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Abstract  
 Bayes estimators of the shape parameters of a Pareto type-I model are obtained for 

different priors using Square Error and Asymmetric Precautionary Error Loss Functions through 

direct method and Lindley’s approach. Bayes estimators of reliability and hazard rate functions 

have also been discussed. The calculations have been illustrated with the help of numerical 

example. Comparison between Square Error and Asymmetric Precautionary Error Loss Functions 

have also been shown with the help of a numerical example. 
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1. Introduction 

The Pareto distribution, named after the Italian Economist Vilfredo Pareto, is 

a power law probability distribution  that coincides with  social,  scientific,  

geophysical,  actuarial, and many other types of observable phenomena. Outside the 

field of economics, it is sometimes referred to as the Bradford distribution. The Pareto 

distribution was originally used to describe the allocation of wealth among individuals 

since it seemed to show rather well the way that a larger portion of the wealth of any 

society is owned by a smaller percentage of the people in that society. The probability 

density function of Pareto type – I distribution is given by 
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The first parameter marks a lower bound on the possible values that a Pareto distributed 

random variable can take on.  

 

Bayesian statistics provide a conceptually simple process for updating 

uncertainty in the light of evidence. Initial beliefs about some unknown quantity are 

represented by a prior distribution. Information in the data is expressed by the 

likelihood function. The prior distribution and the likelihood function are then 

combined to obtain the posterior distribution for the quantity of interest. The posterior 

distribution expresses our revised uncertainty in light of the data.  
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Ashour et al.(1994) used the quasi-likelihood function  to derive Bayesian and 

non-Bayesian estimates for the unknown parameters of the Pareto distribution. 

Howlader and Hossain (2002) presented Bayesian estimation of the survival function of 

the Pareto distribution of the second kind using the methods of Lindley (1980) and 

Tierney and Kadane (1986).  Bermudez and Turkman (2003) used several methods for 

estimating the parameters of the generalized Pareto distribution (GPD), namely 

maximum likelihood (ML), the method of moments (MOM) and the probability-

weighted moments (PWM). Nigma and Hamdy (2007) supposed that the length of time 

in years for which a business operates until failure has a Pareto distribution. Pandey and 

Rao (2008) obtained Bayes estimators of the shape parameter of the generalized Pareto 

distribution by taking quasi, inverted gamma and uniform prior distributions using the 

linex, precautionary and entropy loss functions. These were compared with the 

corresponding Bayes estimators under the squared error loss function. Shukla and 

Kumar (2009) obtained Bayes estimators of the shape parameters of a generalized 

gamma type model for different priors using Lindley’s approach. 

 

  In this paper, we have obtained Bayes estimators of the shape parameter p for 

fixed θ of a Pareto  type-I model for different priors viz. uniform, Jeffrey’s, 

exponential, Mukherjee-Islam’s, Weibull, gamma etc. using Square Error and 

Asymmetric Precautionary Error Loss Functions through direct method and Lindley’s 

(1980) approach. Bayes estimators of reliability and hazard rate functions have also 

been discussed.  

 
2. Maximum likelihood estimator of p (for fixed θ) 
 

The likelihood function is given by 
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3.   Lindley’s Approach 
Bayes estimators are often obtained as the ratio of two integrals which cannot 

be solved by using asymptotic expansion and calculus of difference. Lindley (1980) 

developed an asymptotic approximation to the ratio  
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where *p  is the MLE of p 

Also, 
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3. Bayes Estimators of p Given θθθθ under Different Priors 

If θ  is fixed quantity, Bayes estimators of p may be obtained by using direct 

method and Lindley’s approach as follows: 

Here, 

( )h p p= , ( *) *h p p= ,  1( *) 1h p = ,  2 ( *) 0h p =  

Bayes estimators ( Bp ) of  p  givenθ   for different priors using the abovesaid 

two methods  are given in Table 1. 

 

4.  Bayes estimators of Reliability Function under Different Priors 
Reliability is the probability of a device performing its purpose adequately for 

the period intended under the given operating conditions. If X is the lifetime of the unit, 

the reliability of the unit at time t is given by, 

 

R(t) = P(X ≥ t) = 1 – F(t) 

Where F is the d.f. of the failure time X. 

 

Reliability Function of the given model is given by 
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Bayes estimators (
B

ptR )( ) of reliability function given θ by using different 

priors are given in Table-2. 
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Table 1 : The values of  
Bp  under direct method and Lindley’s Approach 
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ptR )(  
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Prior    Density      Bp  
Direct Method

 
        Bp  
Lindley’s Approach

 

Uniform )(
)1,0(
pI  

∑
=










+
n

i

ix

n

1

log

1

θ
 

*
1

1 p
n 




 +  

Jeffrey’s )(),1(

1 pIp e

−
 

∑
=








n

i

ix

n

1

log
θ

 
*p  

Exponential pe− ;   0>p  









+









+

∑
=

n

i

ix

n

1

1log

)1(

θ
 n

p
p

n

2*
*

1
1 −




 +  

Mukherjee-

Islam 
)(),0(

1 pIp σ
ααασ −−

; 0, >σα  

















+

∑
=

n

i

ix

n

1

log

)(

θ

α

 
*1 p

n 




 +
α

 

Gamma 
σα

α ασ
/11 pep −−

;  

0, >σα , 0>p  








+









+

∑
=

n

i

ix

n

1

1
log

)(

σθ

α

 

σ
α

n

p
p

n

2*
*1 −




 +  



Bayesian Estimation in Pareto Type-I Model                                                           143 

 

Prior 

B
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θ θ α θ
σ

     −       + + − +                     

 

Table 2: Bayes estimator (
B

ptR )( ) of Reliability Function given θθθθ 

 

5.  Bayes estimators of Hazard Rate Function under Different Priors 
The hazard function is a measure of the tendency to fail; the greater the value 

of the hazard function, the greater the probability of impending failure. Mathematically, 

the hazard function is defined as the ratio of the probability density function to the 

survival function , given by 
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Hazard Rate Function H(t) of the given model is given by        

H (t) =
t

p

tR

tf
=

)(

)(
       (10) 

Bayes estimators ( ( ) B

pH t ) of Hazard rate function  given θ by using 

different priors are given in Table-2. 
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Table 3: Bayes estimator (
B

ptH )( ) of Hazard Rate Function given θθθθ 
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6. Loss Function 
In the theory of point estimation, a loss function quantifies the losses 

associated to the errors committed while estimating a parameter. Often the expected 

value of the loss, called statistical risk, is used to compare two or more estimators: in 

such comparisons, the estimator having the least expected loss is usually deemed 

preferable. 

Let p be an unknown parameter and p̂  an estimate of p .The estimation error is the 

difference ( p̂ -p). The loss function is a function mapping estimation errors to the set of 

real numbers. 

           
6.1 Squared Error Loss Function (SELF) 

A commonly used loss function is the squared error loss function (SELF) 

  
2ˆ ˆ( , ) ( )L p p p p= −  

The SELF is often used because it does not lead to extensive numerical 

computation. 

 

Posterior Expected Loss 
2( )BE p p− of  Bayes estimators of the parameter p 

given θ for different priors under SELF for the proposed model are obtained by using 

direct method of integration and Lindley’s approach and are given in Tables 4 and 5. 
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Table 4: Posterior Expected Loss of Bayes Estimator of p under SELF for 

different priors  (Direct Method) 

 

 

 



Bayesian Estimation in Pareto Type-I Model                                                           145 

 

Prior 
 Posterior Expected  Loss of Bp under SELF
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Table 5: Posterior Expected Loss of Bayes Estimator of p under SELF for 

different priors  (Lindley’s Approach) 

 

6.2 The Precautionary Loss Function 
Norstrom (1996) introduced an alternative asymmetric precautionary loss 

function, and also presented a general class of precautionary loss functions as a special 

case. These loss functions approach infinitely near the origin to prevent 

underestimation, thus giving conservative estimators, especially when low failure rates 

are being estimated. These estimators are very useful when underestimation may lead to 

serious consequences. A very useful and simple asymmetric precautionary loss function 

(APLF) is 
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of  Bayes estimators of the parameter p 

given θ for different priors under APLF for the proposed model are obtained by using 

direct method of integration and Lindley’s approach and are given in Tables 6 and 7. 
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Table 6: Posterior Expected Loss of Bayes Estimator of p under APLF for 

different priors  (Direct Method) 
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Uniform 2( )B B
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−
+  
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( ) (2 ) ( )B B B
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− − −
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− −
− +       
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Islam  
2 2 2 2 2 2( ) ( ) ( 1) ( )B B B
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p p p p p p p
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α− + − − −
+ +  
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3 2
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α
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Table 7: Posterior Expected Loss of Bayes Estimator of p under APLF for 

different priors  (Lindley’s Approach) 

 

 

7. Numerical Illustration 

 To illustrate the calculations of Bayes estimates of p given θ under different 

priors, we have generated a random sample of size 100 from Pareto type-I model (p=5, 

θ=2) with the help of Easy Fit Professional 5.5 software. The generated data are given 

below: 

 

2.347741 2.215711 2.966724 2.49548 

2.23219 2.474255 2.096693 2.417451 

2.21434 2.317951 2.36612 2.209089 

2.925098 3.454793 2.519692 2.558836 

2.420827 2.005505 2.057287 2.546507 

2.104143 2.222513 2.79783 2.345352 



Bayesian Estimation in Pareto Type-I Model                                                           147 

2.092396 2.312452 2.428589 2.929116 

2.126033 3.191947 3.493986 2.496365 

4.890878 3.099833 2.333158 2.143872 

2.02951 3.631223 2.127282 3.808065 

2.751409 2.025598 2.003405 2.269133 

2.89437 2.337428 2.060617 4.387175 

2.160667 2.438709 3.355947 2.258303 

2.354059 2.636082 2.839061 3.169609 

2.024442 2.603608 2.218725 2.504647 

2.083845 2.086623 2.141131 2.068072 

2.070496 2.357513 2.189409 2.121921 

2.083327 2.245727 2.217183 2.274783 

2.654614 2.933221 4.338843 2.219359 

2.676281 2.415986 2.828695 2.022366 

3.411296 2.263096 2.160593 2.111004 

2.015468 2.37033 2.290202 2.682772 

2.279763 2.313352 2.667013 3.081878 

2.280491 2.840459 3.460497 2.421515 

2.340969 3.956496 2.428091 2.66508 

 

 

    Bayes estimates of p, R(t) given θ= 2 are obtained under different priors using 

Lindley’s Approach for the generated data and are given in Tables 8, whereas Bayes 

estimates of p (Direct method) and H(t) (Lindley’s Approach) are given in Table 9.  

 

 

 

Prior 

 

Bp  

BtR )(
 

For t= 

2 3 4 5 6 
Uniform 4.5434 

 
1.0000 0.1611 0.0450 0.0169 0.0076 

Jeffrey’s 4.4984 

 
1.0000 0.1640 0.0463 0.0175 0.0080 

Exponential 4.3410 

 
1.0000 0.1743 0.0512 0.0199 0.0092 

Mukh.-Islam  

         α=1 
 

 

4.5434 

 

  1.0000 

 

0.1611 

 

0.0450 

 

0.0169 

 

0.0076 

         α=2 

 
4.5884 1.0000 0.1581 0.0436 0.0162 0.0073 

         α=3 

 
4.6333 1.0000 0.1552 0.0422 0.0155 0.0069 

Gamma    

1,1 == σα  

 

 

4.3410 

 

1.0000 

 

0.1864 

 

0.0603 

 

0.0256 

 

0.0128 

2 , 1α σ= =  

 

4.3860 1.0000 0.1834 0.0597 0.0250 0.0125 

3 , 1α σ= =  

 

4.4310 1.0000 0.1805 0.0576 0.0243 0.0121 

Table-8: Bayes estimates of p and R(t) under different priors for θθθθ=2 
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  Table 8 reveals that Bayes estimator of p for θ = 2 is quite close to its true 

value under Mukherjee-Islam’s prior and it is approaching the true value as the value of 

α increases. The calculations for reliability and hazard rate functions have also been 

made in a similar manner at different values of t under different priors. 

 

                         

 

Prior 

 

Bp
 

( )BH t
 

For t= 

2 3 4 5 6 
Uniform 4.5434 2.2717 1.5144 1.1358 0.9086 0.7572 
Jeffrey’s 4.4984 2.2492 1.4994 1.1246 0.8996 0.7497 
Exponential 4.3478 2.1705 1.4470 1.0852 0.8682 0.7235 
Mukh.-Islam  

         α=1 
 

  4.5434 2.2717 1.5144 1.1358 0.9086 0.7572 

         α=2 

 
4.5884 2.2942 1.5294 1.1471 0.9176 0.7647 

         α=3 
 

4.6333 2.3166 1.5444 1.1583 0.9266 0.7722 

Gamma    

1,1 == σα  

 

4.3478 2.1705 1.4470 1.0852 0.8682 0.7235 

2 , 1α σ= =  

 

4.3908 2.1930 1.4620 1.0965 0.8772 0.7310 

3 , 1α σ= =  

 

4.4339 2.2155 1.4770 1.1077 0.8862 0.7385 

 

Table 9: Bayes estimates of H(t) under different priors for θθθθ=2 

 

 

8. Comparison and Conclusion 
 To compare the results numerically, we have calculated the values of Posterior 

expected loss under SELF and APLF by using the estimates of p by direct method and 

Lindley’s approach under different priors. The calculations are shown in Table 10.  It is 

revealed from the table that the results obtained by Asymmetric Precautionary Loss 

Function (APLF)  are better than the Square Error Loss Function  (SELF) under all the 

priors and the value of APLF is smallest under Gamma prior with α=1, σ=1 using direct 

method, whereas it is smallest under Uniform prior using Lindley’s approach. 

Reliability and Hazard rate functions decrease as t increases, as revealed by Tables 8 

and 9. 

 

It can also be concluded from the above table that the results obtained by 

direct method are slightly better than Lindley’s approach. Although, if in any case, it is 

almost impossible to solve the integration, Lindley’s approach can be used to find out 

the approximate value of the estimates.                                                  

 

 

 

 



Bayesian Estimation in Pareto Type-I Model                                                           149 

 

 

 

Prior 

Square Error Loss Function Asymmetric Precautionary 

Loss Function 

Direct 

Method 

Lindley’s 

Approach 

Direct 

Method 

Lindley’s 

Approach 

Uniform 0.204383 

 

0.373401 

 

0.044980 

 

0.091317 

 

Jeffrey’s 0.202359 

 

0.453924 

 

0.044980 

 

0.111497 

 

Exponential 0.187165 

 

0.813787 0.043047 

 

0.204983 

 

Mukh.-Islam  
         α=1 

 

0.204383 

 

0.373401 

 

0.044980 

 

0.091317 

 

         α=2 

 
0.20843 0.304401 0.045875 0.074204 

         α=3 

 
0.216525 0.247176 0.047656 0.067719 

Gamma    

1,1 == σα  

 

0.187165 

 

0.813787 

 

0.043040 

 

0.581880 

 

2 , 1α σ= =  

 
0.190872 0.697816 0.043900 0.515170 

3 , 1α σ= =  

 
0.198284 0.642643 0.045600 0.450860 

 

Table 10: The values of SELF and APLF under different priors using direct 

method and Lindley’s approach 
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