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Abstract 

In this paper, a method is proposed to improve the scheduled preventive 

maintenance of the system by assessing different kinds of availability and illustrated 

how the corrective maintenance data can be helpful to reschedule preventively 

maintained system. This method uses the concept of inherent availability to ensure to 

what extent maximum availability can be extended. The application of the proposed 

methodology has finally been demonstrated to six unit textile weaving industry situated 

in northern India. A mathematical formulation of Chapman – Kolmogorov differential 

difference equations, determining its availability, has been developed. A numerical 

study has been carried forward to quickly analyze the availability of the system on the 

actual corrective maintenance data taken from this industry.  
 

Key Words: Availability, Chapman-Kolmogorov Equations, Maintenance Scheduling, 

Numerical Methods, Textile Weaving Process. 

 

1. Introduction 

In the era of competitions among the manufacturing companies, the demand of 

quality production within the stated time period increases for assuring the requirement 

of patrons. The availability of production systems play significant role for achieving 

this requirement. The production system’s availability can be improved by maximizing 

the productivity of its sub-systems, which can be possible only through proper 

maintenance of the systems. Industries generally adopt two kinds of maintenance 

actions – preventive and corrective. While preventive maintenance is carried after a 

fixed interval of time to ensure the operational state of system through inspection of its 

units [1], corrective maintenance is provided to the system when it shows sudden 

breakdown and fails to respond.  

 

Many mathematical models have been developed in literature for improving 

system performance and are also helpful for maintenance personnel in industry. 

Syamsundar and Naikan [15] constructed a segmented point process model to analyze 

the failure processes of maintained systems subject to a change in the process that can 
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be identified as an off-line detection procedure. Subsequently, they [16] used it in a 

sequential manner for online detection to identify the change in the process. For making 

the system operational all the time, importance of preventive maintenance (PM) cannot 

be denied (Caputo et al. [1], Garg et al. [3]). However, timely given corrective 

maintenance helps system coming back in operation after sudden breakdown. If proper 

maintenance is not provided timely, the production process can drastically be affected 

in any industry. In order to schedule maintenance or to improve the operational levels 

of industry, a probabilistic parameter, availability, contributes major role. Several 

authors studied the availability for various industries and theirs systems.  

 

 Garg et al. [5] discussed preventive maintenance scheduling of pulping unit 

for paper plant industry through availability analysis. The availability analysis of 

different systems is also studied by by Goel and Singh [4] and Zhao [18]. Several 

authors such as Mahajan and Singh [12], Herder et al.[8], Trivedi et al. [17], Pandey et 

al. [13], Ram and Singh [14] etc. have discussed the reliability analysis of various 

systems. Gupta et al.[6,5] and Gupta et al. [7] have studied reliability and availability of 

the systems simultaneously. Kumar et al.[9] discussed the maintenance planning and 

resource allocation through birth and death process of urea fertilizer plant. Leou [11] 

have attempted to address these problems at different levels for unit maintenance with 

reliability and operation expenses. The mathematical models discussed in recent studies 

[2,Error! Reference source not found.] are helpful in improving the performance of 

the manufacturing process/systems. They considered the preventive maintenance data 

only. The aim of this research is to examine the effect of sudden breakdown of systems 

and their corrective maintenance repair times through stochastic model.  

 

 In this paper we have analyzed the unscheduled corrective maintenance 

actions to reschedule the preventively maintained systems by optimizing the sudden 

failure and repair rates. Though, there is always uncertainty to predict the exact sudden 

breakdowns of the manufacturing system. The corrective maintenance repair and failure 

times are converted into failure (failure in time) and repair (repair carried in time) rates 

of the system. Further, the time dependent availability and steady state availability 

analysis have been carried out to analyze the performance of production process. In 

order to optimize the failure and repair rate, the inherent availability is used while 

computing steady state availability. The approach thus developed has been applied to 

the textile weaving process for availability analysis on corrective maintenance data.  

 

The paper is organized as follows: Section 1 is introductory in nature. A brief 

survey of literature available on this subject is also presented in this section.  A 

complete description of the various subsystems of textile weaving process together with 

process flow chart has been discussed in Section 2. The notation of the subsystems and 

certain assumptions on which the present analysis is based, are also discussed in this 

section. Section 3 presents mathematical formulation of the problem determining the 

availability of the textile weaving process. In Section 4, analysis of time dependent 

availability and inherent availability have been carried out by varying transition rate of 

the subsystems to detect the sensitive subsystems. Certain conclusions drawn by 

comparing the values of inherent availability with long run availability to improve 

maintenance of the system are finally discussed in Section 5.  
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2. Production System: Textile Weaving Process 

Textile weaving process is concerned with making cloth from yarn through 

interlacing. The production system for manufacturing textile weaving is divided into six 

subsystems for the present analysis and is shown in Figure 1. We discuss in brief the 

functioning of these subsystems. 

 

 
Figure 1: Process flow diagram 

2.1. Weaving process 

Storage of yarn: Production of fabric needs yarn as raw material of the process 

and its storage plays significant role to keep raw material damage free. Raw material 

storage system is represented by A. Under special environmental observation, this 

system is supposed to be never fails. 

 

Warper: This system helps in preparation of base for a woven fabric. This system 

used to wind a definite number of thread ends in a precisely designed order (of given 

length) over a cylinder called beam by placing the spools (also known as thread reels) 

in a definite position on a frame, called creel. This consists of pneumatic subsystem, 

stop motion, scissors etc. Warper and associated facilities are prone to many major and 

minor failures. Warper is represented by B. 

 

Mixing system: This system works parallel to warper and important part of the 

process. It is used to prepare a mixture of polyvinyl alcohol, starch, binder and organic 

softener. This mixture used to coat the warp beam to strengthen the thread. The mixture 

system consists of cooker, gasket, pressure gauge and motor. It should be taken care 

that nut-bolts should tie tightly while making mixture. This system is subject to major 

failures only. Mixing system is symbolized by C. 

 

Slasher: Slasher, also known as sizing system is used to coat the warp beam with 

the mixture prepared in mixing system. Later warp is passed through dryer to retain the 

moisture. Each slasher system consists of dryers, motors, hydraulic, pneumatic system, 

press rolls beam, belts etc. This is subject to major and minor failures of the system. 

Subsystem slasher is represented by D. 
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Loom: Loom is a machine for weaving fabric by interlacing a series of vertical 

parallel threads of warp beam with horizontal parallel threads of other warp beam 

placed horizontally to the aforementioned one. That is, warp after sizing is transformed 

into fabric on a loom, through filling (interlacing of vertical warp thread with horizontal 

parallel threads). Thus woven fabric is then wound on a cloth beam. Loom is associated 

with major failures and represented by E. 

 

Fabric inspection machine: Fabric inspecting system is used to check the quality 

of the textile before packaging. This is subject to major failures of the system Fabric 

inspecting system used to check the quality of the textile before packaging. This is 

subject to major failures of the system and denoted by the symbol F.  

2.2.  System notations  

The following notations/symbols are used throughout the paper and are also used 

in transition diagram (Figure 2). 

 

, , , , ,A B C D E F       : Represent that systems are working in good states.   

,B D           : Subsystems andB D  are working with reduced capacity 

 i
( i=1, ,7 )λ ⋅⋅⋅          : Failure rates of the subsystems , , , , , ,C E F B D B D  respectively  

 i
( i=1, , 7 )µ ⋅⋅⋅         : Repair rates of subsystems , , , , , ,C E F B D B D respectively 

( )
i

P t ( )i=1, , 21⋅ ⋅⋅  : The probability that system is in the ith state at time t  

( )( ) 1, , 21
i

P t i′ = ⋅⋅⋅     : Rate of change of state with respect to time t at the i
th

 state of the  

      system. 

, , , ,b c d e f         : The failed state of subsystems B, C, D, E, and F, respectively.  

2.3. Assumptions  

The following assumptions are considered in order to carry out the 

performance analysis for maintenance scheduling of textile weaving process through 

stochastic model:  

(i) Repairs and failures are statistically independent with each other  

(ii) Units of repair and failure rates are taken as per day  

(iii) There is no simultaneous failure among the sub systems  

(iv) Subsystems B and D can fail completely only through reduce states  

(v) Repaired components are treated as new components  

(vi) Repair of subsystems B and D is allowed in reduced state only up to a certain 

limit  

(vii) Repair is carried out either in reduced or failed state of the system 

(viii) Component based preventive maintenance for each subsystem is carried to 

avoid frequent failures. 

 

3. Mathematical model for availability analysis of textile weaving process 

In order to obtain probabilities of both transient and steady state of textile 

weaving process, Chapman - Kolmogorov differential difference equations as well as 

system of linear equations have been formulated considering transition diagram shown 

in Figure 2. The mathematical formulations, carried out in both the states, are discussed 

separately as follows: 
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Figure 2: Transition diagram of textile weaving process 

3.1. Transient state for time dependent availability analysis 

The following system of linear differential equation is obtained at time t t+ ∆  

using the mnemonic rule with probability consideration of various states shown in the 

transition diagram of the weaving process. The differential equation for the state one is 

obtained as:  

   
1 1 2 3 4 5 1 1 5 2 6
( ) [1 ( )] ( ) ( ) ( )P t t t P t t P t t P tλ λ λ λ λ µ µ+ ∆ = − + + + + ∆ + ∆ + ∆ +                                     

3 7 4 2 5 3 6 14 7 15
( ) ( ) ( ) ( ) ( )t P t t P t t P t t P t t P tµ µ µ µ µ∆ + ∆ + ∆ + ∆ + ∆                               (1) 

 

Dividing (1) both sides by ∆t  and taking limit as ∆t 0→ , we get 

     
( )1

1 1 1 5 2 6 3 7 4 2 5 3 6 14 7 15
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d P t
P t P t P t P t P t P t P t P t

dt
α µ µ µ µ µ µ µ+ = + + + + + +  (2) 

 

Similarly, system of differential equations for other states can be written as:  

( )2

2 2 1 8 2 9 3 10 4 1 7 17
( ) ( ) ( ) ( ) ( ) ( )

d P t
P t P t P t P t P t P t

dt
α µ µ µ λ µ+ = + + + +                        (3) 

( )3

3 3 1 11 2 12 3 13 5 1 6 16
( ) ( ) ( ) ( ) ( ) ( )

d P t
P t P t P t P t P t P t

dt
α µ µ µ λ µ+ = + + + +                       (4) 

( )4

4 4 5 2 3 20 1 18 2 19 4 3
( ) ( ) ( ) ( ) ( ) ( )

d P t
P t P t P t P t P t P t

dt
α λ µ µ µ λ+ = + + + +                       (5) 

( )4

4 1
( ) ( ),      1,2,3

i

i i i

d P t
P t P t i

dt
µ λ+

++ = =                                             (6) 
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( )7

7 2
( ) ( ),      1,2,3 

i

i i i

d P t
P t P t i

dt
µ λ+

++ = =                                             (7) 

( )10

10 3
( ) ( ),      1,2,3 

i

i i i

d P t
P t P t i

dt
µ λ+

++ = =                                             (8) 

( )14

6 14 6 2
( ) ( )

d P t
P t P t

dt
µ λ+ =                                                               (9) 

( )15

7 15 7 3
( ) ( )

d P t
P t P t

dt
µ λ+ =                                          (10) 

( )16

6 16 6 4
( ) ( )

d P t
P t P t

dt
µ λ+ =                                            (11) 

( )17

7 17 7 4
( ) ( )

d P t
P t P t

dt
µ λ+ =                                                    (12) 

( )17

17  4
( ) ( ),      1, 2,3  

i

i i i

d P t
P t P t i

dt
µ λ+

++ = =                            (13) 

where, 
5

1

1

;  
i

i

α λ
=

= ∑
6

2 4

1,
4

;  i

i
i

α λ µ
=
≠

= +∑
4

3 5 7

1,

;i

i

α λ µ λ
=

= + +∑  
4 1 2 3 7 6

α λ λ λ λ λ= + + + +  

The initial conditions 

1,         if  1
(0)

0,  otherwise
i

i
P

=
= 


                                (14)  

The system of differential equations (1-13) is called Chapman - Kolmogorov 

differential difference equations. Time dependent availability of the system ( )A t can be 

computed using the relation 
4

1

( ) ( )
i

i

A t P t
=

= ∑                                                                                               (15) 

This further used to obtain mean time between system failures (MTSF), which is given 

by 

( )
0

t

MTSF A t dt= ∫                        (16) 

For the given value of failure and repair rates of the subsystems, the mean time to 

repair (MTTR) can be computed by the following formula 
7

1

7

1

i i

i

i

i

MTTR

λ µ

λ

=

=

=
∑

∑
                                                 (17) 

The equations (16 -17) will finally be used to obtain the inherent availability 
i

A  of 

the system and is given by 

i

MTSF
A

MTSF MTTR
=

+
                                                                              (18) 
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3.2. Steady state for availability analysis 

Steady state probability of the subsystems can be obtained by imposing the 

restriction t → ∞  on the system of linear differential equations (1-13). So, the system 

of linear differential equations (1-13) reduces to following system of homogeneous 

linear equations: 

1 1 1 5 2 6 3 7 4 2 5 3 6 14 7 15
P P P P P P P Pα µ µ µ µ µ µ µ= + + + + + +               (19)      

2 2 1 8 2 9 3 10 4 1 7 17
P P P P P Pα µ µ µ λ µ= + + + +                            (20) 

3 3 1 11 2 12 3 13 5 1 6 16
P P P P P Pα µ µ µ λ µ= + + + +             (21) 

4 4 5 2 3 20 1 18 2 19 4 3
P P P P P Pα λ µ µ µ λ= + + + +           (22) 

4 1
,      1, 2,3

i i i
P P iµ λ+ = =               (23) 

7 2
,      1, 2,3

i i i
P P iµ λ+ = =                       (24) 

10 3
,      1, 2,3

i i i
P P iµ λ+ = =                (25) 

6 14 6 2
P Pµ λ=                                                                                 (26) 

7 15 7 3
P Pµ λ=                                                                                                     (27) 

6 16 6 4
P Pµ λ=                          (28) 

7 17 7 4
P Pµ λ=                        (29) 

17 4
,      1, 2,3

i i i
P P iµ λ+ = =                                                      (30) 

The solution of the systems of homogenous linear equations (19-30) are finally 

used to study the long run availability ( )A ∞  for textile weaving process by computing 

the following relation 

( )
4

1

i

i

A P
=

∞ = ∑                                (31)    

Following the approach earlier used by [6, 5, Error! Reference source not 

found., 18], the system of linear differential difference equations (1-13) with initial 

conditions (14) have been solved numerically to calculate time dependent availability 

of the textile weaving process.  The step size of iteration is assumed as, 0.005h = , as 

one hour. The numerical computations have been carried forward from 

0 to 360t t= =  hour for various choices of failure and repair rates of the subsystems. 

The data of failure and repair rates, presented in Table 1, are the actual values of the 

various subsystems taken from the Nahar Fabrics Co. limited industry situated in 

Punjab, India. The values of probabilities thus computed are finally used in equation 

(15) to obtain the time dependent availability of the textile weaving process with the 

interval of 30 hours. The effects of failure and repair rates of the various subsystems on 

the time dependent availability have also been analyzed. 

 
Table 1: Failure and repair rates data 

C 
1

λ  0.0014 
1

µ  0.5 

E 
2

λ  0.0007 
2

µ  0.33 

F 
3

λ  0.00028 
3

µ  0.5 

B 
4

λ  0.0056 
4

µ  0.5 
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D  5
λ  0.0014 

5
µ  0.33 

B  6
λ  0.0019 

6
µ  0.33 

D  7
λ  0.0056 

7
µ  0.33 

 

In order to compute steady state availability of textile weaving process, the 

system of homogeneous linear equations has been solved numerically using Gauss 

elimination method with partial pivoting to obtain steady state probabilities. As we 

require nontrivial solution of the system of homogeneous linear equations, one of the 

equations of the system (19-30) has been replaced by normalizing condition, that is, 
20

1

1
i

i

P
=

=∑                 (32) 

Once unknown ( ), 1,..., 20
i

P t i =  are computed, the long run availability or 

steady state availability ( )A ∞  is obtained by using (31) for various combination of 

failure and repair rates of the subsystems. The MTSF of the system is next computed 

from (16) for one year using Simpson’s one-third rule. In fact, the function ( )A t  is 

integrated from 0 to 360 hour. Once MTSF and MTTR are known, inherent availability 

i
A  is finally computed by using equation (18).  

4. Time dependent availability analysis for detecting sensitive subsystems 

In order to analyze the effect of corrective maintenance on system behavior of 

the process industry, we assume that each subsystem are preventively maintained so 

that the occurrence of failure could be avoided after every 300 operating hours during 

the off schedule time. Hence, preventive maintenance is taken as a part of system 

functioning state. Now, we shall first categorically examine the sensitivity of the 

particular subsystems on the basis of the availability analysis of the textile weaving 

process and then optimize the failure and repair rates of the weaving process. 

 

By varying the failure rate 
1

λ  of subsystem C and keeping other parameters 

fixed (as shown in Table 1), we have computed time dependent availability for one year 

with the interval of 30 hours and results are shown in Figure 3a. Similarly, by varying 

the failure rate , 2,...,7
i

iλ = separately and taking other parameters, as given in Table 

1, fixed, the time dependent availability of the manufacturing plants have also been 

computed and all the results are depicted in Figure 3. The computed values of MTSF 

and MTTR for each variation in , 1,2,...,7
i

iλ = are also obtained and their minimum 

and maximum values are presented in Table 2. 
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Figure 3a: Failure rate (λ1) 

Figure 3e: Failure rate (λ5 )

Figure 3c: Failure rate (λ3) 

Figure 3b: Failure rate (λ2) 

Figure 3d: Failure rate (λ4)

Figure 3f: Failure rate (λ6)

Figure 3g: Failure rate (λ7)

 
Figure 3: Effect of failure rates on time dependent availability of weaving industry 

  

The results exhibited in Figures (3a-3g) reveal that warping and mixing 

subsystem are affecting more to the system performance than the remaining subsystems 

in terms of time dependent availability. So, these are detected as the most sensitive 

subsystems of the weaving industry. Now, we shall carry out the behavior analysis of 

these sensitive subsystems only for long run availability in the subsequent section.  

Table 2: Effect of failure rate of subsystems on the MTSF and MTTR 

Variations in 

failure rate of 

subsystems 

MTSF MTTR 

Maximum Minimum Maximum Minimum 

1
λ  313. 71 54. 98 0. 43 0. 49 

2
λ  313. 85 312. 80 0.42 0. 33 

3
λ  313. 85 309. 70 0.43 0.49 

4
λ  313. 70 54. 98 0. 43 0. 49 

5
λ  313. 85 312. 13 0. 43 0. 49 

6
λ  313. 63 38. 93 0. 42 0. 33 

7
λ  313. 85 311. 58 0.42 0. 33 
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4.1. Long-run availability analysis of sensitive sub-systems  

On comparing the computed values of long run availability for various 

combinations of failure and repair rates of the sensitive subsystems only, it can be 

optimized for the maintenance planning of the system. 

  

With the given choice of failure and repair rates, we have calculated inherent 

availability which is 0.99863. However, by giving variations to the failure rate of the 

subsystem, inherent availability changes by 0.0001% only. Hence, the inherent 

availability, obtained from the actual data, has been fixed to 0.99863 for further 

analysis. 

 

  As the subsystem B is one of the sensitive subsystems affecting the time 

dependent availability  more, long run availability has been calculated for various pair 

of failure rate and repair rate (
4 4
,λ µ ) and results are presented in Table 3. In order to 

obtain the optimal value for maintenance scheduling, we have also obtained inherent 

availability of the system because it corresponds to the maximum availability of the 

system that it can achieve. Thus, the optimal choices of long run availability of the 

system are: [0.98960, 0.98960, 0.98960, and 0.98960] corresponding to the pair wise 

failure and repair rate [(0.005536, 1.69999), (0.005557, 2.9), (0.005794, 1.69999), 

(0.005794, 2.9)] for maintaining high inherent availability of the system. 

Table 3: Systems availability results to detect optimized value of  

failure 
4

( )λ and repair rate 
4

( )µ  of warping 

4
λ       

4
µ  0.5 0.50024 0.512 0.524 1.7 2.9 

0.005557 0.98960 0.98960 0.98960 0.98960 0.98960 0.98960 

0.005794 0.98959 0.98959 0.98959 0.98959 0.98960 0.98960 

0.017554 0.98950 0.98950 0.98950 0.98950 0.98951 0.98951 

0.029554 0.98941 0.98941 0.98941 0.98941 0.98942 0.98942 

1.205554 0.98854 0.98854 0.98852 0.98851 0.98770 0.98738 

2.405554 0.98885 0.98885 0.98883 0.98882 0.98793 0.98747 

Underlined values represent optimal choices of long run availability 

corresponding to the pair wise failure and repair rates. 

 
Table 4: Systems availability results to detect optimized value of  

failure 
6

( )λ and repair rate 
6

( )µ  of warping 

6
µ       

6
λ  0. 33 0. 334 0. 345 0. 357 1. 53 2. 73 

0.00185 0.98960 0.98960 0.98960 0.98960 0.98962 0.98965 

0.00209 0.98960 0.98960 0.98960 0.98961 0.98963 0.98967 

0.01385 0.98986 0.98986 0.98986 0.98987 0.98993 0.99002 

0.02585 0.99012 0.99012 0.99013 0.99014 0.99020 0.99031 

1.20185 1.01758 1.01758 1.01758 1.01757 1.01752 1.01744 

2.4019 1.04888 1.04888 1.04885 1.04883 1.04862 1.04828 

Underlined values represent optimal choices of long run availability 

corresponding to the pair wise failure and repair rates. 

 

The result presented in Table 4 corresponds to the long run availability of the 

weaving process computed by various pair of failure and repair rate of subsystem B, 
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that is, (
6 6
,λ µ ) and keeping other parameters unchanged. From the Table 4, it is 

noticed that for maintaining maximum availability of the system, the optimal choices 

for pair wise failure and repair are [(0.002092, 2.73), (0.00185, 2.73), (0.002092, 1.533) 

corresponding to the long run availability (0.00185, 1.53)] 0.989665, 0.989654, 

0.989628, 0.989621. 

Table 5:  Systems availability results to detect optimized value of  

failure 
1

( )λ and repair rate 
1

( )µ  of warping 

1
λ         

1
µ  0. 5 0.50024 0. 512 0. 524 1. 7 2. 9 

0.00139 0.98960 0.98960 0.98966 0.98972 0.99152 0.99185 

0.00163 0.98913 0.98913 0.98920 0.98927 0.99138 0.99177 

0.01339 0.96664 0.96665 0.96723 0.96779 0.98463 0.98780 

0.02539 0.94472 0.94474 0.94578 0.94680 0.97783 0.98378 

1.20139 0.29321 0.29331 0.29813 0.30299 0.58328 0.70323 

2.4019 0.17210 0.17217 0.17550 0.17887 0.41317 0.54472 

 Underlined values represent optimal choices of long run availability 

corresponding to the pair wise failure and repair rates. 

 

Similarly, maintaining subsystem C for achieving the maximum availability of 

the weaving process, long run availability analysis has been carried for the various pair-

wise combination of failure and repair rates (
1 1
,λ µ ) and results are shown in Table 5.  

In this case, it is observed that the optimal choices for long run availability are 

0.989596, 0.989597, 0.989660, and 0.989721 corresponding to the following pair-wise 

combination of failure and repair rate [(0.001329, 0.5), (0.00139, 0.50024), (0.00139, 

0.512, 0.524)].  It is noted that whenever system availability approaches the inherent 

availability, system will show maximum performance and this trend will obviously be 

helpful to maintenance personnel of the industry. 

5. Concluding observation  

A comparative study of Tables (2-5) and Figures 3 (a - g)  reveals that 

subsystems B and C (that is, warper and mixing system) affect more the performance of 

textile production system due to sudden breakdown. Therefore, it is recommended that 

industry management should pay more attention to these subsystems only so that 

performance of the system may improve. In order to help the management in smooth 

functioning of the plant, optimized values of failure and repair rates are to be provided 

using inherent availability instead of long run availability (see Table 2-4).  In fact, 

management can set up periodic maintenance strategy with optimal combination of 

failure and repair rates to keep the system functioning at feasible echelon using the 

inherent availability. In this paper, we have also discussed how the corrective 

maintenance (CM) data can be helpful to reschedule the preventive maintenance of the 

machine systems by simulating results for constant failure and repair rates by solving 

the governing stochastic differential equation numerically. The problem becomes more 

complex for analyzing time dependent availability of the process industry when a 

mathematical model is developed assuming varying failure and repair rates of 

subsystems.  
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