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Abstract 
 We consider a family of connected networks whose nodes are subject to random 
failures ("attacks"). Node failure means elimination of all links incident to the attacked node. 
Each node, independently of others, fails with probability q . Network failure (DOWN) state is 
defined as the situation when the largest connected component has "critical" size L . We 
compare the probabilistic resilience of a simulated network (obtained by a preferential 
assignment-type algorithm) versus a regular network having the same number of nodes and links. 
This comparison is carried out for three types of regular networks:  the dodecahedron (20 nodes, 
30 links), square torus-type grid (25 nodes, 50 links) and five-dimensional cubic network (32 
nodes, 80 links). For all three types of networks the critical value of L  was approximately equal 
one third of the nodes.  It turns out that the network with regular structure and node degree 5d    
has higher resilience than a network with random structure, i.e. a regular network has smaller 
DOWN probability than a random network for the same q value and for the same number of 
failed nodes x It turns out, however, that the advantage of a regular network over a random 
network vanishes with the decrease of the average node degree. So, for 3,d  random network 
and its regular counterpart (so-called dodecahedron) have approximately the same resilience. Our 
investigation is based on comparing the so-called cumulative D-spectra and the network DOWN 
probabilities as a function of node failure probability .q  
 
Key words: Cumulative D-spectrum, Dodecahedron, Five-dimensional cube, Maximal 
connected component, Network resilience, Node degree, Node failures, Preferential assignment, 
Regular grid. 
 
1. Introduction 

  
1.1. Network and its UP and DOWN States 

By network ( , )V EN  we denote an undirected graph with a node-set V , 
| |V n , and an edge-set (link-set) E , | |E m .  If all nodes of the network are 
connected to each other directly or indirectly, the network is called connected. A 
nonempty subset of nodes  1V V   connected to each other by a set of edges (links)  

1E E  is called isolated component (or simply - component) of the network if there 
are no edges of type ( , )e a b , where 1a V  and 1b V V  . The size of the component 
is defined as the number of its nodes. 
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Network elements subject to failures are the nodes. A node can be in two 
states, up and down. Node v failure (down) means elimination of all links having v as 
their end node, while the node itself remains to exist. All nodes have failure probability 
q and fail independently of each other. It is assumed that initially ( , )V EN is 
connected, i.e. there is one component of size n; nodes fail (are "attacked") in random 
order, according to a "lottery" in which each node has failure probability q. As a result, 
network disintegrates into connected components of smaller size. Network may enter 
the DOWN state which, by definition, means that the largest component has size not 
exceeding the "critical" number L.  Network UP state is, by definition, the complement 
to the DOWN state. 

 
1.2. D-spectrum of the Network 

The central role in our exposition belongs to the method of computing the 
network DOWN probability as a function of the number of nodes failed in the network. 
This probability is expressed via so-called D-spectrum, see Gertsbakh and Shpungin 
(2009). ("D" -stands for destruction). 

 
Suppose that we number the nodes from 1 to n and consider a random 

permutation 1 2{ , ,..., }ni i i  of their numbers. We assign equal probability 1/ !n  to each 
permutation. Imagine that initially all nodes are up and we turn them down one-by-one 
by moving along   from left to right. The first node ri  such that the network becomes 
DOWN when the r-th node in  gets down is called the anchor of  . D-spectrum is the 
discrete distribution function of the anchor position. Formally, the D-spectrum is the 
collection of nonnegative numbers 1 2{ , ,..., }nf f f , where 

                         
1

(anchor position is r), 1,..., , 1.
n

r r
r

f P r n f


                           (1) 

 The readers working in reliability who are familiar with so-called coherent system 
signatures 

1 2{ , ,..., },ns s s  
 
see, e.g. Samaniego (1985, 2007), will realize that r rs f , 1,...,r n .  Elperin et al 
(1991) introduced it under the name ID (Internal Distribution) of the system.  
 
We will need also the cumulative D-spectrum ( )F x : 

                                       
1

( ) , 1,..., .
x

r
r

F x f x n


                                             (2) 

Obviously, ( ) 1F n  . By its definition, ( )F x equals the probability that the network is 
DOWN when x  of network nodes are down. 
 
So far nodes failures appeared in the artificial process of network "destruction".   Now 
suppose that each node can be in two states, up and down, and each node, 



Comparing Random and Regular Network Resilience …  

 

3

independently of other nodes, will be up with probability p and down with probability
1q p  . Note that elementary arguments lead to the following formula for

( )P DOWN : 

                                       
1

( ) ( ) ,
n

x n x
q

x

P DOWN C x q p 



                                           (3) 

where ( )C x is the number of network failure (cut) sets with exactly x  nodes in the down 
state and ( )n x  nodes - in the up state. 
 
In further exposition we will use the following important relationship connecting ( )C x  
with ( )F x : 
 
Claim 

                                         !( ) ( ) .
!( )!

nC x F x
x n x




                                                (4) 

 
We omit the proof of (4). This claim establishes a purely combinatorial fact since the 
random mechanism leading to ( )F x  does not depend on p,q. The proof of (4) can be 
found, for example, in Gertsbakh and Shpungin (2009), Chapter 8. 
 
1.3. Description of Networks 

In this paper we compare the nodal resilience of three types of networks 
differing by their average node degree. 
 
A. The first type are the networks with node degree 5d   and  32n   nodes having 
the same number of links 80m  . For this type of networks we compare the regular 5-
dimensional cubic network 5H  with a family of three random networks having the 
same number of nodes and links, and having therefore the same average node degree

5d  . Each of these random networks is obtained by applying the so-called 
preferential assignment algorithm, suggested by Barabasi and Albert (1999). This 
method is supposed to reproduce the natural growth of a network with a strongly 
nonuniform degree distribution and with the appearance of several nodes ("hubs") 
having high number of incident links. Construction of a network by this algorithm starts 
with a "kernel" network 0 0 0( , )N V E  having a small number of nodes 0 0| |V n  and 
several links 0 0| |m E . On each step of the construction, a new node v with d links is 
added to the existing network, and the probability that v will be connected by a link to 
an existing node w is proportional to the degree  wd  of node w. We carried out this 
construction adding on each step a new node and 5d   links, to obtain a network with 
32 nodes and exactly 80 links. 
 

We simulated three independent replicas of networks of this type which we 
call 1, 2H H  and 3H  . These networks typically have several "hubs" of degree 7, 
8, 9 and a large number of nodes having small degree 1d  or 2d  . 
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To understand the structure of the regular 5-dimensional cube  network 5H  let us note 
that the nodes in it are numbered by 5-digit binary numbers ranging from (0,0,0,0,0) to 
(1,1,1,1,1), and each node is connected to five other nodes whose binary number differs 
by a single digit. So, for example, the node (0,0,0,0,0) is incident to five nodes 
(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0) and (0,0,0,0,1). Cubic networks have 
some optimal properties in the process of information delivery between nodes, see 
Mitzenmaher and Upfall (2005) and because of that they are often used as a frame for 
connecting computer stations (nodes) into a computer network. For all networks of type 
A the critical number 10L  . 
 
B. The second family of networks has node degree 4d  . Its regular representative is a 
square torus-type network GRID with 5x5=25 nodes. Let us describe shortly the 
structure of this network. It is a planar 5x5 grid, whose internal nodes have degree

4d  . Suppose that we number the corner nodes (clockwise) as 1,2,3,4. To achieve 
degree 4 for these nodes we add two links to each corner. For example, two links are 
added, connecting nodes 1 and 2 and 1 and 4. In a similar way, we add one extra link 
("vertical" or " horizontal") to each border non-corner node connecting them to a 
symmetric node on the opposite border. 
 

Random counterparts of GRID are three independent replicas of networks, 
each having 25 nodes and 50 edges. These replicas have been obtained by preferential 
assignment (PA) algorithm, in which one new node and four new edges were added on 
each step of creating the network. Let us call the networks of type B Grid networks and 
denote the random replicas as 1, 2G G  and 3G . For B-type networks the critical 
number 8L  , i.e. slightly below one third of the number of nodes. Let us note, that if 
the PA algorithm produced a non connected network, the construction was repeated 
until it gave a connected network. 
 
C. The third family consists of networks with average node degree 3d  . The regular 
representative is so-called dodecahedron network. It has 20 nodes and 30 links, see 
Gertsbakh and Shpungin (2009), p.66, Fig.4.2. The random counterparts of this network 
(denoted as 1, 2D D   and 3D ) are three random replicas of networks obtained by 
applying the above described PA algorithm in which exactly three edges were added to 
the growing network on each stage of the algorithm. Of course, non connected 
exemplars produced by PA algorithm were neglected.  For type C networks, the critical 
component size was taken 7L  , again close to one third of the number of nodes. 
 
Remark. Central role in our study is played by the cumulative network D-spectra. The 
exact calculation of the D-spectrum is an NP-complete problem. We are using an 
approximation to the D-spectrum which is based on a Monte Carlo (MC) simulation. 
The main part of the MC procedure is generating one replica of random node number 
permutation  and of step-by-step follow up of the network maximal component size in 
the process of sequential node "destruction". The so-called disjoint set structure (DSS) 
(see Cormen, 2001) suits ideally for implementing this procedure.  For each type of the 
above described networks the network DOWN state was defined as the situation when 
the maximal connected component is L , where L was taken 10, 8, and 7, for type A, 
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B and C, respectively. Generation of 510M  random permutations allows obtaining 
sufficiently accurate estimates of the D-spectra for the above described networks. 
 
2. Network D-spectra and DOWN Probability 
 
2.1. Type A Networks 

Fig. 1 presents the graphs of the cumulative D-spectra for 5H   (the thick 
curve) and random replicas 1, 2, 3H H H    (thin lines). 
 

 
Fig. 1: The D-spectra of 5H  (thick) and 1, 2, 3H H H    (thin). 

 
Two properties of the spectra presented in Fig. 1 are important. First, the 

spectra of the random replicas 1, 2, 3H H H   are rather close to each other, and 
second - all they clearly lie above the D-spectrum of 5H  for x ranging from 10 to 23, 
in which the spectra curves change from zero to almost 1. Obviously, the regular cubic 
network is more resilient than its random counterparts. 

 
This becomes more obvious if we compare the corresponding probabilities that 

the network is in DOWN state for various node failure values q, see Table 1. 
 

For example, for 0.5q  , the probability that the regular network is DOWN 
equals 0.5 5( ) 0.095P H  while for the random counterparts of this network the 
corresponding probability ranges from 0.165 to 0.195, which is a considerable increase 
and signifies smaller resilience of random networks. 

 
On the early stage of our research, which we have reported in Gertsbakh and 

Shpungin (2011), we did not carry out similar comparisons for networks having smaller 
number of node degree. Moreover, we were convinced that the same advantage of a 
regular network over its random counterpart will remain true for 4d  and 3d  . The 
real picture however, turns out to be different, as it can be seen from the next 
subsection. 
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Table 1: DOWN probability of 5H  and its random counterparts as a function of q 
 
 
2.2. Type B and C Networks 

Fig. 2 presents the spectra of three random networks 1, 2, 3G G G    (thin 
curves) and the regular grid network GRID (bold curve). 
 

 
Fig. 2: The D-spectra of GRID (thick) and 1, 2, 3G G G    (thin). 

 
 
This figure is similar to the previous one, with the difference being that the 

bold curve (for GRID) is dominated by thin curves only for 15x  and ( ) 0.6F x  . For 
15,x  all spectra practically coincide. 

 
This is confirmed by the data on comparing network DOWN probabilities 

presented in Table 2. 
 
 
 
 
 

q 1)(qP H   2)(qP H   3)(qP H   5)(qP H  5( ; )qP H MPA  

0.40 0.029 0.036 0.039 0.010 0.054 

0.45 0.076 0.085 0.095 0.036 0.119 

0.50 0.165 0.176 0.195 0.095 0.226 

0.55 0.304 0.314 0.343 0.209 0.377 

0.60 0.485 0.490 0.525 0.380 0.556 

0.65 0.676 0.677 0.709 0.585 0.731 

0.70 0.836 0.835 0.857 0.777 0.870 

0.80 0.985 0.984 0.987 0.977 0.989 
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Table 2: DOWN probability of GRID and its random counterparts as a function of q 

 
 

It is seen from this table that the regular GRID has smaller DOWN probability 
in the range 0.6q   only and the advantage of GRID over 1, 2, 3G G G    is much 
smaller than the respective advantage of 5H  over its random counterparts. 
Extrapolating this comparison to the situation with dodecahedron network 3d  one 
can expect that the regular network and its random counterparts behave in a similar 
way. This is confirmed by Fig. 3. 
 
 

 
Fig. 3: The D-spectra of dodecahedron (thick) and 1, 2, 3D D D    (thin). 

 
Here the regular network (with 3d  ) is slightly more reliable for 8x   than 

the random networks (which have almost identical spectra) and is less reliable for 
8.x   

 
Thus the main conclusion of the above data is that the higher resilience of 

regular networks over their random counterparts with the same average node degree 
takes place for 5d  , and vanishes with the decrease of d and does not exist at all for 

3d  . 
 
 

Q 1)(qP G   2)(qP G   3)(qP G   )(qP GRID  ( ; )qP GRID MPA  

0.30 0.017 0.025 0.019 0.006 0.027 

0.40 0.088 0.110 0.092 0.057 0.119 

0.50 0.274 0.312 0.277 0.240 0.327 

0.55 0.485 0.490 0.525 0.380 0.471 

0.60 0.574 0.611 0.570 0.562 0.625 

0.70 0.853 0.873 0.846 0.858 0.870 

0.80 0.981 0.984 0.979 0.983 0.985 
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2.3. Modified PA algorithm and networks with “large” hubs  

In Gertsbakh and Shpungin (2011) we compared the regular 5H  grid with a 
random grid obtained by PA algorithm and a slightly modified network describing the 
9/11 terrorist network (Ternet). Ternet had a few very large hubs considerably 
exceeding by their size the largest hubs which might have been produced by the PA 
algorithm. It turned out that that Ternet was considerably less resilient than its analogue 
produced by PA algorithm (we called it Prefnet), which, in turn, was less resilient than 
the regular 5H  grid. 
 
 To generate networks with large hubs we modified the PA algorithm. Our 
modified preferential assignment (MPA) algorithm works as follows. We produce 
randomly a "skeleton" of network which consists of its spanning tree with a several 
extra links. Then the node degrees , 1,...,id i n  are counted and node i gets weight

4
i iw d . Then the missing links ( , )a b  are added one-by-one in such a way that one 

node for each links (say a) was chosen randomly and another node went to node b with 
probability proportional to the weight bw  of node b.  As it has been expected, MPA 
algorithm produced connected networks with a few very large hubs. For example, three 
simulated networks with 32 nodes and 80 edges had hubs of size (16,15), (16,14) and 
(20,16), respectively. 
 

Similar to the case of Ternet, MPA produced analogues of 5H  which turned 
out to be considerably less resilient than their counterparts produced by PA. The last 
column of Table 1 gives the corresponding DOWN probabilities (denoted 5( ; )qP H MPA
). 

The situation with Grid network produced by MPA is similar, see the 
corresponding failure probabilities in the last column of Table 2. However, the 
difference in qP  between the grids produced by PA and MPA are smaller than in the 

5H  case. 
The advantage in ( )qP DOWN  the regular dodecahedron network over its 

random counterparts produced by MPA is very small and calculations show that it is 
preserved only for 0.3 0.4q q    and is only of magnitude about 0.05. 
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