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Abstract  
 This paper makes an attempt to investigate the pattern of occurrence of rainfall such as 
sequences of wet and dry spells, expected length of such spells, expected length of weather cycle 
etc. in the western part of Orissa state of India by fitting a 2-state Markov chain probability 
model to the collected daily rainfall data for a period of 29 years. The key assumption behind 
reliability of this model is that the occurrence of a wet or a dry day is dependent on the weather 
condition of the previous day.  
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1. Introduction 
 There has been a growing operational demand for modeling daily rainfall data 
using various stochastic models. Because, once the rainfall process is adequately and 
appropriately modeled, the model can be used to provide prior knowledge of the 
structural characteristics of varying rainfall systems which are very much essential for 
agricultural and hydrological planning, industrial and water resource management, and 
climate change studies. As the distribution of rainfall varies over space and time, it is 
required to analyze the data covering long periods and recorded at various locations to 
obtain reliable information. It is also natural to imagine that the total agricultural 
production in any region depends not only on the total rainfall in a season, but also on 
its pattern of occurrence such as spells of rainy and dry days, expected number of dry 
days between two rainy days etc. Thus, a model-based scientific study of the pattern of 
occurrence of daily rainfall at regional level is therefore crucial for solving various 
water management problems and to assess the crop failure due to deficiency or excess 
of rainfall.  
   
 The Markov chain model for defining probable occurrences of dry and wet 
spells has already been achieved widespread use starting from the pioneering work of 
Gabriel and Neumann (1962). Because other models for constant probabilities are not 
able to describe the daily persistence of wet and dry conditions. Caskey (1963), Weiss 
(1964), Hopkins and Robillard (1964), Katz (1974), Todorovic and Woolhiser (1975), Basu 
(1971), Bhargava et al. (1973), Sundararaj and Ramachandra (1975), Aneja and 
Srivastava (1986), Rahman (1999a,1999b), Ravindranan and Dani (1993), Akhter and 



78                                              Journal of Reliability and Statistical Studies, June 2013, Vol. 6(1) 

 

Hossian (1998), Rahman et al. (2002), Banik et al. (2002), among others analyzed 
several situations on applying the Markov chain process.  
  
 Western Orissa is a less developed and agro-based region of India. More than 
80% of annual rainfall over this region is received from the south-west monsoon. The 
cultivation of all agricultural crops of the Western Orissa region mainly depends on the 
occurrences of rainfall (natural irrigation), as sufficient supplementary irrigation 
facilities are not available in the most part of the region. Agricultural production has 
very often been observed to be seriously affected either by excessive or insufficient 
rainfall. Clear understanding of the effects of various rainfall characteristics in this 
region is therefore necessary for planning response measures. Some of the previous 
studies on the rainfall over the state of Orissa are either for the state as a whole or for 
isolated stations in the state. To our knowledge, there is no such study for the Western 
Orissa region.  
 
 This paper presents a statistical analysis in order to identify the pattern of 
occurrence of rainfall by applying a 2-state Markov chain probability model to the data 
on daily rainfall occurrence for 29 years in the western part of Orissa during the 
monsoon season. 
  
2. Materials and Methods 

 
Source and Nature of Data  
 There is not any clear cut boundary line to define the Western Orissa region. 
However, we consider three districts of the Orrisa state namely, Jharsuguda, Sambalpur and 
Bolangir because all the four meteorological stations of the Indian Meteorological 
Department viz., Jharsuguda, Sambalpur, Titilagarh and Bolangir of the Western Orissa 
are confined to these districts only. In the present study, the daily rainfall data of the 
said four meteorological stations for 29 years (from 1977 to 2005) were collected from 
the Meteorological Centre, Bhubaneswar, Orissa. As the monsoon rainfall in the 
Western Orissa region mainly ranges from June to November, the period considered for 
the study was taken from 1st June to 30th November which also coincides with the 
growth season of the major crops in the tract.  
 
Markov Chain Model and Estimation  
 A rainy or wet day (a dry day) has been defined as one with ≥ 2.5 mm (< 2.5 
mm) of rainfall according to the definition proposed by the Indian Meteorological 
Department [cf., Basu (1971), Reddy et al. (1986)]. This gives a sequence of occurrence 
of wet and dry days. Further, under the assumption that the occurrence of a wet or a dry 
day is influenced only by the weather condition of the previous day, the process of 
occurrence of wet and dry days can be described by a 2 – state Markov chain with wet 
and dry days as the two states. The transition probability matrix	푃, which describes the 
2 – state Markov chain model is 

  푃 = 푃 푃
푃 푃  ,              (2.1) 

with 푃 + 푃 = 1 and 푃 + 푃 = 1, where 푃 	,푃 	,푃  and 푃  are the transition 
probabilities i.e., they are respectively the probabilities of occurrence of the following 
conditional events : 
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퐸 : A day is a dry day given that the preceding day was a dry day  
퐸 : A day is a wet day given that the preceding day was a dry day  
퐸 : A day is a dry day given that the preceding day was a wet day  
퐸 : A day is a wet day given that the preceding day was a wet day  
  

 Suppose that each day from 1st June to 30th November is classified according 
to the occurrence of the four events 퐸 	,퐸 	,퐸  and 퐸  such that 1st June is classified 
on the consideration of weather condition (wet or dry) of 31st May. Then, repeating this 
process for each year, frequencies of the occurrences of 퐸 	,퐸 	,퐸  and 퐸  are 
counted. Let these observed frequencies be denoted by 푎, 푏, 푐 and 푑 respectively with 
푎 + 푏 = 푛  and	푐 + 푑 = 푛 . Then the maximum likelihood estimates of the unknown 
transition probabilities 푃  and 푃  i.e., the parameters of the model are obtained as  
   푃 = 푝 = =    and  푃 = 푝 = =  ,   
with estimated variances given by 

 푣(푝 ) = ( ) =                          (2.2) 
and  
   푣(푝 ) = ( ) =  ,             (2.3) 
respectively.  
 
 The transition probabilities are conditional probabilities. But, the probability 
of a dry day (푃 ) and the probability of a wet day (푃 ) are also estimated from the 
observed frequencies of the conditional events as follows:  
   푃 = 푝 =   and  푃 = 푝 =  .  
These unconditional probabilities are also called binomial probabilities treating a rainy 
day as a success and a dry day as a failure in the system. 
        
 In order to test that the occurrence of a wet or dry day is influenced by the 
immediately preceding day’s weather, so that the Markov chain model works 
reasonably well, a normal test can be employed by computing the usual normal deviate 
test statistic  
   푍 =

est.		S.	E.		of	( )
=

( )
 ,           (2.4)           

where  푝 =  [cf., Bhargava et al. (1973)]. 
     
 Separate estimations of the transition probabilities 푃  and 푃  for the four 
meteorological stations encourage us to test the homogeneity of these stations with 
respect to these parameters. This will obviously lead to yield common estimates of 
these parameters for the Western Orissa region under study. For this purpose, let the 
frequencies of occurrences of 퐸 	,퐸 	,퐸  and 퐸  for the	푖 	station be denoted by 
푎 	, 푏 	, 푐  and 푑  respectively with 푎 + 푏 = 푛  and 푐 + 푑 = 푛 . Then, the estimates 
of 푃  and 푃 , pooled over the four stations, are defined by  푝̅ = ∑

∑   and  푝̅ =
∑
∑  , respectively. Taking these estimates as the expected probabilities, we can apply 
two chi-square tests for each station, to test the discrepancies between the observed and 
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the expected values of 푝  and 푝 . For the 푖  station, the concerned chi-square 
statistics, each at 1 degree of freedom (df), are defined by   

   휒 (푝 ) = ( ̅ ) +
̅
− 푛  ,             (2.5) 

and    

   휒 (푝 ) = ( ̅ ) +
̅
− 푛  , 푖 = 1,2,3,4,           (2.6) 

[cf., Rohatgi and Saleh (2000, p. 502)].   
 
Equilibrium or Steady State Probabilities of the Markov Chain  
 According to Cox and Miller (1967), since the sequence of wet and dry days 
can be considered as an infinite sequence on time axis, we can take any starting point 
with an initial day as wet or dry. Then, the system, after a sufficiently long period of 
time, is expected to settle down to a condition of statistical equilibrium with steady 
state or equilibrium probabilities which are independent of the initial conditions. These 
probabilities corresponding to dry and wet days are given by 
   휋 =    and  휋 =  , 
respectively. The number of days after which the state of equilibrium i.e., the original 
state is attained is equal to the number of steps or times the 푃–matrix is powered so that 
its diagonal elements become equal to 휋 	and	휋  [cf., Cox and Miller (1967)]. 
 
Expected Lengths of Wet and Dry Spells  
 The wet and dry spell (or run) lengths are very important statistical descriptors 
of wet and dry periods in a geographical area. Assuming that the lengths of wet and dry 
spells (denoted by 푊 and 퐷 respectively) follow geometric distribution [cf., Bhargava 
et al. (1973), Sundararaj and Ramachandra (1986), Ravindran and Dani (1993)], the 
probability of a wet spell of length 푥 is given by 

 푃(푊 = 푥) = 푃 푃 , 푥 = 1, 2, … .. ,         (2.7) 
and therefore, the expected length of the wet spell is obtained as 
              퐸(푊) 	= ∑ 푥	푃 푃 	∞  =  .             (2.8) 
 
 The probability of a dry spell of length 푦 is  

 푃(퐷 = 푦) = 푃 푃 , 푦 = 1,2, … ..             (2.9) 
and the expected length of the dry spell is given as 

 퐸(퐷) =  .            (2.10) 
 

 If we denote the length of weather cycle as, then the expected length of 
weather cycle i.e., 퐸(퐶) is given by 
     퐸(퐶) = 퐸(푊) + 퐸(퐷) = + 	.         (2.11) 
 
 To test the strength of fitting of the geometric distribution for describing the 
distributions of dry and wet spell lengths under the Markovian preconditions of 
dependence, a chi-square goodness of fit test can be performed with the help of the test 
statistic  

   휒 = ∑ observed	frequency	-	expected	frequency
2

expected	frequencyk ,                     (2.12) 



A Markov Chain Analysis of Daily Rainfall Occurrence …                                                         81  

 

which is asymptotically distributed as chi-square with 푘 − 1 df, where 푘 = number of 
spells.  
 
 As discussed in Cox and Miller (1967), the occurrence of the wet and dry days can 
be easily treated as dependent Bernoullian trials. Then, the expected values of the number of 
wet and dry days in a 푛–day period, denoted by 푊  and 퐷  respectively, are obtained as  
    퐸(푊 ) = 푛휋   and  퐸(퐷 ) = 푛휋  ,           (2.13) 
[cf., Reddy et al. (1986)]. Assuming 푛 to be large, the asymptotic variance of the number 
of wet (or dry) days in a 푛 - day period is given by 
   푉 	~ 	 ( )( )

( ) = ( )
( )  .         (2.14) 

 
 The maximum likelihood estimates of 휋 ,휋 ,퐸(푊),퐸(퐷),퐸(퐶),퐸(푊 ), (퐷 )	 
and		푉  are obtained in the usual way replacing 	푃  and 	푃  by 푝  and 	푝  
respectively. These estimates are denoted by 휋 ,휋 ,퐸(푊),퐸(퐷),퐸(퐶),퐸(푊 ),퐸(퐷 ) 
and	푉 .  
  
3. Results and Discussions 

 
Estimation of Model Parameters  
 At the first step towards the fitting of a 2-state Markov chain model to our data, 
the raw data on the daily rainfall are classified into four classes according to the 
conditional events 퐸 	,퐸 	,퐸  and 퐸 . From the actual frequencies of these classes, 
the corresponding relative frequencies are computed in order to obtain the maximum 
likelihood estimates of the transition (conditional) probabilities 푃 , 	푃 , 	푃  and 푃  
along with the unconditional binomial probabilities 푃 	and	푃  for the four 
meteorological stations. 
  
 From the calculated value of the 푍 - statistic defined in (2.4), it is found that |푍| > 
3 for all stations. This high significant value shows that the weather of a day is influenced by 
the weather of the previous day. As such, the occurrences of wet and dry days in the tract 
can be rightly described by a 2-state Markov chain model. 
 
 In order to test for the differences in 푝 	and	푝 from station to station, 휒 -
tests for the homogeneity of rainfall between the stations were run by using formulae 
(2.5) and (2.6). It is found that the calculated 휒  values for all four stations are 
insignificant for both the parameters 푃 	and	푃  at 5 % as well as 1 % levels of 
significance. Therefore, the patterns of the occurrence of rainfall at these four 
meteorological stations are regarded as similar. Hence, their daily rainfall amounts are 
grouped together (pooled) in the usual manner in order to obtain a single estimate of the 
daily rainfall amount, to compose common estimates the model parameters and to study 
various rainfall characteristics for the Western Orissa climatic situation.  
 
 Estimated values of the various conditional and unconditional probabilities 
associated with our 2-state Markov chain model are displayed in Table 3.1. Entries of 
this table clearly indicate that the probabilities of the rainfall are maximum and 
minimum in August and November respectively at the Western Orissa. The conditional 
probabilities for October and November show how rapidly and markedly the dry 
conditions establish themselves. The probabilities of wet conditions for these months 
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are negligibly low, indicating totally dry conditions. As no useful information on these 
probabilities can be expected from the said two months, they are excluded from the 
further discussion and we consider the period from June to September which is known 
as the rainy (or kharif) season of Orissa. 
 

Months 
Conditional Probabilities Unconditional Probabilities 

푝  푝  푝  푝  푝  푝  

June 0.7820 0.2180 0.4703 0.5297 0.6810 0.3190 
July 0.5983 0.4017 0.3922 0.6078 0.4922 0.5078 

August 0.6121 0.3879 0.3598 0.6402 0.4803 0.5197 
September 0.7411 0.2589 0.4749 0.5251 0.6466 0.3534 

October 0.9214 0.0786 0.6632 0.3368 0.8935 0.1065 
November 0.9793 0.0207 0.7113 0.2887 0.9718 0.0282 

June to 
September 0.6946 0.3054 0.4134 0.5866 0.5736 0.4264 

June to 
November 0.8100 0.1900 0.4326 0.5674 0.6930 0.3070 

 
Table 3.1: Estimates of Conditional and Unconditional Probabilities (1977-2005) 

 

Statistical 
Descriptors 

Months 

June July August September June to 
September 

휋  0.6833 0.4940 0.4812 0.6472 0.5751 
휋  0.3167 0.5060 0.5188 0.3528 0.4249 

퐸(퐷 ) 20.4983(20) 15.3145(15) 14.9175(15) 19.4154(19) 70.1653(70) 
퐸(푊 ) 9.5017(10) 15.6855(16) 16.0825(16) 10.5846(11) 51.8347(52) 
퐸(퐷) 4.5872 2.4894 2.5780 3.8625 3.2744 
퐸(푊) 2.1263 2.5497 2.7793 2.1057 2.4190 
퐸(퐶) 6.7135 5.0391 5.3573 5.9682 5.6934 

S. D. of dry or 
wet days 3.5174 3.4311 3.6002 3.4381 7.2895 

No. of days to 
equilibrium 13 09 10 10 11 

 
Table 3.2:  Statistical Descriptors of the Markov Chain Probability Model (1977-2005)  

 
Estimation of Expected Dry and Wet Days (With Spell Lengths)  
 Various statistical descriptors of the Markov chain model viz., estimated 
values of the expected number of dry and wet days and their spell lengths, length of 
weather cycle, S.D. of the estimated number of wet or dry days, steady state 
probabilities and number of days required for equilibrium, as explained in the preceding 
section, are computed and are compiled in Table 3.2.  
 
 From the Table 3.2, it can be seen that the expected length of dry spells varies 
from 2.4894 to 4.5872 days whereas that of wet spells varies from 2.1057 to 2.7793 
days. This means that after every 2 to 3 consecutive wet days, a dry day is likely to 
occur and after every 2 to 5 consecutive dry days, a wet day is likely to occur. 
However, computed overall expected values of the spell lengths indicate that after 
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every 2 to 3 consecutive wet days, a dry day is expected and after every 3 consecutive 
dry days, a wet day is expected during the rainy season i.e., during June to September. 
Hence, for this period the expected length of weather cycle varies from 5 to 6 days.  
 
 It is also evident from the Table 3.2 that the months July and August possess 
the highest number of expected rainy days i.e., 16 days and the lowest number of 
expected dry days i.e., 15 days. Assuming that the variables 푊 	and	퐷  follow normal 
distribution, we have computed 95% confidence intervals for 퐸(푊 )	and	퐸(퐷 ). From 
these confidence intervals we have concluded that the rainy days (dry days) are 
expected to lie between 38 to 66 days (56 to 84 days) during the period of 122 days of 
the rainy season. Apparently, there is not much overlapping between the two 
distributions.  
 
 For the month of August, 휋 	and 휋 values are respectively smaller and larger 
than other months and for the consolidated period from June to September these values 
are 0.5751 and 0.4249 respectively. As the number of days to equilibrium for the 
months varies from 9 to 13 days, this proves that after 9 to 13 days, during the rainy 
season, the probability of the day being wet or being dry is independent of the initial 
weather conditions. 
  

Spell Length 
(Days) 

Wet Spell Dry Spell 
Observed 
Frequency 

Expected 
Frequency 

Observed 
Frequency 

Expected 
Frequency 

1 1155 1211 932 886 
2 680 710 652 616 
3 415 405 400 428 
4 251 234 288 298 
5 159 139 183 207 
6 98 82 122 143 
7 65 58 97 99 
8 53 47 64 69 
9 21 17 45 47 
10 20 13 46 36 
11 13* 14* 20 22 
12 - - 15 16 
13 - - 19 12 
14 - - 10 11 
15 - - 7** 10** 

Calculated Value of 
휒 -Statistic (휒 ) 17.731 21.110 

Degrees of Freedom 10 14 

1% Critical Value 
of 휒   (휒 . ) 

 
23.209 

 
29.141 

  
5% Critical Value 

of 휒   (휒 . ) 18.307 23.685 

 * Frequencies corresponding to spell length ≥ 11        
  ** Frequencies corresponding to spell length ≥ 15 

Table 3.3: Observed and Expected Frequencies of Wet and Dry Spells (June-September) 
 



84                                              Journal of Reliability and Statistical Studies, June 2013, Vol. 6(1) 

 

 To study the closeness of fitting of the Markov based geometric distribution to 
the lengths of dry and wet spells, the 휒 -test for goodness of fit at 1% and 5% levels of 
significance has been applied on using the test statistic defined in (2.12). The test 
results for the different months are more or less similar and they provide evidence for 
quite good fit in each case. So, to save space, we do not present the results relating to 
the goodness of fit test for the individual months but these results for the consolidated 
months are presented in Table 3.3. The insignificant values of the calculated 휒  statistic 
prove that the lengths of wet and dry spells can be described by the Markov based 
geometric distribution. The graphical representations of the fitted probability 
distribution for the wet and dry spells are shown in Figures 3.1 and 3.2 respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.1: Observed and Expected Frequencies of Wet Spells 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.2: Observed and Expected Frequencies of Dry Spells 
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4. Conclusions  
 From this study on the different aspects of the pattern of daily rainfall 
occurrence at Western Orissa leads to the following tentative conclusions: 

(i) The Markov chain probability model appears to provide a good 
approximation for describing the occurrence of the sequence of wet and dry 
days.  

(ii) The rainfall distributions of the four meteorological stations of the Western 
Orissa exhibits more or less similar pattern.  

(iii) On the whole, as judged by the 휒  - test of goodness of fit, the geometric 
distribution model under the assumption of Markovian dependence of 
weather occurrence seems to be satisfactory for representing the 
distributions of wet and dry spells. 

(iv) During the rainy season, the expected length of dry spells is about 3 days 
and that of wet spells varies from 2 to 3 days, and the system settles down 
after about 9 to 13 days to a condition of statistical equilibrium in which the 
occupation probabilities are independent of the initial conditions. The 
estimated ranges for the expected numbers of dry days and rainy days 
during the period of 122 days are 56-84 and 38-66 respectively.  

 Although the Markov chain model provides a satisfactory fit to our daily 
rainfall data for computing probability of occurrence of the sequence of wet or dry 
days, we stress on further investigations with the help of other models and with new 
definitions of wet and dry days as well as other goodness of fit tests. Studies involving 
Time Series models such as ARCH or GARCH models can also be carried out for 
volatility of the data.  
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