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Abstract

When the population mean X of the auxiliary variate x is not known, it is well
known that two-phase sampling is of significant use in practice. Keeping this in view, a general
class of estimators is suggested to estimate the population mean for the variable under study
using auxiliary variable in two stage double sampling scheme. Some special cases of this class of
estimators are considered and compared by using a data set. Finally, it is shown, how to extend
the class of estimators if multi auxiliary variables are available in the case of two stage double
sampling scheme. The approximate expressions for bias and mean square error of the suggested
estimators have also been derived and theoretical results are numerically supported.

Key words: Bias, MSE, Auxiliary variables, Ratio estimator, Two stage sampling, Double
sampling.

1. Introduction

One of the major developments in sample surveys over the last five decades is
the use of auxiliary variable x, correlated with the study variable y, in order to obtain
the estimates of the population total or mean of the study variable. In large scale
surveys, we often collect data on more than one auxiliary variable and some of these
may be correlated with y. Olkin (1958), Srivastava (1971), Singh (1982), Diana and
Perri (2007) etc. considered some estimators which utilize information on several
auxiliary variables which are positively correlated with variable under study.

In sample surveys, the information on an auxiliary variable is required many
times either at the estimation stage or at the selection stage, for increasing the efficiency
of the estimator. Various estimation procedures in sample surveys need advance
knowledge of some auxiliary variable x;, which is then used to increase the precision of
the estimates. If such information is lacking it is sometimes advantageous to take a
large preliminary sample to observe the auxiliary variable and further, information on
the character under study is collected on the basis of a sub-sample. This technique is
known as double sampling. It is profitable only if the gain in precision is substantial as
compared to the increase in the cost due to collection of information on the auxiliary
variable for the larger sample.
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For example, the classical ratio, regression and product estimators require the
advance knowledge of population mean X of the auxiliary variable x. Some times the
population mean X is unknown, then it is usual practice to estimate it from a large
preliminary sample on which only the auxiliary characteristic x is observed. The value
of X in the estimator is then replaced by its estimate say X'. In the second phase the
variate of interest y is then observed on a subsample. It is especially appropriate if the
X; values are easily accessible and much cheaper to collect than the y; values. Some
important works in this direction have discussed by several authors. (See : Dalabehara
and Sahoo (2000), Chandra and Singh (2003), Diana and Tommasi (2003, 04), Roy
(2003), Singh et. al. (2004), Singh and Espejo (2007), Singh et. al. (2010), Singh et. al.
(2012), Das and Mishra (2011) etc.).

Generally the large scale surveys specially socio- economic or crop yield
surveys are conducted in different stages. Some times such types of surveys also
contain information on auxiliary variables which are related with the study variable y.
For such a set up Srivastava and Garg (2009) have considered a general class of
estimators for estimating the finite population mean using multi auxiliary information
under two stage sampling scheme. But practically it happens that the population means
for auxiliary variables are not known, then in this case the double sampling scheme is
employed. For example in a crop surveys for estimating yield of a crop in a district, a
block may be considered a primary sampling unit, the villages the second stage units,
the crop fields the third stage units and a plot of fixed size the ultimate unit of sampling.
This is termed as multi-stage sampling. The yield of the crop may depend on number of
other factors like average rainfall, fertility of the soil, area under crop etc. It may
happen that population means of such auxiliary variables may not be known. Deriving
motivation from such type of situations, in this paper, two stage double sampling
scheme using multi-auxiliary information is used for estimating population mean.

This paper suggests a general class of estimators in two-stage double sampling
for equal and unequal first stage unit (fsu), when the population means of the auxiliary
variables for all fsu’s are unknown. Then the suggested general class of estimators is
extended for the multivariate case, i.e. when p auxiliary variables are used. The
proposed class of estimators dominates the usual two-stage estimator in terms of
efficiency with more practical utility.

2. Notations

Let fsu’s are of unequal size and let simple random sampling without
replacement is adopted in both the stages. Some commonly used notations are as
follows:

N : Total no. of fsu (clusters) in the population
n : Total no. of fsu in the sample
M; : Total no. of second stage unit (ssu) belonging to the i fsu in the population

N
Mg : Total no. of ssu in the population = > M;
i=1

— M
M : Average size of fsu = WO

m : Total no. of ssu selected from i" fsu in the sample
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Yij

n
: Total no. of ssu in the sample = >’ m;
i=1
: Variable under study
: Observation on the variable under study for j ssu belonging to the i fsu in
the populationi=1,2,..,Nandj=1,2, .., M
: Population mean of variable under study for ssu in the i'" fsu,

i.e.Vi_ ZY”
Ijl
: Population mean = — YI =— :Y
Mogia " NGM

: Observation on variable under study for j™ ssu belonging to the i'" fsu in the
sample; i=1,2,..,nandj=1,2, ... m
: Sample mean of variable under study of ssu in i fsu ——Zy”

mj j=1
: k™ auxiliary variable; k=1, 2, ..., p.

:Value of k"™ auxiliary variable on j" ssu belonging to the i" fsu in the
population

: Population mean of k™ auxiliary variable for ssu in i"" fsu

: Value of k™ auxiliary variable on j" ssu belonging to the i"" fsu in the sample

- Sample mean of k™ auxiliary variable for ssu in i'" fsu

: Weight for i fsu

: Population mean square error of y variable

2
S 3(vy-v)
'V'o -lia
: Population mean square error of y variable for i'" fsu
2
- ;1 (vy-¥1)
: Population mean square error of k™ auxiliary variable for i" fsu
2
M; — Z( Ijk |k)
s2
: Coefficient of variation of the variable under study Y for i fsu = __y2|
Y.
1.
s2
: Coefficient of variation of the k™ auxiliary variable for i'" fsu = _Xék
X

ik.
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Pik : Correlation coefficient between the variables Y, variable under study and
X, K™ auxiliary variable for i fsu
Pikh : Correlation coefficient between the variables X, and X, (k = h) for i" fsu
bjj : Regression coefficient between the variables Y, variable under study and
X;, " auxiliary variable for i"" fsu for the sample
Bij : Regression coefficient between the variables Y, variable under study and
X;, " auxiliary variable for i*" fsu for the population
mj : Total no. of ssu selected from i™ fsu in the sample; i =1,2, ..., n
Where (mj > m;)
Xik : Sample mean of k™ auxiliary variable for ssu in i" fsu based on
preliminary sample of size m;j
f:(i_i] o[l L
n N m; Mi

Define

V_-Y Xii — Xo:
eloz(%J and e”:(% 'jzll 2, _“,p
ij

eio=(¥J and ejj = % j=1,2,...,p
E(eig) = E(ejj) =0, i=1,2 ....p
E(e2)=fiC%, E(})=fCZj, j=12..,p
E(eioeij) =fipijCyiCyxij. J=1.2.....p

E(ejjeik) = fipijk CxijCxik » ji=1,2 ..,p

E(ejp) = E(ejj) =0, i=12 ...,p
E(e3)=fiC%. E(?)=f{C%.j=12...p

E(ejo®ij)) =fiPijCyiCxij, i=1,2,...,p

E(ejjeik) = E(ejeik) = E(ejjeik) = fiPik CxijCxik» 1=1,2, ..., p

3. Estimator and its Mean Square Error

The usual ratio estimator in double sampling for population mean is given as

< Yo
Yratd ==X
rat.d X

To the first degree approximation, the bias and mean square error are given as

L 1 1)<fy
B'aS(Yrat.d):(F_FjY(Cx -p Cycx)
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MSE(Vrat.d)Jz{[%—i]Ci +[1—$](Ci -2 Cny)} )

N n
The usual regression estimator in double sampling for population mean is given as
Yregd =Y+ b(i' _i) 4)
To the first degree approximation, the bias and mean square error are given as
- 1 1) 2 M3
B =B |——||=F=———~ .
|as(yreg,d) [n n'j(sxy s2 | Ifbisunknown (5)

If b; is known i.e. b; = B;,
Bias(;‘/reg’d ):O

_ 101 101
MSE(yeq. ):( ——jsf, n (— _Fj [sti ~2Bp S, S,

n N n (6)
The usual product estimator in double sampling for population mean is given as
)_/prod.d = %i (7
To the first degree approximation, the bias and mean square error are given as
- 1 1)\o
BlaS(Yprod.d):[H_Fj Yp CyCy (8)
_ = 1 1 1 1
MSE (¥ prog.d )= YZ{[— ——ij, + [— ——,j (ci +2p C,C, )} 9)
n N n n
The usual two stage estimator for population mean is given as
= 10
Vs =— 2 iV (10)
Ni=1
To the first degree approximation, the bias and mean square error are given as
. 1 N
Bias(V7s) = —= > (oM - M; J¥; (11)
NM i3
2
— f N - 1N _ 1 N >
MSE(Yrs)=——| iV - =2 0Y | +== fiaf Y7 C
N-1i5 Nig nNi3 (12)

4. Suggested Class of Estimators in Two Stage Double Sampling
When Yi is unknown, we use double sampling in two stage sampling scheme
and proposed the estimator of population mean is defined as
= 10 _
YGTsD :Hzaiyigd (13)
i=1
Where ‘GTSD’ stands for ‘General Estimator in Two Stage Double Sampling Scheme’
and Yigq isa function of y, Xj and X; in i fsu
Theorem 1 : The bias of Ygrsp IS given as

L 1 N — —
BlaS(YGTSD):_—Z[aizidM_MiYi.]
NM o
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Proof. E(Vorsp)=E[EVeTsp /1))
1_0 1N
:_E -7 -
n Eal id ngl iZid
where Zjq :E(yigd /i)
— 1 N 1 N M._
E(y -Y== - =y =F
(yGTSD) NE iZid Ng M
1
- z[a.z.dM M; Y] (14)
Theorem 2 : The MSE of ygrgp IS given as
11 2
MSE(VRTSD):[H_NJ_N 1%[%2«1 E(ojzig)] +
1N,
N iglal id

where Ziq = E(yigd /I) and Vig = MSE(yigd /I)
Proof. MSE(Ygtsp) = MSE[E(YgTsp /)] + EIMSE(YgTsp /i)]

MSE[E(Varsp /i)]= MSEH%aiE(yigd /i)} - MSE{%%aizid}

2

1 1 1
:(H‘NJN 1.1[“'2"’ ezl 09
1 N
Where E(ajzig)=— oz
Niza
- 10
E[MSE(Yersp /1)]= E| MSE H-Zlai (Viga /1)
i=
10 5
:—ZZOLi E(Vigd)
n-i=1
Where Vig = MSE(Vigq /i)
1 N
:miglotizvid (16)

Adding (15) and (16), we get the final expression.

5. Special Cases for the Class of Estimators

Case 1 : When X is positively correlated with Y for each fsu, our estimator will
convert into separate ratio estimator given as
n

= 1 =
YRAT.TSD :HzaiYid.rat (17)
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=

WhereViq rat =—-X| is the usual ratio estimator in i fsu with

Xi
V2 ’ 2
Zig = Yi.ll+fi (Cxi —PiCyiCxi )J
and Vi =7i.2{fi Cf/i"'fi' (C)Z(I —2piCyicxi)}
Case 2 : When X is positively correlated with Y for each fsu, we can also use separate
regression estimator given as
= 10
YREG.TSD :Hzaiyid.reg (18)
i=1

Where Vig reg = Vi +bi (X} —X;) is the usual regression estimator in i fsu with
If b; is unknown,

Zi4 =7i _B;f! Ha1i  Ha3oi
Sxy.i s?

Xi
This is a biased estimate. biasness is of the order of the linear regression
estimator. Biasness will be negligible when sample size is sufficiently large and

regression coefficient b; is known.
If bi is known i.e. bj = B;, zj =Y

2 erlm2e2
vi =fiSyi +fi lBi Ski — 2'3ipi5yi5xiJ

Case 3 : If each X is negatively correlated with Y for each fsu then our estimator will
convert into separate product estimator given as

- 102 _
YPROD. TSD :Hzaiyid.prod (19)
i=1
Where Yig proq = LYi is the usual product estimator in i fsu with
. Y'

Zjg =7i.ll+fi'PiCinxiJ
and Vi =7i.2 {fl Cf" +fi' (C)Z(I +2piCinXi )}

6. Generalization of the Suggested Class of Estimators
When Yi is unknown, the generalized class of two stage double sampled
estimators using p auxiliary variables for every i fsu is given by

_ 10 p
YeTsDp == 2 0 2 WijYijgd (20)
N1 j=1
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Where ‘GTSD.p’ stands for ‘General estimator in two stage double sampling scheme
p

for p auxiliary variables * with > wj; =1 and Yjjqq is a function of y;, Xj; and X;;
j=1

for j"" auxiliary variable in i'" fsu.

6.1 Bias and MSE of the Suggested Class of Estimators
Theorem 3 : The bias of Ygtsp, is given as

N _ _
BiaS(VGTSD.p )= ﬁ_zl[aizid M - M; Yi.]
i=

Proof. E¥crsnp )=E[EFeTsnp /i)
1 n 1 N
=—E iZi =— iz
n Lzl(xl |d} Ni:zlal id
p - .
Where Zig = zWijE(Yijgd /I)
=1
_ 1 N 1 N M: —
E(y Y==Yaizy-—Y—Y,
(YGTSD.p) N iglal id 7y El Mo E
1 N o
:WZ[aiZIdM_MI |] (21)
i=1
Theorem 4 : The MSE of ygrspp is given as
Proof. MSE (YgTspp) = MSE [E (YgTspp/D)] + E [MSE (YaTsp,p/i)]
_ . L
MSE[E(arspyp /i)|- MSE{H Zaizid}
i=1
1 1) 1 N 2
:[H_Nj-mizl[aizid ~E(aizig )] (22)
1 N
Where E(ajzig)=— oz
Niza
2 o1 |, P
E[MSEG 6rspp /i)]=—5 E| ¥ a2 MSE| X w ;¥ g /i (23)
n° |z =1

P
MSE(Zwijyijgd /i} can easily be obtained for different values of function
j=1

Yijg by generalizing the procedure used by Olkin (1958).

P _ . 1 13\ 2
Thus, MSE zWinijgd [i|=| ——— z zwijwihvijhd
i i

mi M; )iz na
Where
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1 1 _ _
(m_i_M_iJVijhd =CoV(Yijgd » Yingd )

In matrix notation,
MSE zp:Wy Jil= 11 Wi Vig Wi
a ijYijod m M- i Vid Wi

i i
Where the matrix Vig=(Vijna) and Wi = (Wig, Wip,eeerrmrrenn Wiy ), wi being the

transpose of w;j .

Optimum values of w;; for j=1, 2,......... P

It is fairly simple to establish that the optimum w; is given by

W Sum of the elements of the jth column of Vi‘l
ij =

Sum of all the p2 elementsin Vi‘l

Where Vi’lis the matrix inverse to V;. using the optimum weights, the mean
square error is found to be

p
MSE(ZWijyijgd /i] = (1—1]/Sum of all the p2 elements in Vial
= m

Adding (22) and (23), we get the final expression.
Remark (i) To avoid the mathematical complexity in  deriving
p
MSE(ZWijVijgd /i} for different values of function Yy, , we will
j=1

use the procedure given in section (6.1) for finding optimum values
of w;; for the suggested estimators.

(i) In deriving the expressions of MSE of all the estimators of the
suggested class, the covariance term is taken to be zero because the
clusters are independent of each others

7. Special Cases for the Generalized Class of Estimators

Case 1: Multivariate Ratio Estimator

The combined ratio estimator YratTspp, Of Y in two stage estimators
when p auxiliary variables are known for every i fsu is given by

_ 1n p _
YRAT.TSD.p :ani 2 WiiVijd.rat (24)
i1 1

<

Where, Vigrat =

L} is the usual ratio estimator in i fsu for j" auxiliary variable.
ij

x|
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— p
Zig =Y{1+fi' ZWij(Ciij = PijCyiCxij )}
1
) ~V2ff.c2 ( Co 0 CuCuri — 0 )J
Vijh.ratd =Y, lflcyi +f pIJhCXIJCXIh _Pucylcxu_Pthlexm

Case 2: Multivariate Regression Estimator
The combined regression estimator Yreg 1sp.p, Of Y in two stage estimators

when p auxiliary variables are known for every i fsu is given by
P

_ 10 _
YREG.TSDp = = 2% 2. WijVijd.reg (25)
N1 j=1
Where Vi req =i +bij(Xjj —Xj; ) is the usual ratio estimator in i" fsu for j*" auxiliary

variable.
The bias and MSE of Ygeg1sp have been computed for known bj;

If by is known i.e. by = B then z;g = Y;
M:
For o :ﬁl’ this estimator will be unbiased

2 e
Vijh.regd = lfisyi +f; (BijBihPithxiijih —BijpijSyiSxij — BihPihSyiSxin )J

Case 3: Multivariate Product Estimator
The combined product estimator Yprop1spyp » Of Y in two stage estimators
when p auxiliary variables are known for every i fsu is given by

noop
YPROD.TSDp = — 2. %i 2 WijVijd prod (26)
N1 j=1
Where  ¥iig prod =X—fiij is the usual product estimator in i" fsu for j" auxiliary
Xii

j
variable.

_ p
Zig = Yi|1+f{ 2 wijpijCyiCyj
=
G2l ~2 g
Vijh.prod.d = Y; lficyi +f; (Pijhcxijcxih +pijCyiCyxij +Pin CyiCxin )J

8. Numerical Illustration

For this purpose, we consider a simulated data of N=4 clusters as fsu with
equal number of fsu and other populations unequal number of fsu for comparing the
proposed general class of estimators with usual two stage estimator. Suppose a sample
of size n=2 clusters is drawn from this population. Ssu can be selected in proportion to
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. M L . . .
M;, i.e. mj = N x32 .Preliminary sample of size 52 in ssu can be selected in

2 M
i=1
proportion to M;, i.e. mj = NMi %52
2 M
i=1
fsu Equal Unequal
Moo 11 2 3 4 1 2 3 4
M; 16 16 16 16 18 14 12 20
my 13 13 13 13 15 11 10 16
m; 8 8 8 8 9 7 6 10
Vi. 26.20625 | 24.12313 | 26.68875 | 22.11438 | 25.77722 | 22.79286 | 28.43500 | 23.09050
Xil. 50.96019 | 50.35994 | 62.70413 | 55.75731 | 51.06389 | 46.49700 | 67.00217 | 57.11855
Xiz. 35.71519 | 41.85756 | 39.68550 | 48.71470 | 35.84517 | 39.49436 | 39.86467 | 48.95286
XiS. 56.48565 | 47.79563 | 27.95500 | 57.78263 | 52.39391 | 43.59071 | 30.69167 | 55.93210
Cf/i 0.62364 | 0.33905 | 0.32637 | 0.36886 | 0.58025 | 0.39297 | 0.34783 | 0.31545
Ciil 0.47888 | 0.28038 | 0.38836 | 0.49081 | 0.43322 | 0.29984 | 0.41947 | 0.40689
C)z(i2 0.53798 | 0.24367 | 0.38462 | 0.20182 | 0.47630 | 0.26882 | 0.43302 | 0.20186
C§i3 0.23426 | 0.27680 | 0.28155 | 0.10532 | 0.29194 | 0.28803 | 0.28366 | 0.15534
Pi1 0.88451 | 0.85254 | 0.84212 | 0.80242 | 0.88373 | 0.83895 | 0.82425 | 0.82113
Pi2 0.79978 | 0.71317 | 0.87276 | 0.79080 | 0.79943 | 0.67443 | 0.90076 | 0.80311
Pi3 0.70371 | 0.74068 | 0.80029 | 0.77797 | 0.66011 | 0.80597 | 0.81874 | 0.61370
Pi12 0.60065 | 0.68186 | 0.64406 | 0.58869 | 0.60618 | 0.61701 | 0.64034 | 0.62536
pitz | 0.62789 | 0.57917 | 0.47770 | 0.67925 | 0.55943 | 0.57812 | 0.45501 | 0.55727
Pi23 0.54930 | 0.54213 | 0.69703 | 0.69085 | 0.49031 | 0.55708 | 0.79852 | 0.52633

Table 1: The population parameters for population I (for equal fsu) and Il (for unequal
fsu) given in Appendix A.
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No. of used Ratio Regression
Auxiliar . .
variatle | 1Biasl | MSE | %R.E | |Bias| MSE %R E.
0 - 9.21412 0 - 9.21412 0
1 0.07178 | 4.83729 90.48 - 4.64987 98.16
2 0.05630 | 3.96365 132.47 - 4.06338 126.76
3 0.05335 | 3.81270 141.67 - 3.97110 132.03

Table 2: The biases and mean square errors for ratio and regression estimators with equal
fsu for population data set | (table 1)

M .
AUS'?%r o =1 U
Estimators U1t M
0,
Variable | |Bias] | MsE /"ER IBias] | MSE | %R.E
Two Stage 0 | 024077 10'%242 0 - |1389066 | o
T | 031544 | 582769 | 75.44 [ 0.06758 | 9.53597 | 4567
Ratio > | 030610 | 4.68669 | 118.16 | 0.05692 | 8.54441 | 62.57
3 | 029573 | 4.44895 | 129.81 | 0.04885 | 8.41089 | 65.15
T | 024077 | 5.49452 | 86.08 : 9.33288 | 48.84
Regression > | 024077 | 471722 | 11674 | - 8.68406 | 59.96
3 | 024077 | 456347 | 12405 | - 8.57176 | 62.05

Table 3: The biases and mean square errors for ratio and regression estimators with
unequal fsu for population data set 11 (table 1)

9. Discussion and Conclusion

(A) It is clear from tables 2 and 3 that though the ratio estimators of the
constructed class are biased but the amount of bias is not significantly high for

. M; . .
equal and unequal fsu with a; =1 and o :ﬁl' The regression estimators

of the suggested class are biased with very small amount for unequal fsu, for
oj =1 and the amount of bias remains same as we increase the number of

auxiliary variables as the expression of bias is independent of the number of

M:
auxiliary variables. For equal fsu and unequal fsu with o :ﬁ'the

regression estimators are unbiased. Though for both the cases, they have been
derived for known value of b;;
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(B) EQUAL FSU
(i) It is to be noted from the table 2, the MSE of usual two stage estimator of
population mean MSE(y1g) =9.21412, is substantially higher than MSE(

YRATTSD.1) =4.83729, MSE(VYRreg Tsp.1) =4.64987.

(©) UNEQUAL FSU
It is important to note that all the estimators of the suggested class dominate
over yrgin terms of MSE's (see table 3) for both the cases i.e. when aj =1

M .
and o :ﬁl for the data set taken.

(i) MSE(Y15)=10.22425, which is substantially higher than MSE
yRAT.TSD.l )=582769, MSE(VREG.TSD.J.):5‘49452f0r j =1.
(i) MSE(Y15)=13.89066, which too is substantially higher than MSE(

M .
yRAT.TSD.l )=953597, MSE(VREGTSD1)=933288 for o :ﬁl

(see table 3)

It is to be noted that as we increase the number of auxiliary variables, the gain

in efficiency of all the estimators of the suggested class increases for equal fsu as well
. M;

as for unequal fsu ( for both the cases i.e. o; =1and a; :ﬁl)

It is important to mention here that this increment for equal fsu and for data set
I, is more significant in ratio estimator, where it increased from 90 % to 141 %.

For unequal fsu, relative gain in efficiency is more for o; =1 than «; :ﬁl
for all the estimators of suggested class. For data set 11, as we increase the number of

auxiliary variables, the % gain in relative efficiency is more for ratio estimator. It has
increased from 75 % to 129%.
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Appendix A

Equal FSU (Population Size = 64)

Population Set |

Cluster |
Y,

Cluster 11
Y

5.58
6.40
27.59
41.68

13.18
21.62
88.08
54.68

8.91
9.48
25.35
67.87

32,51
27.47
67.61
123.31

4.84

12.52
41.24
26.11

10.92
29.30
95.35
60.55

9.64

28.88
47.27
45.61

12.52
32.41
67.61
91.19

26.11
54.21
45.98

60.55
97.08
92.46

23.28
67.43
37.19

69.03
72.95
55.08

10.93
34.63
15.48

25.64
45.52
50.88

12.65
69.54
61.44

27.88
55.14
55.08

11.08
3.25
61.21

22.36
7.28
79.77

12.76
15.31
98.41

42.49
25.35
73.57

1141
35.97
34.35

35.17
82.53
79.51

18.54
51.87
49.83

43.05
40.11
34.55

12.66
37.94
14.23

37.18
50.22
56.12

14.24
41.25
54.54

63.37
38.27
29.13

32.52
47.07
16.89

42.78
61.49
39.25

59.37
41.25
54.54

63.37
98.78
29.13

0.87
56.92
13.59

3.27
113.44
18.07

8.54
44.84
42.05

37.73
98.41
47.48

3.56
17.69
40.76

12.15
40.48
94.25

8.54
39.56
71.19

9.08
41.56
63.27
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Cluster 111

Y3 15.21 10.08 4.21 16.92 54.81
40.05 52.55 29.54 19.64 26.24
24.74 47.23 12.18 28.93 15.15
29.54

Xa1 34.77 23.68 9.48 22.50 126.46
92.62 68.82 67.74 84.75 60.14
57.40 155.66 28.51 66.94 35.35
68.44

Xaz 16.08 12.21 9.45 21.62 67.29
42.78 92.15 30.07 20.78 60.23
41.15 64.57 15.08 67.74 29.54
44.23

Xas 14.24 14.09 9.78 23.44 42.11
45.75 7.45 35.45 24.78 23.44
39.55 28.22 19.58 20.08 18.77
20.55

Cluster IV

Y, 15.79 11.18 17.41 37.02 23.54
59.21 37.96 25.28 29.11 11.18
9.27 13.47 9.86 21.70 12.21
19.64

Xa1 36.11 26.21 39.84 85.65 54,54
136.68 61.24 57.94 154.58 25.50
21.82 44.25 23.18 50.31 28.58
45.67

Xz 34.48 65.12 74.23 61.27 45.14
98.45 78.48 46.36 55.47 37.45
24.09 27.48 18.54 40.89 35.45
36.54

Xaz 58.62 45.78 67.46 49.02 71.16
98.47 79.75 69.17 74.15 29.96
54.45 46.72 41.46 64.74 28.36

45.27
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Unequal FSU (Population Size = 64)

Population Set 11

Cluster |
Y,

Cluster 11
Y

5.58
6.40
27.59
41.68

13.18
21.62
88.08
54.68

8.91
9.48
25.35
67.87

32,51
27.47
67.61
123.31

4.84
12.52
41.24

10.92
29.30
95.35

9.64
28.88
47.27

12.52
32.41
67.61

26.11
54.21
45.98
15.15

60.55
97.08
92.46
35.35

23.28
67.43
37.19
29.54

69.03
72.95
55.08
18.77

10.93
34.63
15.48

25.64
45.52
50.88

12.65
69.54
61.44

27.88
55.14
55.08

11.08
3.25

61.21
29.54

22.36
7.28

79.77
68.44

12.76
15.31
98.41
44.23

42.49
25.35
73.57
20.55

1141
35.97
34.35

35.17
82.53
79.51

18.54
51.87
49.83

43.05
40.11
34.55

12.66
37.94
14.23

37.18
50.22
56.12

14.24
41.25
54.54

63.37
38.27
29.13

32.52
47.07
16.89

42.78
61.49
39.25

59.37
41.25
54.54

63.37
98.78
29.13

0.87
56.92
13.59

3.27
113.44
18.07

8.54
44.84
42.05

37.73
98.41
47.48

3.56
17.69

12.15
40.48

8.54
39.56

9.08
41.56
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Cluster 111

Y3 15.21 10.08 4.21 16.92 54.81
40.05 52.55 29.54 19.64 26.24
24.74 47.23

Xa1 34.77 23.68 9.48 22.50 126.46
92.62 68.82 67.74 84.75 60.14
57.40 155.66

Xaz 16.08 12.21 9.45 21.62 67.29
42.78 92.15 30.07 20.78 60.23
41.15 64.57

Xas 14.24 14.09 9.78 23.44 42.11
45.75 67.45 35.45 24.78 23.44
39.55 28.22

Cluster IV

Y, 15.79 11.18 17.41 37.02 23.54
59.21 37.96 25.28 29.11 11.18
9.27 13.47 9.86 21.70 12.21
19.64 40.76 26.11 12.18 28.93

Xa1 36.11 26.21 39.84 85.65 54,54
136.68 61.24 57.94 154.58 25.50
21.82 44.25 23.18 50.31 28.58
45.67 94.25 60.55 28.51 66.94

Xz 34.48 65.12 74.23 61.27 45.14
98.45 78.48 46.36 55.47 37.45
24.09 27.48 18.54 40.89 35.45
36.54 71.19 45.61 15.08 67.74

Xaz 58.62 45.78 67.46 49.02 71.16
98.47 79.75 69.17 74.15 29.96
54.45 46.72 41.46 64.74 28.36

45.27 63.27 91.19 19.58 20.08



