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Abstract 
 In this paper, we propose Bayes Shrinkage (BS) estimators and Bayes Pre-test (BP) 
estimators for the scale parameter of Weibull distribution using type II progressive censored 
sample and study their properties under Squared Error Loss Function (SELF) and LINEX loss 
function (LLF). The results show that the suggested BP estimators, in terms relative risk with 
respect to both SELF and LINEX loss functions, have better performance than the BS estimators. 
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1. Introduction 
 The Weibull model is used widely in reliability and life testing. Weibull 
(1951) showed that the distribution is useful to describe the wear-out or fatigue failures. 
Lieblein and Zelen (1956) used it as model in the study of diameter of ball bearings. It 
is also used as model for vacuum tube (see Kao (1959)). Tadikamalla (1978) used it in 
inventory control. Mittnik and Rachev (1993) found that the Weibull distribution may 
be used as a statistical model for stock returns. Apart from these interesting 
applications, there are plenty of other papers describing the application of Weibull 
distribution in different scientific studies. Looking at its wide varieties of applications, 
many people have carried theoretical studies on different forms of Weibull distribution 
under various sampling schemes. However, the use progressive sampling scheme has 
not attracted many researchers though the scheme has its prime importance in reliability 
and life testing experiments. The toughness in mathematical tractability of the 
estimators and tests may be one of the reasons for not attracting the researcher.   
 

In the present study we concentrate on obtaining Bayes Shrinkage (BS) 
estimators and Bayes  Pre-test (BP) estimators for the scale parameter of Weibull 
distribution using type II progressive censored sample by considering the form  of 
density as given below           
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where p is the shape parameter and θ is the scale parameter.  
 
            In many situations we have prior information about the unknown parameter θ as 
a guess value, say θ0, which is desirable to be incorporated in the estimation. For the 
first time, Thompson (1968) suggested a new type of estimation scheme called 
shrinkage estimation, for unknown parameter θ when a guess value θ0 is available. 
Normally, shrinkage estimators perform better than the usual estimators when the guess 
value is close to the true value of the parameter. Exploiting this advantage, in statistics 
literature, many research papers have been written on obtaining shrinkage estimators 
for different parameters or parametric functions, under different life of distributions, 
using the data under different life testing schemes. The few interesting references are 
Pandey (1983), Pandey and Upadhyay (1985) and Pandey et al. (1989). The research 
papers by Singh  et al. (2008),  Prakash and Singh (2006,2009 and 2010) are recent 
advances in shrinkage estimation  as they deal with estimation of scale parameter of 
Weibull distribution using complete and usual censored data under different loss 
functions. In the present research work, on the line of these papers, we have obtained 
shrinkage estimators of scale parameters of Weibull distribution using progressive type 
II censored data and studied their properties under squared error and LINEX loss 
functions.  
 
             In progressive censoring an experimenter desires to remove units at points other 
than the final termination point that is,  (see Balakrishnan and Aggarwala(2000)) after 
observing the first  failure, R1  units are randomly selected and removed ; after 
observing the second  failure,R2 units are randomly selected and removed; and likewise 
when the i-th failure units is observed Ri  units are randomly selected and removed ;i=3, 
4,… ,m. The experiment terminates when the m-th failure is observed and the 

remaining 





1m

1i
im RmnR units are removed. This type censoring scheme is 

generally referred as type II progressive censored scheme. The complete sample and 
usual censored sample are special cases of type II progressive censored scheme for 
R1=R2= … = Rm=0 and for R1=R2= … = Rm-1=0, Rm= n-m, respectively. Balakrishnan 
(2007) gave a detailed study on the recent developments in inferential aspects based on 
type II progressive censored scheme. For some of the earlier research, under 
progressive censored data, we refer to Balakrishnan et al. (2003), Fernandez (2004), 
Guilbaud (2004), Soliman (2008), Balakrishnan and Cramer (2008), Balakrishnan and 
Dembinska (2008), Pradhan and Kundu (2009) and Al-Aboud (2009). 
 
   Now, let  n:m:mn:m:2n:m:1 X ,  . . .  ,  X ,  X   be Type II   progressive censored 
sample from the Weibull distribution as defined in (1). Then the joint density of 
progressive censored sample is  
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 where C= n (n-R1-1)(n-R1-R2-2)  . . . (n-R1-R2-  . . . – Rm-1-m+1) . 
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Since n:m:mn:m:2n:m:1 X ,  . . .  ,  X ,  X  are from Weibull distribution, the joint density 
is 
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In this paper,  we assume that the shape parameter is known. Then the ML estimator for 
the scale parameter θ is  
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Now, let us make the transformation p
n:mi:n:mi: XY   so that n:m:mn:m:2n:m:1 Y , . . . , Y , Y  is 

a progressive censored sample from exponential distribution with mean θ. Then using 
the results of Balakrishnan and Aggarwala (2000) we can show that 

2
2mχ  follows 

θ
2mT  distribution. Consequently, T has Gamma distribution with 

parameters  m and θ/m .The probability density function is   
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2. Class of Maximum Likelihood (ML) Estimators 
   We know that T is the ML estimator θ. Using this fact we define a class of 
estimators of the scale parameter θ as  
                                                     R     γT,γD .                                                 (6) 
The risk of the estimator D under squared error loss function is given as 

                                         RSELF(D) = 1)2γ
m

1m(γθ 22    .                                       (7) 

Now, the constant γ  which minimizes RSELF(D) is
1m

mλ1 
 . 

In many real life situations, errors are not symmetric around the  true value. In 
such cases, instead of using SELF, one can advantageously use LINEX loss function 
(asymmetric loss function) introduced by Varian (1975) which is given below;  
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                                           L (Δ) = 1)Δab(e Δa   ,                                                 (8) 

where 1
θ
θ̂Δ  , ‘b’ is the scale parameter and ‘a’ is the shape parameter. The sign  

and value of ‘a’ represents the direction and degree of asymmetry. The positive value of 
‘a’ is used when over estimation is more serious than under estimation and negative 
value is used for the other case. This property of the LINEX loss function has been 
considered by many researchers. The few important articles using the loss function are 
Varian (1975) , Basu and Ebrahimi(1991), Srivastava and Tanna(2001), and  Srivastava 
and Shah (2010).  
 
Let b=1  and aγ m   
Now, the risk of the estimator D under LINEX loss function is  

                                 RLLF(D) = 1γ)(1a)
m

γa(1e ma    .                      (9) 

The constant γ  which minimizes RLLF(D) is given as  

                                          )e(1
a
mγ 1m

a

2



 .     

Based on constants 1 and 2 we define two estimators as  

                                   D1= 1γ T,      
and     
                      D2= 2γ T. 

On substitution of the values of 1γ and 2γ  in (7) and (9) respectively, we get the 
respective risks of two estimators under square error loss function and LINEX loss 
function. Further we obtain risk of one estimator using the loss function which is being 
used to obtain the other estimator by minimizing the corresponding risk.  

RSELF(D1) = 
1m

θ2


                                        , 

                                        RLLF(D1)   =  1)(1a)
m

a(1e 1
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 , 

                                        RSELF(D2) = 1)2
m

1m(θ 22
2                   , 

                                        RLLF(D2)   =  ae   )1m)(1( 1m
a-

               . 
 
 
3. Bayes pre-test estimators     
 Instead of using maximum likelihood estimator, one can use Bayes estimator 
for obtaining shrinkage estimators. This idea prompted us to consider following prior 
distribution to obtain Bayes estimator of the parameter of the distribution.  
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Then the posterior distribution is given by 
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and the corresponding Bayes estimator under the SELF is given by  

                                                                   
2-bm

cmTθ̂B 
                                          (11) 

For utilizing the prior information (guess estimator) we choose the values of b and c 
such that the expectation of Bayes estimator is equal to guess estimator θ0 .  That is   
                                                                                θ)θ̂E( 0B   . 
This gives us m)(qθc  0   where q = m+b-2. Substituting this value of c in (11), we 
get  
                                                                    0B θk)(1Tkθ                      (12) 

 where 
q
mk  , the estimator Bθ is Bayes shrinkage estimator. Using the estimator 

given in (12), with the use of preliminary testing, we suggest the following two pre-test 
estimators. 
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where r1 and r2 are boundaries of the acceptance region of a test of the hypothesis 

H0:θ=θ0 against the alternative H1: θ≠θ0 . Define 
2m

χθr
2
10

1  and
2m

χθr
2
20

2  , where 

2
1χ and 2

2χ  are respectively lower and upper αth percentile values of chi-square 
distribution with 2m degrees of freedom. In the next section we derive risks of the 
above two estimators under SELF and LLF. 
 
4. Risk of pre-test estimators 
              The risk of the estimator BSθ~ under SELF is defined as follows: 
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RSELF( BSθ~ )=E( BSθ~ - θ)2  
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distribution given by 
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 . The risk function of BLθ~  under square 

loss function obtained from (15) 

by replacement 2γ  instead of 1γ . Now, we can find risk equation of estimator BSθ~   
under LINEX loss function as follows: 
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Also by using the transformation  
θ

mtx     and    evaluating the integral we get 
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The risk function of BLθ~  under LNIEX loss function can be obtained from (16) by 

replacing 1γ by 2γ . 
 
5. Relative Risk 
        To study the properties of estimators  BSθ~  , BLθ~  under SELF and LLF 

 
we 

compare the relative risks of the estimators given above. The relative risk of BSθ~  with 

respect to D1  and BLθ~  with respect to D2  under SELF and LLF are  
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 We observe that the equations for relative risks depend on m, b, a, α and λ .To 
demonstrate the performance of the proposed estimators under SELF and LLF, we have 
considered few values of the constants as: m = 6, 9, 12, b= 2, 4, 8, a=0.5, 1.0, α=0.01, 
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0.05, λ= 0.25(0.25)1.75.The Tables 1-4 give the values of the relative risks for the 
above given values of constants. Based these tables we have the following conclusions. 
 
5. Conclusion  
(i) The relative risks of both the estimators BSθ~  and BLθ~ , with respect to the 

estimators D1   and D2 respectively under SELF and LLF, are increasing 
functions of b provided 0.75≤ λ ≤ 1.25. Further the relative risk of the estimator 

BSθ~   with respect D1 is a decreasing function of m (this results in saving of 

sample units) whereas the relative risk of estimator BLθ~ with respect D2 is 
increasing in m.  

(ii) It is observed that the relative risk of both the estimators BSθ~  and BLθ~ under 
SELF and LLF are decreasing functions of α. 

(iii) The estimator BLθ~ has higher relative risk with respect to D2 under SELF and 

LLF than the relative risk of the estimator BSθ~  with respect to D1.  

(iv) The highest relative risk of the estimator BLθ~ with respect to D2 under SELF 
when a=0.5. 

(v) The relative risk of both the estimators BSθ~  and BLθ~  with respect D1 and D2 
respectively under SELF higher than under LLF. 

(vi) The both estimators BSθ~ and BLθ~  with respect D1and D2 respectively under LLF 
have highest relative risk when a=1. 

(vii) The relative risk of estimators BSθ~  with respect to BLθ~  under SELF is much 
greater than one for all values of  we considered except for =1. In  the later 
case it is greater than one when a=0.5 and for a=1.0 it remains less  than one for 
smaller values of m and crosses one as sample size increases. 

(viii) The relative risk of estimators BLθ~   with respect to BSθ~  under LLF is greater 
than one for all values of ≥1. For values of <1, we not able to identify any 
kind dominance behavior of one over the other. 

      As a summary to above conclusions we observe that  estimators  BSθ~  and BLθ~  
perform better, in terms of relative risk, with respect to the estimators D1 and D2 
respectively both under SELF and LLF in the neighborhood of θ=θ0; 
equivalently in the neighborhood of λ=1. 
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Appendix 

α=0.01 λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 1.0178 1.1957 1.4201 1.4922 1.3911 1.1807 0.9471 
4 0.9799 1.0914 1.6823 2.1894 1.8525 1.2431 0.8101 
8 0.9548 1.0136 1.8278 2.9341 2.1837 1.1883 0.6839 

9 
2 1.0058 1.1306 1.291 1.3256 1.2396 1.0619 0.8592 
4 0.9926 1.0296 1.4495 1.7772 1.5322 1.0811 0.7343 
8 0.9828 0.9551 1.5406 2.2603 1.7496 1.0266 0.6211 

12 
2 1.0019 1.0958 1.227 1.2431 1.1619 0.9924 0.8032 
4 0.9979 1.0073 1.3297 1.5753 1.369 0.9859 0.6869 
8 0.9947 0.9405 1.388 1.9287 1.5243 0.9313 0.5852 

α=0.05  

6 
2 1.0152 1.1904 1.4149 1.4244 1.2346 0.9842 0.7702 
4 1.001 1.1155 1.541 1.8641 1.494 0.9884 0.6678 
8 0.9915 1.0632 1.5989 2.2396 1.6501 0.9451 0.5867 

9 
2 1.0039 1.121 1.3007 1.2831 1.1084 0.8904 0.7166 
4 0.9999 1.0579 1.368 1.5875 1.2687 0.8669 0.6204 
8 0.9969 1.0117 1.3982 1.8652 1.3708 0.8211 0.546 

12 
2 1.001 1.0823 1.2423 1.2123 1.0442 0.8436 0.7013 
4 1 1.0335 1.2774 1.4445 1.152 0.8063 0.6105 
8 0.9992 0.9961 1.2903 1.6629 1.2218 0.7592 0.5408 

Table 1: )D,θ~(RR 1BSSELF  
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a=0.5 Λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 1.0877 2.4433 8.7237 16.5463 16.0006 12.5747 9.1755 
4 1.0841 2.4056 9.4502 23.0931 20.7789 13.1383 8.1087 
8 1.0815 2.3734 9.8019 29.4154 24.066 12.6438 7.0617 

9 
2 1.0253 1.9242 8.2498 21.0896 19.6436 13.2797 8.2133 
4 1.0246 1.9075 8.5624 26.7353 23.3324 13.4356 7.5705 
8 1.0241 1.8932 8.7213 32.1321 25.891 12.9881 6.8935 

12 
2 1.0071 1.616 7.5031 25.1787 21.5204 11.8374 6.2289 
4 1.007 1.6079 7.6428 30.1601 24.1344 11.8019 5.9279 
8 1.0068 1.6009 7.7148 34.893 25.9357 11.4901 5.6031 

a=1.0  

6 
2 1.1201 2.9441 7.2384 7.1302 6.1032 4.9158 3.7468 
4 1.1096 2.7981 8.785 10.7574 8.0528 5.1544 3.263 
8 1.1024 2.6812 9.676 14.8651 9.4305 4.9449 2.8017 

9 
2 1.0346 2.2237 8.1739 9.8942 8.2874 6.1433 4.2136 
4 1.0327 2.1669 9.0229 13.33 10.0275 6.2303 3.7847 
8 1.0312 2.1196 9.4975 17.0432 11.2731 5.9817 3.356 

12 
2 1.0097 1.7923 8.1059 12.4949 9.9222 6.3851 3.834 
4 1.0093 1.7676 8.5297 15.7423 11.3485 6.3591 3.5544 
8 1.009 1.7464 8.7594 19.1554 12.3649 6.1334 3.2685 

Table 2: )D,θ~(RR 2BLSELF  , α=0.01 
 
 

α=0.01 λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 0.9543 1.0768 1.3984 1.4895 1.3779 1.1938 1.0024 
4 1.1025 1.74 2.3698 2.4066 1.8637 1.2512 0.8283 
8 1.2041 2.5329 3.6404 3.5632 2.2201 1.1877 0.679 

9 
2 0.9769 0.9869 1.2534 1.3505 1.286 1.1723 1.049 
4 1.0358 1.52 1.9537 1.9246 1.5783 1.1519 0.8258 
8 1.0769 2.2626 2.925 2.6088 1.7875 1.0614 0.6575 

12 
2 0.9913 0.9495 1.1723 1.2744 1.2348 1.1629 1.0861 
4 1.0115 1.3778 1.7379 1.6876 1.428 1.0922 0.8264 
8 1.026 1.9817 2.5489 2.1632 1.5605 0.9841 0.6476 

α=0.05  

6 
2 0.9704 1.0003 1.2581 1.4415 1.3985 1.2447 1.0767 
4 1.0554 1.5578 2.3009 2.3155 1.724 1.1675 0.8112 
8 1.1097 2.2471 4.2012 3.4299 1.8941 1.0481 0.6481 

9 
2 0.9888 0.9516 1.1397 1.319 1.318 1.2349 1.1357 
4 1.0159 1.361 1.9241 1.8764 1.4617 1.0668 0.8094 
8 1.0341 1.8762 3.4172 2.5479 1.5176 0.9209 0.6287 

12 
2 0.9966 0.9401 1.0748 1.2511 1.2726 1.2288 1.1643 
4 1.0042 1.2418 1.7206 1.656 1.3233 1.01 0.817 
8 1.0096 1.6007 2.9582 2.1269 1.3224 0.851 0.6305 

         

Table 3: )D,θ~(RR 1BSLLF , a=1 
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α=0.01 Λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 0.9419 1.3041 2.872 4.4112 4.5058 4.0467 3.4801 
4 0.9832 1.527 3.9142 6.8595 6.169 4.2558 2.8277 
8 1.0072 1.6723 4.7871 9.6971 7.415 4.0243 2.285 

9 
2 0.9766 1.2242 3.2135 6.3072 7.0064 6.8146 6.2664 
4 0.9876 1.3379 3.9167 8.6659 8.7264 6.6803 4.7636 
8 0.9947 1.4179 4.5021 11.264 9.9888 6.0917 3.6972 

12 
2 0.9922 1.1576 3.3134 8.135 9.6027 9.5767 8.14 
4 0.995 1.2223 3.802 10.4075 11.2582 8.9128 6.1251 
8 0.9969 1.2703 4.2115 12.8402 12.4191 7.9211 4.7631 

α=0.05  

6 
2 0.9579 1.0677 1.9238 3.6121 4.7547 4.6896 4.0619 
4 0.9826 1.2144 2.4638 5.1536 5.9662 4.3468 2.9212 
8 0.997 1.3138 2.9095 6.682 6.6163 3.8326 2.2704 

9 
2 0.9873 1.0437 2.0038 4.8452 7.5206 7.3671 5.5238 
4 0.9925 1.1156 2.33 6.1577 8.4462 6.2239 3.9941 
8 0.9958 1.1669 2.5986 7.4095 8.8126 5.2719 3.1275 

12 
2 0.9967 1.0269 1.9995 5.9114 9.9221 7.9332 4.5629 
4 0.9977 1.0665 2.2157 7.0494 10.354 6.6362 3.7013 
8 0.9984 1.0959 2.396 8.1182 10.3465 5.6649 3.1177 

Table 4: )D,θ
~

(RR 2BLLLF , a=1 
 
 

a=0.5 Λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 0.0873 0.1962 0.7004 1.3284 1.2846 1.0095 0.7366 
4 0.087 0.1931 0.7587 1.854 1.6682 1.0548 0.651 
8 0.0868 0.1905 0.7869 2.3615 1.9321 1.0151 0.5669 

9 
2 0.0536 0.1005 0.4309 1.1016 1.0261 0.6937 0.429 
4 0.0535 0.0996 0.4473 1.3965 1.2188 0.7018 0.3954 
8 0.0535 0.0989 0.4556 1.6784 1.3524 0.6784 0.3601 

12 
2 0.0389 0.0625 0.2901 0.9736 0.8322 0.4577 0.2409 
4 0.0389 0.0622 0.2955 1.1663 0.9332 0.4564 0.2292 
8 0.0389 0.0619 0.2983 1.3493 1.0029 0.4443 0.2167 

a=1.0  

6 
2 0.2482 0.6523 1.6039 1.5799 1.3523 1.0892 0.8302 
4 0.2459 0.62 1.9466 2.3836 1.7843 1.1421 0.723 
8 0.2443 0.5941 2.144 3.2938 2.0896 1.0957 0.6208 

9 
2 0.1406 0.3022 1.1109 1.3446 1.1263 0.8349 0.5726 
4 0.1403 0.2945 1.2262 1.8116 1.3628 0.8467 0.5143 
8 0.1401 0.2881 1.2907 2.3162 1.532 0.8129 0.4561 

12 
2 0.0983 0.1744 0.7889 1.216 0.9656 0.6214 0.3731 
4 0.0982 0.172 0.8301 1.532 1.1044 0.6189 0.3459 
8 0.0982 0.17 0.8525 1.8642 1.2034 0.5969 0.3181 

Table (5): )D,θ~(RR 1BLSELF  , α=0.01 
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α=0.01 λ 
m b 0.25 0.5 0.75 1 1.25 1.5 1.75 

6 
2 1.1265 1.5874 1.448 1.3038 1.1534 0.9739 0.7993 
4 1.3809 4.5667 2.8549 2.1279 1.5448 1.0182 0.6691 
8 1.5742 99.4233 5.5787 3.1916 1.827 0.9692 0.5546 

9 
2 1.0265 1.4314 1.3307 1.2011 1.0898 0.9512 0.8122 
4 1.1014 3.3964 2.3461 1.7202 1.3266 0.936 0.656 
8 1.1546 20.4558 4.2926 2.3454 1.4936 0.8676 0.5328 

12 
2 0.9967 1.3242 1.2735 1.1503 1.0572 0.9366 0.8173 
4 1.0196 2.5695 2.1056 1.5276 1.2145 0.885 0.6465 
8 1.036 7.0421 3.6995 1.9647 1.321 0.8049 0.5207 

α=0.05  

6 
2 1.0522 1.5259 1.5515 1.3084 1.0959 0.9086 0.7557 
4 1.1709 4.1687 4.4197 2.1728 1.3233 0.8604 0.5966 
8 1.2498 2.9753 5.8419 3.3638 1.4384 0.7839 0.491 

9 
2 0.9824 1.0814 1.361 1.2981 1.1161 0.9771 0.8516 
4 0.984 1.2732 3.204 2.5572 1.4443 0.9873 0.7059 
8 0.985 1.4591 5.6707 8.7268 1.7773 0.9329 0.5741 

12 
2 1.0416 1.4285 2.2154 1.0092 0.8726 0.8083 0.8027 
4 1.1418 3.2425 5.654 1.0247 0.75 0.6435 0.6331 
8 1.2152 12.8937 12.9465 1.0108 0.6696 0.5502 0.5371 

Table (6): )D,θ~(RR 2BSLLF , a=1 


