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Abstract

In this paper, we propose Bayes Shrinkage (BS) estimators and Bayes Pre-test (BP)
estimators for the scale parameter of Weibull distribution using type Il progressive censored
sample and study their properties under Squared Error Loss Function (SELF) and LINEX loss
function (LLF). The results show that the suggested BP estimators, in terms relative risk with
respect to both SELF and LINEX loss functions, have better performance than the BS estimators.
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1. Introduction

The Weibull model is used widely in reliability and life testing. Weibull
(1951) showed that the distribution is useful to describe the wear-out or fatigue failures.
Lieblein and Zelen (1956) used it as model in the study of diameter of ball bearings. It
is also used as model for vacuum tube (see Kao (1959)). Tadikamalla (1978) used it in
inventory control. Mittnik and Rachev (1993) found that the Weibull distribution may
be used as a statistical model for stock returns. Apart from these interesting
applications, there are plenty of other papers describing the application of Weibull
distribution in different scientific studies. Looking at its wide varieties of applications,
many people have carried theoretical studies on different forms of Weibull distribution
under various sampling schemes. However, the use progressive sampling scheme has
not attracted many researchers though the scheme has its prime importance in reliability
and life testing experiments. The toughness in mathematical tractability of the
estimators and tests may be one of the reasons for not attracting the researcher.

In the present study we concentrate on obtaining Bayes Shrinkage (BS)
estimators and Bayes Pre-test (BP) estimators for the scale parameter of Weibull
distribution using type 1l progressive censored sample by considering the form of
density as given below

a4 xP (1)
f(x;p,e)zTe o, x>0,p,0>0,
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where p is the shape parameter and 0 is the scale parameter.

In many situations we have prior information about the unknown parameter 6 as
a guess value, say 6o, which is desirable to be incorporated in the estimation. For the
first time, Thompson (1968) suggested a new type of estimation scheme called
shrinkage estimation, for unknown parameter 6 when a guess value 0, is available.
Normally, shrinkage estimators perform better than the usual estimators when the guess
value is close to the true value of the parameter. Exploiting this advantage, in statistics
literature, many research papers have been written on obtaining shrinkage estimators
for different parameters or parametric functions, under different life of distributions,
using the data under different life testing schemes. The few interesting references are
Pandey (1983), Pandey and Upadhyay (1985) and Pandey et al. (1989). The research
papers by Singh et al. (2008), Prakash and Singh (2006,2009 and 2010) are recent
advances in shrinkage estimation as they deal with estimation of scale parameter of
Weibull distribution using complete and usual censored data under different loss
functions. In the present research work, on the line of these papers, we have obtained
shrinkage estimators of scale parameters of Weibull distribution using progressive type
Il censored data and studied their properties under squared error and LINEX loss
functions.

In progressive censoring an experimenter desires to remove units at points other
than the final termination point that is, (see Balakrishnan and Aggarwala(2000)) after
observing the first failure, Ry units are randomly selected and removed ; after
observing the second failure,R; units are randomly selected and removed; and likewise
when the i-th failure units is observed R; units are randomly selected and removed ;i=3,
4,... ,m. The experiment terminates when the m-th failure is observed and the

m-1
remaining R,, =n—-m— ZRi units are removed. This type censoring scheme is
i=1
generally referred as type 1l progressive censored scheme. The complete sample and
usual censored sample are special cases of type Il progressive censored scheme for
Ri=R,= ... = Ry=0 and for R;=R,= ... = R1=0, Ry= n-m, respectively. Balakrishnan
(2007) gave a detailed study on the recent developments in inferential aspects based on
type 1l progressive censored scheme. For some of the earlier research, under
progressive censored data, we refer to Balakrishnan et al. (2003), Fernandez (2004),
Guilbaud (2004), Soliman (2008), Balakrishnan and Cramer (2008), Balakrishnan and
Dembinska (2008), Pradhan and Kundu (2009) and Al-Aboud (2009).

Now, let Xy Xomn + o+ s Xmn 0€ Type 11 progressive censored

sample from the Weibull distribution as defined in (1). Then the joint density of
progressive censored sample is

m
f(X].'m:n » Xomn e Xm:m:n) = Cl_If(Xi:m:n )(1_ I:(Xi:m:n ))Ri ) @
i=1
0< X]_'m:n < X2:m:n S Xm:m:n
where C=n (n-R;-1)(n-R;-R;-2) ... (N-Ry-Ry- .. . = Rypg-m+1).
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Since Xymn » Xomn » -+ » Xymn are from Weibull distribution, the joint density
is
m
m D m Z(RI +1))€m:n
f()&'m::nixz:m:n A ixm:m:n;e)=CH(j Xie;#:nex - )
i1 \0 0

0< XJ_'m::n < X2:m:n .= Xm:m:n

3)
In this paper, we assume that the shape parameter is known. Then the ML estimator for
the scale parameter 6 is

i(Ri +1)Xip:m:n
T= ()
m

Now, let us make the transformation Y;.,., = X2 .. sothat Yy Yo seees Youemn 1S
a progressive censored sample from exponential distribution with mean 6. Then using
the results of Balakrishnan and Aggarwala (2000) we can show that

2mT follows 52~ distribution. Consequently, T has Gamma distribution with

parameters m and 6/m .The probability density function is
mt

tml(rg)mee
f(t, 0, m) = T . >0 (5)

2. Class of Maximum Likelihood (ML) Estimators
We know that T is the ML estimator 0. Using this fact we define a class of
estimators of the scale parameter 0 as

D=yT, yeR". (6)
The risk of the estimator D under squared error loss function is given as
m+1
RseLe(D) = 0%(y° “m 2y+1) . (7)

m
Now, the constant y which minimizes Rsg (D) is 7“1 = —l
m +

In many real life situations, errors are not symmetric around the true value. In
such cases, instead of using SELF, one can advantageously use LINEX loss function
(asymmetric loss function) introduced by Varian (1975) which is given below;
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L (A) = b(e** —aA-1) , @)

A

0
where A = 6 —1, ‘b’ is the scale parameter and ‘a’ is the shape parameter. The sign

and value of ‘a’ represents the direction and degree of asymmetry. The positive value of
‘a’ is used when over estimation is more serious than under estimation and negative
value is used for the other case. This property of the LINEX loss function has been
considered by many researchers. The few important articles using the loss function are
Varian (1975) , Basu and Ebrahimi(1991), Srivastava and Tanna(2001), and Srivastava
and Shah (2010).

Letb=1 and m > ay
Now, the risk of the estimator D under LINEX loss function is

Rus@)= e *(1-20) " ra (1-y) -1 ©

The constant y which minimizes R ¢(D) is given as

a
m -
vy, =—(1-e ™).

a
Based on constants y; and y, we define two estimators as

D= v, T,
and

D,= 'YZ T.

On substitution of the values of y,;and v, in (7) and (9) respectively, we get the

respective risks of two estimators under square error loss function and LINEX loss
function. Further we obtain risk of one estimator using the loss function which is being
used to obtain the other estimator by minimizing the corresponding risk.

2

0
Rsece(D1) = )
m+1

_ a _
Rur(D) = e a(l—%) M _a(l-y)-1,

m+1
RseLr(D2) = 0? (72 T - 272 +1) '

Rue(Dy) = Q+m)e ™ -1)+a

3. Bayes pre-test estimators

Instead of using maximum likelihood estimator, one can use Bayes estimator
for obtaining shrinkage estimators. This idea prompted us to consider following prior
distribution to obtain Bayes estimator of the parameter of the distribution.
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eig
9(9)=e—b

Then the posterior distribution is given by

.0>0 (10)

(mt +¢)"""" exp [— mt + Cj

0

0™ (m +b—1)
and the corresponding Bayes estimator under the SELF is given by

A mT+c

0 =— 11

B m+b-2 )

For utilizing the prior information (guess estimator) we choose the values of b and ¢
such that the expectation of Bayes estimator is equal to guess estimator 6y . That is

E(0) = 0,
This givesus ¢ =0,(q—m) where g = m+b-2. Substituting this value of ¢ in (11), we
get

H (e|xl:m::n ! X2:m:n LA Xm:m:n) =

0, =k T+(1-K) 9, (12)
where k:m, the estimator@B is Bayes shrinkage estimator. Using the estimator
a

given in (12), with the use of preliminary testing, we suggest the following two pre-test
estimators.

5 kT+(1-k)6, r<T<r, 13)
o D, otherwise '

~ kT+(1-K)6, rn<T<r
93L={ (D V0o h<T<h (14)

9 otherwise
where r; and r, are boundaries of the acceptance region of a test of the hypothesis

. . . 00z 00X
Ho:0=0, against the alternative H;: 0#0, . Define I} = > andr, = , where
m

Xf and Xg are respectively lower and upper ath percentile values of chi-square

distribution with 2m degrees of freedom. In the next section we derive risks of the
above two estimators under SELF and LLF.

4. Risk of pre-test estimators
The risk of the estimator Ogqunder SELF is defined as follows:
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Rezur( Os)=E( O~ 0)° = [(k(t-0)-(0-0,))7F(0)

h

j (v, t-0)2F(1) dt— j (y, t-0)2F(1) it

by using the transformation x=%t and evaluating the integral we get

K2 (m—“[l(rz m+2) - I,m+2)]-24 [16,m+1) - 1m+1)]+2? [I(ré,m)—l(rl’,m)]]

RSELF(ng)zez—ml—x)(n(rzrm-l)|(r1'm+1)] A L1, m)— 17,m) 1)+ @27 [ 10, m) - 1(7,m)]

+[Y171—2Y1 |l [|(fz m+2) = I, m+2)]+2y; [z m+1) - 1(1,m+1)]
—[|(r2vm) I, m)]
: (15)
. Ayl Ay
where I} = Ia , rz' :ﬁ, k:e—o and I(x, n) is the cdf of the gamma
2 2 0
X
j t" e'dt
distribution given by 1(X,n) = &————_ The risk function of 05 under square

r(n)

loss function obtained from (15)

by replacementy, instead of y,. Now, we can find risk equation of estimator Ogq
under LINEX loss function as follows:

_ _ B KR 6 B
Ru (Oas)-E@gLan=[e" 0 " -a 0y pygar,

h

j Y adl1)-1)idt- e ) ~ali 1)

Also by using the transformation x = %t and evaluating the integral we get
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exp(a( (1-Mk-1)

Ruasllod =| R 116 m)-1Gmi 2 (-0 kD)0 m)-16m)]
-2
—ak[I@,m+1)-I(, m+1)]+e—a _aly —1)—1—6—a [16m)-16Em)]
-y -y

+ayllE,m+1)—-1¢, m+1)] -a[lf,m)-I¢,m)]
(16)

The risk function of 05 under LNIEX loss function can be obtained from (16) by

replacing y,byvy,.

5. Relative Risk
To study the properties of estimators 0gg , 05, under SELF and LLF we

compare the relative risks of the estimators given above. The relative risk of Ogg with

respect to D; and GBL with respect to D, under SELF and LLF are

~ Re (D))
RR 0., D,) = —SELE° 712 17
SELF( BS 1) RSELF (OBS) ( )

n R (Dz)
RRSELF(OBL’DZ) = —SELP 27 ) (18)

Rserr (0pL)

Rseir (D)

RRSELF (-éBLv Dl) = = )
RSELF (eBL)

(19)

= Rir(D,)
RR,,-(0..,D,) = —-— 12 20
LLF( BS 1) R B (OBS) ( )

~ R, (D))
RR (05 ,D,) = 22 21
e (80, D5) R (0y,) (21)

Rue(Da)
R LLF(eBS)

and

RR LLF(6BSv D,)= (22)

We observe that the equations for relative risks depend on m, b, a, o and A .To
demonstrate the performance of the proposed estimators under SELF and LLF, we have
considered few values of the constants as: m = 6, 9, 12, b= 2, 4, 8, a=0.5, 1.0, 0=0.01,
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0.05, A= 0.25(0.25)1.75.The Tables 1-4 give the values of the relative risks for the
above given values of constants. Based these tables we have the following conclusions.

5. Conclusion

(i)

(i)

(iii)

(iv)

v)

(vi)

(vii)

(viii)

The relative risks of both the estimators Ogg and Oy , with respect to the

estimators D;  and D, respectively under SELF and LLF, are increasing
functions of b provided 0.75< A < 1.25. Further the relative risk of the estimator

0gs with respect D; is a decreasing function of m (this results in saving of

sample units) whereas the relative risk of estimator 05 with respect D, is
increasing in m.

It is observed that the relative risk of both the estimators Ogg and 0g, under
SELF and LLF are decreasing functions of a.

The estimator Og, has higher relative risk with respect to D, under SELF and
LLF than the relative risk of the estimator Og4 with respect to D.

The highest relative risk of the estimator 6BL with respect to D, under SELF
when a=0.5.

The relative risk of both the estimators 685 and 6BL with respect D; and D,
respectively under SELF higher than under LLF.

The both estimators Ogzgand 05, with respect D;and D, respectively under LLF
have highest relative risk when a=1.
The relative risk of estimators Og5 with respect to O under SELF is much

greater than one for all values of A we considered except for A=1. In the later
case it is greater than one when a=0.5 and for a=1.0 it remains less than one for
smaller values of m and crosses one as sample size increases.

The relative risk of estimators Oy, ~ with respect to 055 under LLF is greater

than one for all values of A>1. For values of A<1, we not able to identify any
kind dominance behavior of one over the other.
As a summary to above conclusions we observe that estimators Ogg and O

perform better, in terms of relative risk, with respect to the estimators D, and D,
respectively both under SELF and LLF in the neighborhood of 6=6;
equivalently in the neighborhood of A=1.
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Appendix

a=0.01 | A

m 0.25 0.5 0.75 1 1.25 15 1.75
1.0178 | 1.1957 | 1.4201 | 1.4922 | 1.3911 | 1.1807 | 0.9471
0.9799 | 1.0914 | 1.6823 | 2.1894 | 1.8525 | 1.2431 | 0.8101
0.9548 | 1.0136 | 1.8278 | 2.9341 | 2.1837 | 1.1883 | 0.6839
1.0058 | 1.1306 | 1.291 | 1.3256 | 1.2396 | 1.0619 | 0.8592
0.9926 | 1.0296 | 1.4495 | 1.7772 | 1.5322 | 1.0811 | 0.7343
0.9828 | 0.9551 | 1.5406 | 2.2603 | 1.7496 | 1.0266 | 0.6211
1.0019 | 1.0958 | 1.227 | 1.2431 | 1.1619 | 0.9924 | 0.8032
0.9979 | 1.0073 | 1.3297 | 1.5753 | 1.369 | 0.9859 | 0.6869
0.9947 | 0.9405 | 1.388 | 1.9287 | 1.5243 | 0.9313 | 0.5852

6

12

O
O[NNI~ N T

0=0.

S
(V]

1.0152 | 1.1904 | 1.4149 | 1.4244 | 1.2346 | 0.9842 | 0.7702
1.001 | 1.1155 | 1.541 | 1.8641 | 1.494 | 0.9884 | 0.6678
0.9915 | 1.0632 | 1.5989 | 2.2396 | 1.6501 | 0.9451 | 0.5867
1.0039 | 1.121 | 1.3007 | 1.2831 | 1.1084 | 0.8904 | 0.7166
0.9999 | 1.0579 | 1.368 | 1.5875 | 1.2687 | 0.8669 | 0.6204
0.9969 | 1.0117 | 1.3982 | 1.8652 | 1.3708 | 0.8211 | 0.546

1.001 | 1.0823 | 1.2423 | 1.2123 | 1.0442 | 0.8436 | 0.7013
1 1.0335 | 1.2774 | 1.4445 | 1.152 | 0.8063 | 0.6105
0.9992 | 0.9961 | 1.2903 | 1.6629 | 1.2218 | 0.7592 | 0.5408

Table 1: RRgg ¢ (635, D,)

12

o
O[NNI AIN
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a=0.5

A

m

0.25

0.5 0.75 1 1.25 1.5

1.75

1.0877

2.4433 | 8.7237 | 16.5463 | 16.0006 | 12.5747

9.1755

6

1.0841

2.4056 | 9.4502 | 23.0931 | 20.7789 | 13.1383

8.1087

1.0815

2.3734 | 9.8019 | 29.4154 | 24.066 | 12.6438

7.0617

1.0253

1.9242 | 8.2498 | 21.0896 | 19.6436 | 13.2797

8.2133

1.0246

1.9075 | 8.5624 | 26.7353 | 23.3324 | 13.4356

7.5705

1.0241

1.8932 | 8.7213 | 32.1321 | 25.891 | 12.9881

6.8935

1.0071

1.616 | 7.5031 | 25.1787 | 21.5204 | 11.8374

6.2289

12

1.007

1.6079 | 7.6428 | 30.1601 | 24.1344 | 11.8019

5.9279

O
O[NNI~ IN|T

1.0068

1.6009 | 7.7148 | 34.893 | 25.9357 | 11.4901

5.6031

o

a=1.

1.1201

2.9441 | 7.2384 | 7.1302 | 6.1032 | 4.9158

3.7468

1.1096

2.7981 | 8.785 | 10.7574 | 8.0528 | 5.1544

3.263

1.1024

2.6812 | 9.676 | 14.8651 | 9.4305 | 4.9449

2.8017

1.0346

2.2237 | 8.1739 | 9.8942 | 8.2874 | 6.1433

4.2136

1.0327

2.1669 | 9.0229 | 13.33 10.0275 | 6.2303

3.7847

1.0312

2.1196 | 9.4975 | 17.0432 | 11.2731 | 5.9817

3.356

1.0097

1.7923 | 8.1059 | 12.4949 | 9.9222 | 6.3851

3.834

12

1.0093

1.7676 | 8.5297 | 15.7423 | 11.3485 | 6.3591

3.5544

O
O[NNI (N

1.009

1.7464 | 8.7594 | 19.1554 | 12.3649 | 6.1334

3.2685

Table 2: RRgg (0g,,D,) , a=0.01

i
=4
=}
—

3

0.25

0.5 0.75 1 1.25 1.5

1.75

0.9543

1.0768 | 1.3984 | 1.4895 | 1.3779 | 1.1938

1.0024

o

1.1025

1.74 2.3698 | 2.4066 | 1.8637 | 1.2512

0.8283

1.2041

2.5329 | 3.6404 | 3.5632 | 2.2201 | 1.1877

0.679

0.9769

0.9869 | 1.2534 | 1.3505 | 1.286 | 1.1723

1.049

1.0358

1.52 1.9537 | 1.9246 | 1.5783 | 1.1519

0.8258

1.0769

2.2626 | 2.925 | 2.6088 | 1.7875 | 1.0614

0.6575

0.9913

0.9495 | 1.1723 | 1.2744 | 1.2348 | 1.1629

1.0861

12

1.0115

1.3778 | 1.7379 | 1.6876 | 1.428 | 1.0922

0.8264

| (NN~ N T

1.026

1.9817 | 2.5489 | 2.1632 | 1.5605 | 0.9841

0.6476

0=0.

S
(]

0.9704

1.0003 | 1.2581 | 1.4415 | 1.3985 | 1.2447

1.0767

1.0554

1.5578 | 2.3009 | 2.3155 | 1.724 | 1.1675

0.8112

1.1097

2.2471 | 42012 | 3.4299 | 1.8941 | 1.0481

0.6481

0.9888

0.9516 | 1.1397 | 1.319 | 1.318 | 1.2349

1.1357

1.0159

1.361 | 1.9241 | 1.8764 | 1.4617 | 1.0668

0.8094

1.0341

1.8762 | 3.4172 | 2.5479 | 1.5176 | 0.9209

0.6287

0.9966

0.9401 | 1.0748 | 1.2511 | 1.2726 | 1.2288

1.1643

12

1.0042

1.2418 | 1.7206 | 1.656 | 1.3233 | 1.01

0.817

O[NNI (N

1.0096

1.6007 | 2.9582 | 2.1269 | 1.3224 | 0.851

0.6305

Table 3: RRLLF(ﬁBS, D,), a=1
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=
Il

0.25 0.5 0.75 1 1.25 15 1.75

0.9419 | 1.3041 | 2.872 | 4.4112 | 45058 | 4.0467 | 3.4801
0.9832 | 1.527 | 3.9142 | 6.8595 | 6.169 4.2558 | 2.8277
1.0072 | 1.6723 | 4.7871 | 9.6971 | 7.415 4.0243 | 2.285

0.9766 | 1.2242 | 3.2135 | 6.3072 | 7.0064 | 6.8146 | 6.2664
0.9876 | 1.3379 | 3.9167 | 8.6659 | 8.7264 | 6.6803 | 4.7636
0.9947 | 1.4179 | 45021 | 11.264 | 9.9888 | 6.0917 | 3.6972
0.9922 | 1.1576 | 3.3134 | 8.135 9.6027 | 9.5767 | 8.14

0.995 | 1.2223 | 3.802 | 10.4075 | 11.2582 | 8.9128 | 6.1251
0.9969 | 1.2703 | 4.2115 | 12.8402 | 12.4191 | 7.9211 | 4.7631

=
N

=
S
OB INO[AINOIA|IN|T|(—

i
<)
<)
W

0.9579 | 1.0677 | 1.9238 | 3.6121 | 4.7547 | 4.6896 | 4.0619
0.9826 | 1.2144 | 2.4638 | 5.1536 | 5.9662 | 4.3468 | 2.9212
0.997 | 1.3138 | 2.9095 | 6.682 6.6163 | 3.8326 | 2.2704
0.9873 | 1.0437 | 2.0038 | 4.8452 | 7.5206 | 7.3671 | 5.5238
0.9925 | 1.1156 | 2.33 6.1577 | 8.4462 | 6.2239 | 3.9941
0.9958 | 1.1669 | 2.5986 | 7.4095 | 8.8126 | 5.2719 | 3.1275
0.9967 | 1.0269 | 1.9995 | 5.9114 | 9.9221 | 7.9332 | 4.5629
0.9977 | 1.0665 | 2.2157 | 7.0494 | 10.354 | 6.6362 | 3.7013
0.9984 | 1.0959 | 2.396 | 8.1182 | 10.3465 | 5.6649 | 3.1177

Table 4:RR ,_,_,:(63,_, D,),a=1

o

12

O
O[NNI (N

)
I

o

o

A

0.25 0.5 0.75 1 1.25 15 1.75
0.0873 | 0.1962 | 0.7004 | 1.3284 | 1.2846 | 1.0095 | 0.7366

0.087 | 0.1931 | 0.7587 | 1.854 | 1.6682 | 1.0548 | 0.651
0.0868 | 0.1905 | 0.7869 | 2.3615 | 1.9321 | 1.0151 | 0.5669
0.0536 | 0.1005 | 0.4309 | 1.1016 | 1.0261 | 0.6937 | 0.429
0.0535 | 0.0996 | 0.4473 | 1.3965 | 1.2188 | 0.7018 | 0.3954
0.0535 | 0.0989 | 0.4556 | 1.6784 | 1.3524 | 0.6784 | 0.3601
0.0389 | 0.0625 | 0.2901 | 0.9736 | 0.8322 | 0.4577 | 0.2409
0.0389 | 0.0622 | 0.2955 | 1.1663 | 0.9332 | 0.4564 | 0.2292
0.0389 | 0.0619 | 0.2983 | 1.3493 | 1.0029 | 0.4443 | 0.2167

3

o

12

a=1.

0.2482 | 0.6523 | 1.6039 | 1.5799 | 1.3523 | 1.0892 | 0.8302
0.2459 0.62 | 1.9466 | 2.3836 | 1.7843 | 1.1421 | 0.723
0.2443 | 0.5941 | 2.144 | 3.2938 | 2.0896 | 1.0957 | 0.6208
0.1406 | 0.3022 | 1.1109 | 1.3446 | 1.1263 | 0.8349 | 0.5726
0.1403 | 0.2945 | 1.2262 | 1.8116 | 1.3628 | 0.8467 | 0.5143
0.1401 | 0.2881 | 1.2907 | 2.3162 | 1.532 | 0.8129 | 0.4561
0.0983 | 0.1744 | 0.7889 | 1.216 | 0.9656 | 0.6214 | 0.3731
0.0982 | 0.172 | 0.8301 | 1.532 | 1.1044 | 0.6189 | 0.3459
0.0982 0.17 | 0.8525 | 1.8642 | 1.2034 | 0.5969 | 0.3181

Table (5): RRSELF(éBL, D,) , e=0.01
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Bayes pre-test estimation of scale parameter of Weibull distribution ...

0=0.01 A
m | b | 0.25 0.5 0.75 1 1.25 15 1.75
2 | 1.1265 | 1.5874 1.448 | 1.3038 | 1.1534 | 0.9739 | 0.7993
6 | 4| 1.3809 | 45667 | 2.8549 | 2.1279 | 1.5448 | 1.0182 | 0.6691
8 | 1.5742 | 99.4233 | 5.5787 | 3.1916 | 1.827 | 0.9692 | 0.5546
2| 10265 | 1.4314 | 1.3307 | 1.2011 | 1.0898 | 0.9512 | 0.8122
9 | 411014 | 3.3964 | 2.3461 | 1.7202 | 1.3266 | 0.936 | 0.656
8 | 1.1546 | 20.4558 | 4.2926 | 2.3454 | 1.4936 | 0.8676 | 0.5328
2 | 09967 | 1.3242 | 1.2735 | 1.1503 | 1.0572 | 0.9366 | 0.8173
12 | 4 | 1.0196 | 2.5695 | 2.1056 | 1.5276 | 1.2145 | 0.885 | 0.6465
8 1.036 | 7.0421 | 3.6995 | 1.9647 | 1.321 | 0.8049 | 0.5207
0=0.05
2 | 1.0522 | 15259 | 1.5515 | 1.3084 | 1.0959 | 0.9086 | 0.7557
6 | 4| 11709 | 4.1687 | 4.4197 | 2.1728 | 1.3233 | 0.8604 | 0.5966
8 | 1.2498 | 2.9753 | 5.8419 | 3.3638 | 1.4384 | 0.7839 | 0.491
2 | 09824 | 1.0814 1.361 | 1.2981 | 1.1161 | 0.9771 | 0.8516
9 | 4| 0984 | 1.2732 3.204 | 2.5572 | 1.4443 | 0.9873 | 0.7059
8 | 0985 | 14591 | 5.6707 | 8.7268 | 1.7773 | 0.9329 | 0.5741
2 | 1.0416 | 1.4285 | 2.2154 | 1.0092 | 0.8726 | 0.8083 | 0.8027
12 | 4 | 1.1418 | 3.2425 5.654 | 1.0247 0.75 | 0.6435 | 0.6331
8 | 1.2152 | 12.8937 | 12.9465 | 1.0108 | 0.6696 | 0.5502 | 0.5371

Table (6): RRLLF(ﬁBS, D,), a=1
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