efficiencies first increases, attains maxima for the variation of β_1 , and then decreases. Similar trend is observed for other choices of β_0 . The maximum risk efficiency is, when β_1 is near to 0.01 for all the values of β_0 . As β_0 increases, the risk efficiency RE'₁ decreases for $\beta_1 < 0.01$ and increases for $\beta_1 \geq 0.01$.

The risk efficiency RE'₂ of β_1 increases as β_0 and β_1 increase, here it can be noted that the performance of proposed estimator β_1 (for b = 0.5) is nearly same as MLE. The estimator β_1 is as good as MLE if the values of β_0 and β_1 are very large. We can see from table 5 and 6 that as 'b' increases (b = 2, 5), MLE is better than proposed estimator β_1 . Hence, the use of proposed estimator β_1 is suggested for large values of β_0 , β_1 and small 'b'.

The table 7, 8 and 9 present the risk efficiencies of β_0 and β_1 for the different values of β_0 (= 20 (5) 40), β_1 (= 0.007 (0.001) 0.014), a = 0.5, and b = 0.5, 2.0, 5.0 of the proposed estimator of β_0 is more than 1 for all choices of β_0 and β_1 .

The risk efficiency first increases then decreases after attaining a maxima for the variation of β_1 . For all the choices of β_0 , the trend is same. As β_0 increases, the risk efficiency RE' decreases for $\beta_1 < 0.01$ and increases for $\beta_1 \ge 0.01$.

We can see that as β_0 and β_1 increase, the risk efficiency RE'₂ of $\tilde{\beta}_1$ increases. For b = 0.5, it can be noted that the performance of proposed estimator $\tilde{\beta}_1$ is nearly same as MLE, also it can be improved further if β_0 and β_1 are very large. From the table 8 and 9, we see that as the values of 'b' increases the performance of both the estimators decline. Therefore, for small values of 'b', $\tilde{\beta}_0$ and $\tilde{\beta}_1$ performs better than MLE.

The tables 1, 4 and 7 give the risk efficiencies for $\tilde{\beta}_0$ and $\tilde{\beta}_1$ for different values of c = 0.25, 1.5, 2.25, a = 0.5, b = 0.5, β_0 (= 20 (5) 40) and $\tilde{\beta}_1 = (0.007 \ (0.001) \ 0.014)$. As 'c' increases the risk efficiency RE'₁ decreases, that is, for small 'c', $\tilde{\beta}_0$ performs much better than M.L.E. Similar trend has been observed for a = 0.5, b = 2.0 and 5.0. The variation in 'c' does not affect risk efficiency RE'₂, that is, the performance of $\tilde{\beta}_1$ is unchanged due to change in 'c'.

5. Conclusion

The performances of the proposed estimators $\widetilde{\beta}_0$ and $\widetilde{\beta}_1$ in comparison with $\hat{\beta}_{L_0}$ and $\hat{\beta}_{L_1}$ respectively, have been discussed in the previous section. On the basis of these discussions, we may conclude that the use of the proposed estimators $\widetilde{\beta}_0$ for total number of failures β_0 may be recommended, for small 'c'.

For small 'b', and large β_0 , β_1 , the proposed estimator $\tilde{\beta}_1$ of failure rate β_1 performs as good as MLE. Hence, when number of failures is sufficiently large, failure rate is high and 'b' is small, the use of proposed estimators can be recommended.

$\overline{\ }$	β_1								
β		0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	2.1139	2.2047	2.1778	2.1141	1.9336	1.6503	1.4335	1.3391
	RE'2	0.9332	0.9357	0.9398	0.9422	0.9454	0.9480	0.9499	0.9500
25	RE'	1.9331	2.0443	2.0947	2.1984	2.1549	2.0214	1.7087	1.6852
	RE'2	0.9451	0.9481	0.9524	0.9542	0.9545	0.9580	0.9599	0.9645
30	RE' ₁	1.8253	1.9465	2.0175	2.1978	2.1658	2.0762	1.8948	1.7343
	RE'2	0.9542	0.9577	0.9605	0.9626	0.9846	0.9665	0.9678	0.9697
35	RE' ₁	1.7542	1.9130	2.0194	2.0861	2.1554	2.1807	2.0798	1.9884
	RE'2	0.9611	0.9648	0.9671	0.9693	0.9706	0.9722	0.9732	0.9769
40	RE'	1.6891	1.8189	1.9344	2.0642	2.1500	2.1404	2.1100	2.1039
	RE'2	0.9668	0.9697	0.9723	0.9738	0.9753	0.9766	0.9775	0.9803
			2	× ~			0	0	

Table 1: Risk efficiencies of eta_0 and eta_1 for the different values of eta_0 a	nd β_1 with
$t_e = 125, a = 0.5, b = 0.5 and c = 0.25$	

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	2.0216	2.1409	2.1527	2.0811	1.9267	1.5652	1.3355	1.3011
	RE'	0.7324	0.7509	0.7599	0.7725	0.7805	0.7922	0.7980	0.7998
25	RE'	1.9275	2.0413	2.1212	2.1178	2.0749	1.9332	1.6693	1.5683
	RE'	0.7795	0.7945	0.8022	0.8135	0.8205	0.8258	0.8321	0.8366
30	RE'	1.8082	1.9471	2.1021	2.2140	2.1036	2.0618	1.8640	1.7509
	RE'	0.8126	0.8240	0.8354	0.8412	0.8486	0.8532	0.8578	0.8611
35	RE'	1.7445	1.8946	2.0033	2.1147	2.1658	2.1514	2.0484	1.8767
	RE'	0.8363	0.8485	0.8570	0.8637	0.8684	0.8732	0.8766	0.8834
40	RE'	1.6965	1.8109	1.9280	2.0952	2.1791	2.1943	2.0620	1.9189
	RE'2	0.8562	0.8653	0.8737	0.8804	0.8844	0.8848	0.8918	0.8999

Table 2: Risk efficiencies of $\tilde{\beta}_0$ and $\tilde{\beta}_1$ for the different values of β_0 and β_1 with $t_e = 125$, a = 0.5, b = 2 and c = 0.25

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	2.0095	2.0847	2.1372	2.0314	1.9151	1.6383	1.5380	1.4899
	RE'	0.4857	0.5117	0.5287	0.5447	0.5580	0.5714	0.5940	0.6120
25	RE'	1.9253	2.0502	2.1343	2.1034	2.0681	1.9203	1.6483	1.5136
	RE'	0.5577	0.5768	0.5977	0.6061	0.6210	0.6301	0.6548	0.6698
30	RE'	1.8210	1.9741	2.0541	2.1614	2.1498	2.1460	2.1220	2.0081
	RE'	0.6097	0.6322	0.6433	0.6463	0.6562	0.6760	0.6890	0.6989
35	RE'	1.7408	1.8889	2.0282	2.1621	2.1533	2.1471	2.1366	2.0117
	RE'	0.6493	0.6683	0.6845	0.6976	0.7054	0.7153	0.7211	0.7338
40	RE'	1.6893	1.8117	1.9287	2.0469	2.1428	2.1485	2.1405	2.1229
	RE'2	0.6829	0.7011	0.7167	0.7270	0.7375	0.7448	0.7585	0.7689

Table 3: Risk efficie	encies of $\widetilde{\boldsymbol{\beta}}_0$ and	$\widetilde{\boldsymbol{\beta}}_1$ for the differe	nt values of β_0	and β_1 with
	$t_e = 125, a = 0.5$	5, b = 5.0 and c =	0.25	

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE ₁	1.8178	1.8675	1.9093	1.8679	1.7808	1.6476	1.3910	1.3521
	RE_2	0.9313	0.9361	0.9392	0.9424	0.9448	0.9476	0.9500	0.9511
25	RE_1	1.7239	1.8464	1.9614	1.9724	1.9943	1.7698	1.6850	1.5585
	RE_2	0.9446	0.9482	0.9516	0.9544	0.9562	0.9585	09599	0.9611
30	RE_1	1.6847	1.7951	1.8941	1.9951	2.0084	1.8972	1.7610	1.6621
	RE_2	0.9542	0.9578	0.9604	0.9633	0.9648	0.9664	0.9677	0.9743
35	RE_1	1.6406	1.7487	1.8445	1.9330	2.0081	1.9905	1.9062	1.8871
	RE_2	0.9661	0.9645	0.9669	0.9687	0.9703	0.9721	0.9733	0.9789
40	RE_1	1.5883	1.6926	1.8329	1.9166	1.9892	2.0669	1.9723	1.9131
	RE_2	0.9622	0.9697	0.9722	0.9738	0.9751	0.9764	09777	0.9787

Table 4: Risk efficiencies of $\tilde{\beta}_0$ and $\tilde{\beta}_1$ for the different values of β_0 and β_1 with $t_e = 125$, a = 0.5, b = 0.5 and c = 1.5

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	1.7633	1.8631	1.9326	1.8935	1.7697	1.6636	1.3886	1.2331
	RE'	0.7315	0.7490	0.7624	0.7718	0.7822	0.7868	0.7966	0.8012
25	RE'	1.7203	1.8266	1.9305	1.9632	1.9356	1.8199	1.6495	1.5841
	RE'	0.7804	0.7934	0.8028	0.8129	0.8202	0.8251	0.8319	0.8491
30	RE'	1.6728	1.7785	1.8973	1.9727	1.9945	1.9507	1.8121	1.7301
	RE'	0.8101	0.8237	0.8333	0.8427	0.8487	0.8502	0.8575	0.8593
35	RE'	1.6341	1.7268	1.8374	1.9535	2.0060	1.9258	1.8705	1.8157
	RE'	0.8365	0.8472	0.8559	0.8616	0.8678	0.8736	0.8772	0.8899
40	RE'	1.5889	1.7179	1.8155	1.9462	1.9804	2.0178	1.9894	1.9157
	RE'2	0.8551	0.8661	0.8738	0.8791	0.8845	0.8885	0.8920	0.8981

Table	5: Risk efficiencies of	$\widetilde{\boldsymbol{\beta}}_0$ and	$\widetilde{\beta}_1$ for the different	values of β_0	and β_1 with
	1	t _e =125,	a = 0.5, b = 2 and a	e = 1.5	

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	1.8128	1.8405	1.8580	1.9318	1.7618	1.7318	1.3315	1.2065
	RE'	0.4931	0.5107	0.5284	05437	0.5584	0.5652	0.5844	0.5931
25	RE'	1.7321	1.8229	1.9267	1.9652	1.9001	1.8670	1.6508	1.4387
	RE'	0.5558	0.5749	0.5963	0.6087	0.6245	0.6300	0.6389	0.6456
30	RE'	1.6758	1.7835	1.9176	2.0101	1.9675	1.9442	1.8090	1.7765
	RE'	0.6087	0.6302	0.6446	0.6577	0.6683	0.6767	0.6860	0.6944
35	RE'	1.6292	1.7518	1.8556	1.9373	1.9552	1.9508	1.8933	1.8661
	RE'	0.6505	1.6685	0.6846	0.6971	0.7084	0.7153	0.7224	0.7385
40	RE'	1.5889	1.6988	1.8239	1.9295	2.004	1.9994	1.99709	1.9615
	RE'_2	0.6840	0.7023	0.7163	0.7278	0.7366	0.7453	0.7505	0.7654

Table 6: Risk efficiencies of $\tilde{\beta}_0$ and $\tilde{\beta}_1$ for the different values of β_0 and β_1 with $t_e = 125$, a = 0.5, b = 5.0 and c = 1.5

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	1.5385	1.6310	1.6962	1.6578	1.6300	1.4810	1.3374	1.2330
	RE'	0.9314	0.9358	0.9394	0.9426	0.9448	0.9479	0.9504	0.9519
25	RE'	1.5190	1.5936	1.6539	1.6806	1.7099	1.6178	1.5313	1.3747
	RE'	0.9441	0.9486	0.9521	0.9544	0.9563	0.9587	0.9601	0.9620
30	RE'	1.4695	1.5458	1.6127	1.6730	1.7391	1.7431	1.6515	1.5266
	RE'	0.9530	0.9573	0.9604	0.9633	0.9648	0.9661	0.9676	0.9689
35	RE'	1.4505	1.5268	1.5976	1.6441	1.7017	1.7107	1.6840	1.6429
	RE'	0.9614	0.9442	0.9674	0.9690	0.9722	0.9722	0.9733	0.9743
40	RE'	1.4229	1.5134	1.5862	1.6323	1.7036	1.7236	1.7446	1.7322
	RE'2	0.9669	0.9700	0.9723	0.9739	0.9768	0.9768	0.9777	0.9784

Table 7: Risk efficiencies of $\widetilde{\beta}_0$ and $\widetilde{\beta}_1$ for the different values of β_0 and β_1 with $t_e = 125$, a = 0.5, b = 0.5 and c = 2.25

β_0	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	1.5481	1.5973	1.6609	1.6688	1.6361	1.5300	1.3278	1.221
	RE'2	0.7323	0.7483	0.7666	0.7725	0.7814	0.7899	0.7981	0.8024
25	RE'	1.5079	1.5826	1.6426	1.6827	1.6684	1.6297	1.5703	1.3988
	RE' ₂	0.7791	0.7935	0.8044	0.8134	0.8203	0.8248	0.8301	0.8343
30	RE'	1.4794	1.5452	1.6078	1.6858	1.7024	1.7294	1.6392	1.5139
	RE'2	0.8120	0.8235	0.8334	0.8426	0.8479	0.8525	0.8568	0.8614
35	RE'	1.4469	1.5307	1.5982	1.6743	1.7308	1.7297	1.6892	1.6007
	RE'2	0.8371	0.8479	0.8565	0.8623	0.8678	0.8722	0.8777	0.8801
40	RE'	1.4167	1.5039	1.5897	1.6494	1.7308	1.7477	1.7424	1.6980
	RE'2	0.8546	0.8664	0.8740	0.8803	0.8845	0.8881	0.8921	0.8950

Table 8: Risk efficiencies of β_0 and β_1 for the different values of β_0 and β_1 with t_e =125, a = 0.5, b = 2.0 and c = 2.25

β ₀	β_1	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014
20	RE'	1.5489	1.6045	1.6604	1.6557	1.5811	1.5151	1.3279	1.1365
	RE'	0.4881	0.5115	05304	0.5434	0.5633	0.5730	0.5831	0.5980
25	RE'	1.4961	1.5798	1.6472	1.6753	1.6837	1.6542	1.5525	1.4024
	RE'	0.5572	0.5791	0.5936	0.6116	0.6221	0.6316	0.6401	0.6480
30	RE'	1.4776	1.5437	1.6271	1.7103	1.7120	1.6725	1.6199	1.5094
	RE'	0.6108	0.6306	0.6454	0.6564	0.6706	0.6788	0.6868	0.6932
35	RE'	1.4514	1.5243	1.5944	1.6627	1.7255	1.7307	1.7112	1.6168
	RE'	0.6508	0.6707	0.6839	0.6952	0.7061	0.7147	0.7209	0.7283
40	RE'	1.4212	1.5003	1.5870	1.6480	1.7123	1.7408	1.7530	1.6897
	RE'2	0.6823	0.7018	0.7154	0.7286	0.7361	0.7440	0.7504	0.7560

Table 9; Risk efficiencies of β_0 and β_1 for the different values of β_0	and β_1 with
$t_{a} = 125$, $a = 0.5$, $b = 5.0$ and $c = 2.25$	

References

- 1. Apostolakis, G. and Moslesh, A (1979). Expert opinion and statistical evidence: An application to Reactor core Melt Frequency, Nuclear Science and engineer, Vol. 70, p. 135-149.
- 2. Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.
- 3. Box, G. E. and Tiao, G. C. (1973). Bayesian inference in statistical analysis, Addison Wesley, reading Massachusetts.
- Epstein, B. (1958). Exponential distribution and its role in life testing, Industrial Quality Control, 15, p. 4-9.
- Goel, A. K. and Okumoto, K. (1979). Time dependent error detection rate model for software reliability and other performance measures, IEEE Trans. on Reliability, R- 28(3), p. 206-211.
- 6. Grohowski, G. Hausman, W. C. and Lamberson, L. R. (1976). A Bayesian Statistical Inference Appraoch to Automative Reliability Estimation, Journal of Quality Technology, Vol. 8, p. 197-208.
- 7. Hudson, G. R. (1967). Program errors as a Birth and Death process, system development corporation reports, s. p. 3011.
- 8. Ikemoto, S.and Dohi, T. (2012). Exponential regression –based software reliability model and its computational aspect, IEICE Trans. on Fundamentals of Electronics, Communication and computer sciences, E 95-A(9).
- 9. Jelinski, Z and Moranda, P. B. (1972). Software reliability research, In statistical computer performance evaluation, ed. w. Freiberger, New York; Academic.
- 10. Leamer, E. E. (1978). Specified searchers, Wiley, New York.

- Malaviya, Y. K., Karunanithi, S. and Verma, P. (1992). Predictability of software reliability models, IEEE Trans. on Reliability Vol. 41, No. 4, p. 539- 546.
- 12. Martz, H. F. And Waller R. A. (1982). Bayesian Reliability Analysis, New York, Wiley.
- Moranda, P. (1975). Prediction of software Reliability during debugging, Proc., Annual Reliability and Maintainability symposium, Washington D.C. p. 327 – 332.
- 14. Musa, J.D. (1975). A theory a software reliability and its application, IEEE Trans. on software engineering SE, 1 (3) (Sept. 1975), p. 312-327.
- Musa, J.D. and Okumoto, K.(1983). Software Reliability models; concepts, classification, comparison and practice, (J.K. Skwirzynski editor) Electronic system effectiveness and life cycle casting, NATO ASI series F3, Springlerverlag, Heidelberg, p. 395-424.
- 16. Musa, J.D., Okumoto, K. and Iannino, A. (1987). Software reliability measurement prediction Application, McGrawHill.
- 17. Musa,J.(2004). Software reliability engineering: more reliable software, faster and cheaper, Author house, ISBN 0079132715.
- 18. Pham, H.(2006). System software reliability, Springer -Verlag ltd., London.
- 19. Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision theory, Harvard University, Boston.
- 20. Schid, F. (1988). Numerical Analysis, Schaum's outline series, McGrawHill.
- Schneidewind, N.F. (1975). Analysis of error processes in Computer Software, Proc. of 1975 International Conference on reliable software Los Angeles Calif, April 21-23 (1975), p. 337-345.
- 22. Zellner, A. (1982). On Assessing prior distribution and Bayesian regression analysis with g-prior distribution, Revised version of paper presented to the econometric society meeting, Deovar, Colorada, Sep. 1980.