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Abstract 
 This paper is concerned with the generalization of the parameters of nested balanced 

ternary designs (NBTD) through tactical configurations. A four symbol PB arrays of varying 

strength 2m or (2m+1) has been constructed. In view of this, an example of PB arrays in four 

symbols of strength three has been included. Two orthogonal arrays (OA) (9, 3, 3, 2) of index 

unity and (18, 4, 3, 2) of index 2 has been developed through NBTD. The new designs that can be 

obtained through the PB arrays have also been included which are useful for intercropping 

experiments in relation to practical situations. One actual example of intercropping experiments 

with six intercrops has been added. 
 

Key Words: Nested Balanced Ternary Design, Partially Balanced (PB) Arrays, Tactical 

Configurations, Balanced Incomplete Block (BIB) Design, Doubly Balanced Incomplete Block 

(DBIB) Design, Strength. 

 
1. Introduction 

Initially, the balanced ternary designs were introduced by Tocher (1952). He 

obtained some balanced ternary designs by trial and error. A number of authors have 

studied these designs during the past decades (Billington, 1984; Donovan, 1988; 

Patwardhan and Sharma, 1988; Sarvate, 1990; Tyagi and Rizwi, 1979). 

  

             Nested balanced incomplete block (NBIB) designs were defined by Preece 

(1967) for statistical situations where there are two sources of variability and one 

source is nested within the other. That is, an NBIB design has two systems of blocks, 

the second nested within the first (each block from the first system, called super blocks, 

consisting of some blocks, called sub-blocks from the second), such that ignoring either 

system leaves a BIB design where blocks are those of the other system.  

 

Partially balanced arrays are important as fractional design in Statistics. The 

construction of such arrays was generalized by Chakravarti (1961) and later Dey et al. 

(1972)  have constructed PB arrays of strength two and three with three symbols using 

BIB and DBIB designs.. Hedayat and Wallis (1978) have used Hadamard matrices to 

construct these designs. In general, PB arrays of strength 2, 3 and 4 are identical with 

balanced fractional factorial designs of resolution 3, 4 and 5, respectively. 

  

It might be important to stress here that PB arrays not only provide a 

mathematically challenging field of research which unites various branches of the 

combinatorial theory of design of experiments, they are also urgently needed for 

practical problems arising in factorial experimentation. Further, Nigam (1985) 
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constructed a series of (n+1) symbol PB arrays of strength two from regular group 

divisible designs.  

  A tactical configuration, introduced by Sprott (1955) is a generalized structure 

of a BIB design. Sharma and Chandak (1999) obtained a tactical configuration of order 

(2m+1) from a tactical configuration of order 2m. Gupta et al. (1995) have given the 

construction of NBTD using two BIB designs under certain restrictions. 

  

Sharma (2005) constructed three symbol PB arrays of strength (2m+1). 

Recently, Sharma et al. (2009) have constructed a series of two associate partially 

balanced ternary designs and partially balanced arrays through group divisible (GD) 

and L2 designs. They have also constructed a five symbol PB arrays of strength two for 

the first and second associates. 

The purpose of this paper is to derive the expression for the generalization of 

the parameters of NBTD and their constructed PB arrays of strength (2m+1) or 2m in 

four symbols using tactical configuration (α,β,k,v) converted into design parameters by 

standard relationship. 

 

2. Definitions and Notations 

 

2.1 Balanced Ternary Design (BTD) 
A balanced n-ary design with parameters V,B,R,K,Λ and incidence 

matrix N=((nij)) is an arrangement of V treatments in B blocks, each of 

cardinality  K(K ≤ V )  such that (i) the i
th

 treatment appears nij times in the j
th

 

block where nij can take any of the values 0,1,2,…n-1.(ii)each treatment  occurs 

R times, and (iii) 
1

j B

j
n

=

=∑ ij n i׳j  = Λ for all i≠i1,2=׳,…V. Note that 
1

j B

j
n

=

=∑ ij = R 

for all i,and 
1

j V

j
n

=

=∑ ij = K for all j. For n=2 (binary) the design is called a BIB 

design with the usual coincidence number λ= Λ . When n=3 we use the term  “ 

balanced ternary design”. Thus, a  balanced ternary design is a collection of B 

blocks, each of cardinality  K(K ≤ V ) , chosen from a set of size V in such a way 

that each of the V treatments occurs R times altogether, each of the treatments 

occurring once in precisely in Q1 blocks and twice in precisely Q2 blocks, and 

with incidence matrix having inner product of any two rows Λ is denoted by BTD 

(V, B, Q1, Q2, R, K, Λ). It is to be noted that Q1+2Q2=R [Gupta et 

el.,1995;Sarvate and Seberry, 1993].  

 

2.2    Partially Balanced Arrays 
Let A be an m×N matrix, with elements 0, 1, 2… or s-1. Let us consider s

t
 

(1×t) vectors, X′ = (x1, x2, …, xt), which can be formed from t-rowed submatrix of A, 

and associate with each (tx1) vector X a positive integer �(x1, x2, …, xt), which is 

invariant under permutations of (x1, x2, …, xt), where xi = 0,1,2,…, s-1 ; i=1,2,…,t. If 

for every t-rowed submatrix of A, the s
t
 distinct (t×1) vectors X occur as column �(x1, 

x2, …, xt) times, then the matrix A is called a partially balanced (PB) array of strength t 

in N assemblies with m constraints, s symbols and the specified µ(x1, x2, …, xt) 

parameters and is represented as the PB array (m, N, s, t) with index set Λs, t. 
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2.3 Nested Balanced Ternary Design 
A nested  balanced ternary  design with parameters V, B1, B2, Q1, Q2, R, 

K1, K2, �1, �2,m) is an arrangement of V treatments each replicated R times with 

two systems of blocking such that: 

(i) the second system is nested within the first with each block from the first 

system (subsequently referred to as whole block) contained exactly m  blocks 

from  the second system (sub-block); 

(ii) ignoring the second system leaves a BTD  with B1 blocks  each of K1 units 

and with �1  concurrences; 

(iii) ignoring the first system leaves a NBTD   with B2 blocks  each of K2 units 

and with �2  concurrences, and 

Thus, VR =B1K1, VR =B2K2, �1 (V-1)= R1(K1-1)-2Q1 ,   �2 (V-1)= R2(K2-1)-2Q2  

where Q1 and Q2 are multiplicities of ‘2’ in BTD and NBTD respectively. 

 

2.4 Tactical configuration 

 Given a set Ω of v elements, and given positive integers k, β (β ≤ k ≤ v) and α, 

we designate by a tactical configuration c(�-β-k-v), a system of blocks (subset of Ω), 

having  k elements each such that every subset of Ω having β elements is included in 

exactly � blocks. If � =1, then the configuration is called the Steiner system i.e., it is a 

complete (1-β-k-v) configuration of v elements arranged in blocks of k so that each set 

of β elements occurs exactly once.  The symbol λt denotes the frequency of the number 

of blocks in which any t treatments a, b,c,…, occur together. It is very obvious that 

t=1,2,…,β (β may be odd or even) and λ1= r (number  of replication), λ0 = b = number  

of blocks. Sharma and Chandak (1999) have demonstrated that a configuration of order 

(2m+1) can always be constructed for all positive integral values of m. 

Let 
e f g h

i j k l
µ  denote the frequency of the t - plet in the t×b (t≤v) sub array of the b×v 

array in four symbols i, j, k, l with frequencies e, f, g and h respectively, such that 

e+f+g+h=t. 

 

3. Construction of NBTD and Partially Balanced Arrays 

 

3.1 Construction of NBTD through tactical configuration 
 Gupta et al. (1995) have constructed NBTD using two BIB designs D1 and D2 

with parameters (v, b1, r1, k1, λ1) and (k1, b2, r2, k2, λ2) respectively. They obtained D as 

NBTD with parameters v, b1 b2, r1(b2 + r2), k1+ k2, Λ= (2r2 + b2 + λ2)λ1. It is to be noted 

that the number of treatments in D2 equals k1, the block size of D1.On the similar lines 

of Gupta et al. (1995), we have generalized the parameters of NBTD through tactical 

configurations and thus we have the following theorem: 

 

Theorem 3.1  
 The existence of tactical configurations (λβ,- β- k- v) and (λβ׳- β- k1- k) 

respectively where k1<k implies the existence of a nested balanced ternary design D 

with parameters V=v, 
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Proof: Let us construct a tactical configuration ((λβ׳- β- k1- k) using the treatment 

labels in the ith block of tactical configuration (λβ,- β- k- v) converting into design 

parameters and add the ith block of tactical configuration (λβ,- β- k- v) to each of the 

blocks of this tactical configuration. Then, the resulting design is a NBTD. Each 

parameter can be verified on the basis of similar lines of Gupta et.al. (1995). The 

strength of PB arrays through NBTD will depend on the strength of tactical 

configurations i.e. if β is even, then strength of PB arrays will be even, otherwise odd. 

 

Theorem 3.2 The column of A' when treated as assemblies give rise to a balanced 

array with v treatments, 2b assemblies, four symbols and strength β, β may be odd 

(2m+1) or even (2m) where A' is given by A' = [N' / M'] and A' denotes the transpose 

of A. 

 

Proof:  
 Let us consider a NBTD with usual parameters V, B, Q1, Q2, R, K and Λ 

constructed through two tactical configurations with certain condition mentioned in 

Theorem 3.1. Again, 

           let N = (nij) be the incidence matrix of this NBTD design,  

        where nij = 2, if the j
th

 treatment occurs in the i
th

 block twice 

                         = 1, if the j
th

 treatment occurs in the i
th

 block once  

                         = 0, otherwise 

     Evidently, N is a b×v array of symbols (0, 1, 2). Let any assembly of this array be 

designated by a row vector z= (z1, z2,…,zv), zi=0,1 or 2. Then we define the "image" of 

z as z* given by z* = (z1*, z2*,…,zv*), zi+zi*≡3(mod4) for all i=1,2,…, v . Now let M 

be a b×v array of "images" of each of the assemblies of N. The frequency of the 

ordered t-plet. (2, 2, 2,…, β) i.e. 
0 0

0 1 2 3

βµ ∗
in any t-columned sub-array of N is obviously 

the number of blocks in which any β treatments a, b, c,…, occur together and is 
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therefore equal to λβ′×λβ. The frequency of the other t-plet (1, 2, 2,…β), i.e. 
0 1 1

0 1 2 3

βµ − ∗
 

in any t columned sub-array of N is the number of blocks in which all treatments occur 

twice with merely one treatment once. Clearly the number of such blocks is (λ′β-1-λ′β)λβ 

because (λ′β-1-λ′β) blocks are genuine with λβ to create the blocks in which all treatments 

occur twice with merely one treatment once. Similarly the frequency of the blocks 

having the occurrence of one treatment two times and rest, all twice i.e., 
0 2 2

0 1 2 3

βµ − ∗
 

then clearly the number of such blocks is ββββ λλλλ )2( 12
′+−′ −−  

Proceeding like this 

( )0 3 3 3 3

3 1 2 2 10 1 2 3
C Cβ

β β β β βµ λ λ λ λ λ− ∗
− − −′ ′ ′ ′= − + −   

…  … …  

          
0 0

0 1 1 2 20 1 2 3
...( 1)C Cβ β β β

β β

β
µ λ λ λ λ λ

β
∗   

′ ′ ′ ′= − + + −  
  

 

In this way, we have in N 

0 0

0 1 2 3

βµ ∗
,  

0 1 1

0 1 2 3

βµ − ∗
,  

0 2 2

0 1 2 3

βµ − ∗
 , … ,   

0 0

0 1 2 3

βµ ∗
            

1 0 1

0 1 2 3

βµ − ∗
, 

2 1 2

0 1 2 3

βµ − ∗
,

1 2 3

0 1 2 3

βµ − ∗
 , … , 

1 1 0

0 1 2 3

βµ − ∗
                         

2 0 2

0 1 2 3

βµ − ∗
,

2 1 3

0 1 2 3

βµ − ∗
 ,

2 2 4

0 1 2 3

βµ − ∗
 , … , 

2 2 0

0 1 2 3

βµ − ∗
         

3 0 3

0 1 2 3

βµ − ∗
,

3 1 4

0 1 2 3

βµ − ∗
 , 

3 2 5

0 1 2 3

βµ − ∗
 , … , 

3 3 0

0 1 2 3

βµ − ∗
 

… … …  … 

1 0 1

0 1 2 3

βµ − ∗
, 

1 1 0

0 1 2 3

βµ − ∗
 ,  

0 0

0 1 2 3

βµ ∗
 

Since the assemblies of M are "images" those of N, it follows that in any t-

column sub-array of M, the frequency of the ordered t-plets will be corresponding to N 

(i.e.) the symbols will be in M are: 

0 0

0 1 2 3

βµ ∗
, 

1 1 0

0 1 2 3

βµ ∗ −
,

2 2 0

0 1 2 3

βµ ∗ −
 , … , 

0 0

0 1 2 3

βµ ∗
  

1 0 1

0 1 2 3

βµ ∗ −
, 

2 1 1

0 1 2 3

βµ ∗ −
, 

3 2 1

0 1 2 3

βµ ∗ −
, … , 

0 1 1

0 1 2 3

βµ ∗ −
  

2 0 2

0 1 2 3

βµ ∗ −
, 

3 1 2

0 1 2 3

βµ ∗ −
, 

4 2 2

0 1 2 3

βµ ∗ −
, … , 

0 2 2

0 1 2 3

βµ ∗ −
 

3 0 3

0 1 2 3

βµ ∗ −
, 

4 1 3

0 1 2 3

βµ ∗ −
, 

5 2 3

0 1 2 3

βµ ∗ −
, … , 

0 3 3

0 1 2 3

βµ ∗ −
 

…, 
1 0 1

0 1 2 3

βµ ∗ −
   

0 1 1

0 1 2 3

βµ ∗ −
      

0 0

0 1 2 3

βµ ∗
. 

Therefore, in the whole array A, the frequencies of all ordered t-plets are given 

by  

0 0 0

0 1 2 3

βµ =
0 0 0

0 1 2 3

βµ = 0 0 1 1 2 2 ...( 1)C Cβ β β
β

β
λ λ λ λ λ

β

  
′ − + + −  
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0 0 1 1

0 1 2 3

βµ −
=

1 1 0 0

0 1 2 3

βµ −

( ) ( ) 11 1

0 1 1 1 1 2 2

1
... 1

1
C C

ββ β
β

β
λ λ λ λ λ λ

β
−− − − 

′ ′= − − + + −  −  
 

0 0 2 2

0 1 2 3

βµ −
=

2 2 0 0

0 1 2 3

βµ −
 

( ) ( ) 22

0 1 2 2 1 3

2
2 ... 1

2
C

ββ
β

β
λ λ λ λ λ λ

β
−− − 

′ ′ ′= − + − + −  −  
 

 …  …  …   

0 0 0

0 1 2 3

βµ 0 1 1 2 2 ...( 1)C Cβ β β
β β β β

β
λ λ λ λ λ λ λ

β

  
′ ′ ′ ′ ′= − + + − + ×  

  
 

0 1 0 1

0 1 2 3

βµ −
=

1 0 1 0

0 1 2 3

βµ − ( ) 11

1 1 1 2

1
... 1

1
C

ββ
β

β
λ λ λ λ

β
−− − 

′= − + −  −  
 

2 1 1 0

0 1 2 3

βµ −
=

0 1 1 2

0 1 2 3

βµ − ( ) ( ) 22

1 2 2 1 3

2
... 1

2
C

ββ
β

β
λ λ λ λ λ

β
−− − 

′ ′= − − + −  −  
 

         
0 1 1 0

0 1 2 3

βµ −
=

0 1 1 0

0 1 2 3

βµ −
= ( )1 2 12β β β β β β βλ λ λ λ λ λ λ− − −′ ′ ′ ′ ′ − × + − + ×   

0 0 0

0 1 2 3

βµ =
0 0 0

0 1 2 3

βµ  

( )13 2 ... 1
1 2

β
β β β ββ

β β β
λ λ λ λ λ λ λ

β−

      
′ ′ ′ ′ ′= × + − + + −      

      
 

Thus A is a four symbol partially balanced arrays of strength (2m+1) for all positive 

integral values of m. The frequency of all other t - plets combinations is zero. 

Hence the theorem. 

The result of Gupta et al. (1995) becomes a particular case of this theorem. 

 

4. Illustrative Examples 

Example 4.1 
 Consider the two tactical configurations (1-3-4-10) and (1-3-3-4), then we 

have a NBTD with parameters as V=10, B=120, Q1=12, Q2=36, R=84, K=7, Λ=48 , 

and applying the construction method given in Section 3 of this paper, we get a 

balanced array (v=10, b=240, s=4, t=3) with index set Λ 4,3.  
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2 2 2 0 1 0 0 0 0 0   1 1 1 3 2 3 3 3 3 3 

1 2 2 0 2 0 0 0 0 0   2 1 1 3 1 3 3 3 3 3 

2 1 2 0 2 0 0 0 0 0   1 2 1 3 1 3 3 3 3 3 

2 2 1 0 2 0 0 0 0 0   1 1 2 3 1 3 3 3 3 3 

0 2 2 2 0 1 0 0 0 0   3 1 1 1 3 2 3 3 3 3 

0 1 2 2 0 2 0 0 0 0   3 2 1 1 3 1 3 3 3 3 

0 2 1 2 0 2 0 0 0 0   3 1 2 1 3 1 3 3 3 3 

0 2 2 1 0 2 0 0 0 0   3 1 1 2 3 1 3 3 3 3 

0 0 2 2 2 0 1 0 0 0   3 3 1 1 1 3 2 3 3 3 

0 0 1 2 2 0 2 0 0 0   3 3 2 1 1 3 1 3 3 3 

0 0 2 1 2 0 2 0 0 0   3 3 1 2 1 3 1 3 3 3 

0 0 2 2 1 0 2 0 0 0   3 3 1 1 2 3 1 3 3 3 

0 0 0 2 2 2 0 1 0 0   3 3 3 1 1 1 3 2 3 3 

0 0 0 1 2 2 0 2 0 0   3 3 3 2 1 1 3 1 3 3 

0 0 0 2 1 2 0 2 0 0   3 3 3 1 2 1 3 1 3 3 

0 0 0 2 2 1 0 2 0 0   3 3 3 1 1 2 3 1 3 3 

0 0 0 0 2 2 2 0 1 0   3 3 3 3 1 1 1 3 2 3 

0 0 0 0 1 2 2 0 2 0   3 3 3 3 2 1 1 3 1 3 

0 0 0 0 2 1 2 0 2 0   3 3 3 3 1 2 1 3 1 3 

0 0 0 0 2 2 1 0 2 0   3 3 3 3 1 1 2 3 1 3 

2 0 0 0 0 2 2 1 0 0   1 3 3 3 3 1 1 2 3 3 

1 0 0 0 0 2 2 2 0 0   2 3 3 3 3 1 1 1 3 3 

2 0 0 0 0 1 2 2 0 0   1 3 3 3 3 2 1 1 3 3 

2 0 0 0 0 2 1 2 0 0   1 3 3 3 3 1 2 1 3 3 

0 2 0 0 0 0 2 2 1 0   3 1 3 3 3 3 1 1 2 3 

0 1 0 0 0 0 2 2 2 0   3 2 3 3 3 3 1 1 1 3 

0 2 0 0 0 0 1 2 2 0   3 1 3 3 3 3 2 1 1 3 

0 2 0 0 0 0 2 1 2 0   3 1 3 3 3 3 1 2 1 3 

2 0 2 0 0 0 0 2 1 0   1 3 1 3 3 3 3 1 2 3 

1 0 2 0 0 0 0 2 2 0   2 3 1 3 3 3 3 1 1 3 
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2 0 1 0 0 0 0 2 2 0   1 3 2 3 3 3 3 1 1 3 

2 0 2 0 0 0 0 1 2 0   1 3 1 3 3 3 3 2 1 3 

2 2 0 2 0 0 0 0 1 0   1 1 3 1 3 3 3 3 2 3 

1 2 0 2 0 0 0 0 2 0   2 1 3 1 3 3 3 3 1 3 

2 1 0 2 0 0 0 0 2 0   1 2 3 1 3 3 3 3 1 3 

2 2 0 1 0 0 0 0 2 0   1 1 3 2 3 3 3 3 1 3 

2 0 0 2 2 0 0 1 0 0   1 3 3 1 1 3 3 2 3 3 

1 0 0 2 2 0 0 2 0 0   2 3 3 1 1 3 3 1 3 3 

2 0 0 1 2 0 0 2 0 0   1 3 3 2 1 3 3 1 3 3 

2 0 0 2 1 0 0 2 0 0   1 3 3 1 2 3 3 1 3 3 

0 2 0 0 2 2 0 0 1 0   3 1 3 3 1 1 3 3 2 3 

0 1 0 0 2 2 0 0 2 0   3 2 3 3 1 1 3 3 1 3 

0 2 0 0 1 2 0 0 2 0   3 1 3 3 2 1 3 3 1 3 

0 2 0 0 2 1 0 0 2 0   3 1 3 3 1 2 3 3 1 3 

2 0 2 0 0 2 1 0 0 0   1 3 1 3 3 1 2 3 3 3 

1 0 2 0 0 2 2 0 0 0   2 3 1 3 3 1 1 3 3 3 

2 0 1 0 0 2 2 0 0 0   1 3 2 3 3 1 1 3 3 3 

2 0 2 0 0 1 2 0 0 0   1 3 1 3 3 2 1 3 3 3 

0 2 0 2 0 0 2 1 0 0   3 1 3 1 3 3 1 2 3 3 

0 1 0 2 0 0 2 2 0 0   3 2 3 1 3 3 1 1 3 3 

0 2 0 1 0 0 2 2 0 0   3 1 3 2 3 3 1 1 3 3 

0 2 0 2 0 0 1 2 0 0   3 1 3 1 3 3 2 1 3 3 

0 0 2 0 2 0 0 2 1 0   3 3 1 3 1 3 3 1 2 3 

0 0 1 0 2 0 0 2 2 0   3 3 2 3 1 3 3 1 1 3 

0 0 2 0 1 0 0 2 2 0   3 3 1 3 2 3 3 1 1 3 

0 0 2 0 2 0 0 1 2 0   3 3 1 3 1 3 3 2 1 3 

2 0 0 2 0 2 0 0 1 0   1 3 3 1 3 1 3 3 2 3 

1 0 0 2 0 2 0 0 2 0   2 3 3 1 3 1 3 3 1 3 

2 0 0 1 0 2 0 0 2 0   1 3 3 2 3 1 3 3 1 3 

2 0 0 2 0 1 0 0 2 0   1 3 3 1 3 2 3 3 1 3 

2 2 0 0 2 0 1 0 0 0   1 1 3 3 1 3 2 3 3 3 

1 2 0 0 2 0 2 0 0 0   2 1 3 3 1 3 1 3 3 3 

2 1 0 0 2 0 2 0 0 0   1 2 3 3 1 3 1 3 3 3 

2 2 0 0 1 0 2 0 0 0   1 1 3 3 2 3 1 3 3 3 

0 2 2 0 0 2 0 1 0 0   3 1 1 3 3 1 3 2 3 3 

0 1 2 0 0 2 0 1 0 0   3 2 1 3 3 1 3 2 3 3 

0 2 1 0 0 2 0 1 0 0   3 1 2 3 3 1 3 2 3 3 

0 2 2 0 0 1 0 2 0 0   3 1 1 3 3 2 3 1 3 3 

0 0 2 2 0 0 2 0 1 0   3 3 1 1 3 3 1 3 2 3 

0 0 1 2 0 0 2 0 2 0   3 3 2 1 3 3 1 3 1 3 

0 0 2 1 0 0 2 0 2 0   3 3 1 2 3 3 1 3 1 3 

0 0 2 2 0 0 1 0 2 0   3 3 1 1 3 3 2 3 1 3 

2 2 0 2 0 0 0 0 0 1   1 1 3 1 3 3 3 3 3 2 

1 2 0 2 0 0 0 0 0 2   2 1 3 1 3 3 3 3 3 1 

2 1 0 2 0 0 0 0 0 2   1 2 3 1 3 3 3 3 3 1 

2 2 0 1 0 0 0 0 0 2   1 1 3 2 3 3 3 3 3 1 

0 2 2 0 2 0 0 0 0 1   3 1 1 3 1 3 3 3 3 2 
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0 1 2 0 2 0 0 0 0 2   3 2 1 3 1 3 3 3 3 1 

0 2 1 0 2 0 0 0 0 2   3 1 2 3 1 3 3 3 3 1 

0 2 2 0 1 0 0 0 0 2   3 1 1 3 2 3 3 3 3 1 

0 0 2 2 0 2 0 0 0 1   3 3 1 1 3 1 3 3 3 2 

0 0 1 2 0 2 0 0 0 2   3 3 2 1 3 1 3 3 3 1 

0 0 2 1 0 2 0 0 0 2   3 3 1 2 3 1 3 3 3 1 

0 0 2 2 0 1 0 0 0 2   3 3 1 1 3 2 3 3 3 1 

0 0 0 2 2 0 2 0 0 1   3 3 3 1 1 3 1 3 3 2 

0 0 0 1 2 0 2 0 0 2   3 3 3 2 1 3 1 3 3 1 

0 0 0 2 1 0 2 0 0 2   3 3 3 1 2 3 1 3 3 1 

0 0 0 2 2 0 1 0 0 2   3 3 3 1 1 3 2 3 3 1 

0 0 0 0 2 2 0 2 0 1   3 3 3 3 1 1 3 1 3 2 

0 0 0 0 1 2 0 2 0 2   3 3 3 3 2 1 3 1 3 1 

0 0 0 0 2 1 0 2 0 2   3 3 3 3 1 2 3 1 3 1 

0 0 0 0 2 2 0 1 0 2   3 3 3 3 1 1 3 2 3 1 

2 0 0 0 0 2 2 0 0 1   1 3 3 3 3 1 1 3 3 2 

1 0 0 0 0 2 2 0 0 2   2 3 3 3 3 1 1 3 3 1 

2 0 0 0 0 1 2 0 0 2   1 3 3 3 3 2 1 3 3 1 

2 0 0 0 0 2 1 0 0 2   1 3 3 3 3 1 2 3 3 1 

0 2 0 0 0 0 2 2 0 1   3 1 3 3 3 3 1 1 3 2 

0 1 0 0 0 0 2 2 0 2   3 2 3 3 3 3 1 1 3 1 

0 2 0 0 0 0 1 2 0 2   3 1 3 3 3 3 2 1 3 1 

0 2 0 0 0 0 2 1 0 2   3 1 3 3 3 3 1 2 3 1 

2 0 2 0 0 0 0 2 0 1   1 3 1 3 3 3 3 1 3 2 

1 0 2 0 0 0 0 2 0 2   2 3 1 3 3 3 3 1 3 1 

2 0 1 0 0 0 0 2 0 2   1 3 2 3 3 3 3 1 3 1 

2 0 2 0 0 0 0 1 0 2   1 3 1 3 3 3 3 2 3 1 

2 0 0 0 2 0 0 0 2 1   1 3 3 3 1 3 3 3 1 2 

1 0 0 0 2 0 0 0 2 2   2 3 3 3 1 3 3 3 1 1 

2 0 0 0 1 0 0 0 2 2   1 3 3 3 2 3 3 3 1 1 

2 0 0 0 2 0 0 0 1 2   1 3 3 3 1 3 3 3 2 1 

0 2 0 0 0 2 0 0 2 1   3 1 3 3 3 1 3 3 1 2 

0 1 0 0 0 2 0 0 2 2   3 2 3 3 3 1 3 3 1 1 

0 2 0 0 0 1 0 0 2 2   3 1 3 3 3 2 3 3 1 1 

0 2 0 0 0 2 0 0 1 2   3 1 3 3 3 1 3 3 2 1 

0 0 2 0 0 0 2 0 2 1   3 3 1 3 3 3 1 3 1 2 

0 0 1 0 0 0 2 0 2 2   3 3 2 3 3 3 1 3 1 1 

0 0 2 0 0 0 1 0 2 2   3 3 1 3 3 3 2 3 1 1 

0 0 2 0 0 0 2 0 1 2   3 3 1 3 3 3 1 3 2 1 

0 0 0 2 0 0 0 2 2 1   3 3 3 1 3 3 3 1 1 2 

0 0 0 1 0 0 0 2 2 2   3 3 3 2 3 3 3 1 1 1 

0 0 0 2 0 0 0 1 2 2   3 3 3 1 3 3 3 2 1 1 

0 0 0 2 0 0 0 2 1 2   3 3 3 1 3 3 3 1 2 1 
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Example 4.2 

Case I 
 Rao and Rao (2001) have introduced new design using orthogonal array 

(8,4,2,3) of strength 3 for conducting intercropping experiments when the intercrops are 

sub-divided into classes (groups) based on agronomic, cultural, plant protection, 

economic considerations besides the main crop. In the similar fashion, let us consider 

NBTD with parameters V=3 , B=6, Q1=2, Q2=2, R=6,K=3, Λ=4, so that N′ of Example 

4.1 can be performed. Taking the image of N′ as M′ using zi+zi* ≡ 3 (mod 4) for all 

i=1,2,…,v treatments. The blocks are given below: 

 

 
  

Two OA and new designs that can be obtained through the PB arrays have  been 

given below:  

 

1. The N' and its images M' are PB arrays of strength (2m+1) with four symbols with 

index set Λ4, 3 constructed by author in the present paper. In the similar fashion, Λ4, 5 

can be constructed having a large number of blocks. Hence, we have constructed PB 

arrays in four symbols of strength 3. 

 

2. Using image method zi+zi* ≡ 3(mod 4) on the constructed PB arrays can be used for 

conducting intercropping experiments when intercrops are subdivided into various 

groups based on agronomic practices including main crop assuming that some of the 

interaction of intercrops are negligible. We construct design for experiments where 

each plot consists of main crop p and q intercrops such that each of these intercrops is 

selected from a group of r intercrops following Rao and Rao (2001). 

 

 Let us consider an intercropping experiment using a main crop p and 12 

intercrops where the intercrops are divided into three groups S1, S2 and S3 with 4 in 

each group viz., S1=[1,2,3,4], S2=[5,6,7,8] and S3=[9,10,11,12]. Let us designate the 

symbols 0,1,2,3 of first row of PB array with intercrops 1,2,3,4 of S1, second row with 

intercrops 5,6,7,8 of S2 and third row with intercrops 9,10,11,12 of S3. Taking the 

column of the array as the plots of the intercrop experiment in addition to the main crop 

‘p’ in each plot, the resulting intercropping experiment will have the following 12 plots: 

 

(p,3,6,9), (p,2,7,9), (p,1,7,10), (p,1,6,11), (p,3,5,10), (p,2,5,11) 

(p,2,7,12), (p,3,6,12), (p,4,6,11), (p,4,7,10), (p,2,8,11), (p,3,8,10) 

 It is to be mentioned that this method provides intercropping design with one 

main crop and 12 intercrops divided into three groups of four intercrops each assuming 

that sum of the interaction of the intercrops are negligible. 
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Case II 
Based on the parameters of the NBTD i.e. V=3, B=6, Q1=2, Q2=2, R=6, K=3, 

Λ=4 . Let us consider an intercropping experiment using a main crop p and 9 intercrops 

where the intercrops are divided into three groups S1, S2 and S3 with 3 in each group 

viz., S1=[1,2,3,], S2=[4,5,6] and S3=[7,8,9]. Let us designate the symbols 0, 1, 2 of first 

row of PB array with intercrops 1, 2, 3 of S1, second row with intercrops 4, 5, 6 of S2 

and third row with intercrops 7,8,9 of S3. Taking the column of the array as the plots of 

the intercrop experiment in addition to the main crop ‘p’ in each plot, the resulting 

intercropping experiment will have the following plots: (p,3,5,7), (p,2,6,7), (p,1,6,8), 

(p,1,5,9), (p,2,4,9), (p,3,4,8). This intercropping design consists of fewer constraints 

and intercrops rather than that of Rao and Rao (2001). 

 

Case III 
 Let us consider NBTD with parameters i.e. V=3, B=6, Q1= 2, Q2= 2,R=6, 

K=3, Λ=4, and addition of one column of 0’s,1’s and 2’s, of order 3x1, it becomes an 

orthogonal array (9,3,3,2) of index unity. This can be used in fractional factorial and for 

intercropping experiment in addition to 3 plots into 6 plots considered in Case II. This 

also consists of fewer constraints than Rao and Rao (2001). 

 

Case IV   
 Based on the parameters of the NBTD i.e. V=4, B=12, Q1=3, Q2=6, R=15, 

K=5, Λ=16.This parameter of NBTD can be considered for intercropping design taking 

12 intercrops into four groups S1, S2, S3 and S4 with 3 in each group. On the pattern of 

Case I and II, the resulting plots can be developed. 

 

 In addition to the above parameters of NBTD (Case IV) and two columns of 

1’s of order 4x1 and one identity matrix of the order 4x4, we have an orthogonal array 

(18, 4, 3, 2) of index 2. This array can be used in fractional factorial design. Sharma 

(2005) has recently considered an intercropping experiment using a main crop ‘p’ and 9 

intercrops on the basis of PB arrays. In the context of an actual example of 

intercropping experiment, Pandey et al., (2003) have studied the effect of maize (Zea 

mays L.) based intercropping systems on maize yield as main crop and 6 intercrops. 
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