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Abstract 
This study provides Bayesian analysis of the power model using two informative 

(gamma and Rayleigh) priors and two non-informative (Jeffreys and uniform) priors. The prior 

predictive distribution is used to elicit the values of the hyperparameters of the prior distribution. 

The priors are compared using Bayes point and interval estimates, posterior variances, 

coefficients of skewness and coefficients of kurtosis. Bayes factors and Bayes posterior risks are 

also used for the comparison of informative and non-informative priors. 
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1. Introduction 
The power distribution is typically used as a subjective description of a 

population for which there is only limited sample data, and especially in cases where 

the relationship between variables is known but data is scare (possibly because of the 

high cost of collection). 

  

Meniconi and Barry (1996) have explained many statistical distributions used 

in the assessment of semiconductor device and product reliability. But power function 

distribution is preferred over exponential, lognormal and Weibull among others because 

it exhibits a better fit for failure data and provides more appropriate information about 

reliability and hazard rates. Dallas (1976) has enlightened that if X follows power 

distribution, then 1−X  follows the Pareto distribution. Saran and Pandey (2004) have 

put forward the concept of record values which are found in many situations of daily 

life as well as in many statistical applications. By using the order statistics they have 

obtained the best linear unbiased estimates of the parameter of the power function 

distribution in terms of kth  upper record values. Chang (2007) presents 

characterizations of the power function distribution by independence of record values. 

Haq and Dey (2011) considered the Bayesian estimation of Erlang distribution using 

different informative and noninformative priors. 

 

In this paper, the posterior distribution for the unknown parameter θ  of the 

power distribution is derived using informative (gamma and Rayleigh) priors and non-

informative (Jeffreys and uniform) priors. The prior predictive distribution under 

informative priors has been derived, which is used for the elicitation of 

hyperparameters. The paper is organized in the following sections. The power 
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distribution is defined in Section 2 and it includes the derivation of the posterior 

distribution under non-informative priors. Section 3 comprises of derivation of 

posterior distribution under informative priors. Section 4 contains the detail of the 

method used for elicitation of hyperparameters. Section 5 provides the comparison of 

priors through posterior variances, coefficients of skewness, coefficients of kurtosis, 

Bayesian point estimates, credible intervals, Bayes factors for different hypotheses, 

Bayes estimators under different loss functions and Bayes posterior risks. Some 

concluding remarks are given in the last Section 6. 

 

2. The Posterior Distribution Using Non-Informative Priors 

Bayesian analysis is performed by combining the prior information ( )θp and 

the sample information 1 2( , ,..., )nx x x  into what is called the posterior distribution of θ  

given 
1 2
, ,...,x =

n
x x x , from which all decisions and inferences are made. So ( )θp x  

reflects the updated beliefs about θ  after observing the sample
 1 2

, ,...,x =
n

x x x . 

The posterior distributions using non-informative priors for the unknown 

parameter θ  of the power distribution are derived below: 

Let X be a random variable having the following p.d.f. ( )f x for a power 

distribution with unknown parameter θ : 
1( ) , 0 1, 0θθ θ−= < < < < ∞f x x x

  
The likelihood function of a random sample 

1 2
( , ,..., )x =

n
x x x  from the power 

distribution with unknown parameter θ  is: 

1

1

( , ) , 0 1; 1, 2,..., .x
θθ θ −

=

= < < =∏
n

n
i

i

L x x i n                   (2.1)   

Prior probability distribution is a distribution of an uncertain quantity of θ , 

that would express one’s uncertainty about θ  before the data are taken into account. If 

there is no relevant prior information available then there are ways to derive a non-

informative prior distribution. The parameters of prior distribution are called 

hyperparameters.                  

     

2.1 Posterior Distribution Using the Jeffreys Prior 
A non-informative prior has been suggested by Jeffreys, which is frequently 

used in situation where one does not have much information about the parameters. This 

defines the density of the parameters proportional to the square root of the determinant 

of the Fisher information matrix, symbolically the Jeffreys prior of θ is:  

( )( )θ ∝ Ip θθθθ
    

where 
1 2( , ,..., )θ θ θ= t

kθθθθ be the vector of unknown parameters, and ( )I θθθθ is the 

( )×k k  Fisher information matrix which is the logarithm of likelihood function ( )θL  

of parameterθ ’s and partially differentiating twice with respect to the parameters as 

given below: 

2

j i

( , x)
( )

θ

θ θ

∂

∂ ∂

 
= −  

  

lnL
I θθθθ E
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Here E denotes expectation on data and i and j stand for rows and columns of 

determinant respectively. 

 

The Jeffreys prior for the parameter θ  of the power distribution is derived 

which is:  
1( ) , 0θ θ θ−∝ < <∞p                                                      (2.2) 

The posterior distribution of θ  for the given data 
1 2

( , ,..., )x =
n

x x x using 

equation (2.1) and (2.2) is: 

( ( ) ( , )x) xθ θ θ∝p p L|  

1 1

1

( )x
θθ θ θ− −

=

∝ ∏
n

n
i

i

p x|  

1

1

ln
1( )x

θ

θ θ
−

=

−
−∝

∑
n

i

i

x
np e|                                                       

( ) , 0x
α β θθ θ θ−∝ < < ∞J Jp e|                                        (2.3) 

which is the density kernel of gamma distribution having parameters α =J n

and 1

1

lnβ −

=

=∑
n

J i

i

x . So the posterior distribution of ( , )x ~ θ α βJ Jgamma  . 

2.2  Posterior Distribution Using Uniform Prior 
An obvious choice for the non-informative prior is the uniform distribution. 

Uniform priors are particularly easy to specify in the case of a parameter with bounded 

support. The uniform prior of θ  is defined as:

    ( ) 1,0θ θ∝ < < ∞p                          (2.4)
 

The posterior distribution of parameter θ for the given data 
1 2

( , ,..., )x =
n

x x x

using (2.1) and (2.4) is:
 

   1

1

( )x
θθ θ −

=

∝ ∏
n

n
i

i

p x|
 

1

1

ln
1 1( )x

θ

θ θ
−

=

−
+ −∝

∑
n

i

i

x
np e|  

1( ) , 0x
α β θθ θ θ− −∝ < < ∞U Up e|                                    (2.5) 

which is the density kernel of gamma distribution having parameters 

1α = +
U

n  and 1

1

lnβ −

=

=∑
n

U i

i

x . So the posterior distribution of ( , )x ~ θ α βJ Jgamma . 

 

3. The Posterior Distribution Using Informative Priors 
Here we use gamma and Rayleigh distribution as informative prior because 

they are compatible with the parameter θ  of the power distribution. The posterior 

distributions using informative priors for the unknown parameter θ  of the power 

distribution are derived below: 
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3.1 Posterior Distribution Using Gamma Prior 
A way to guarantee that the posterior has an easily calculatable form is to 

specify a conjugate prior. Conjugacy is a joint property of the prior and the likelihood 

function that provides a posterior from the same distributional family as the prior. 

Gamma distribution is the conjugate prior of the power distribution. The gamma 

distribution is used as an informative prior with hyperparameters ‘a’ and ‘b’, having the 

following p.d.f.: 

1( ) , 0 , , 0θθ θ θ− −= < < ∞ >
a

a bb
p e a b

a
                     (3.1) 

The posterior distribution of parameter θ  for the given data 
1 2

( , ,..., )x =
n

x x x

using equations (2.1) and (3.1) is: 

1 1

1

( x)
θ θθ θ θ− − −

=

∝ ∏
na

a b n
i

i

b
p e x

a
|  

1

( ln )
1( x)

θ

θ θ =

− −
+ −∝

∑
n

i

i

b x
a np e|  

1( , 0x) α βθθ θ θ− −∝ < < ∞p e|                                    (3.2) 

    

which is the density kernel of the gamma distribution having parameters 

α = +a n  and 1

1

lnβ −

=

= +∑
n

i

i

b x . So the posterior distribution of ( , )x ~ θ α βgamma .  

3.2  Posterior Distribution Using Rayleigh Prior 
Another informative prior is assumed to be the Rayleigh distribution with 

hyperparameter ‘c’, which has the following p.d.f.: 
2

2
2

2
( ) , 0 , 0

θ

θ
θ θ

−

= > >
ce

p c
c

                                          (3.3) 

The posterior distribution of parameter θ for the given data 
1 2

( , ,..., )x =
n

x x x

using equation (2.1) and (3.3) is: 

1

2

1

( ln )
1 2

( )x

θ
θ

θ θ

−

=

− +
+∝

∑
n

i

i

x
n c

p e|     

1

2

1

( ln )
1 21

( ) , 0x

θ
θ

θ θ θ

−

=

− +
+= < < ∞

∑
n

i

i

x
n c

p e
k

|                          (3.4) 

   where

1

2

1

( ln )
1 2

0

θ
θ

θ θ

−

=

∞ − +
+=

∑
∫

n

i

i

x
n c

k e d    

The posterior distribution is not in closed form but can be used numerically 

using package like SAS. 

 

4. Elicitation of Hyperparameters  
In the context of Bayesian statistical analysis, it arises most usually as a 

method for specifying the prior distribution for one or more unknown parameters of a 

statistical model.  
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Different methods of elicitation are proposed by Aslam(2003), here we choose 

the method of the confidence levels (C.L) of the prior predictive distribution to elicit 

the hyperparameters of the prior density. 

 

For analysis we take the sample of 20 observations from Mendenhall and 

Hader (1958) mixture data recorded about times to failure for ARC-1 VHF 

communication transmitter receivers of a single commercial airline. Saleem et. al. 

(2010) have used the transformation ( exp( ))= −x t which yields a power distribution, so 

we also use this transformation. Following is the set of 20 observations: 

152, 528, 424, 208, 536, 40, 8, 224, 112, 72, 72, 72, 112, 360, 120, 552, 104, 

384, 464, 552. 

1

1

ln 5096−

=

=∑
n

i

i

x and 20=n  

4.1 The Prior Predictive Distribution 
The prior predictive distribution or in other words the marginal distribution of 

an unobserved data value is the product of the prior for θ  and the single variable p.d.f., 

integrating out this parameter. This makes intuitive sense as uncertainty in θ  is 

averaged out to reveal a distribution for the data point. It is defined as: 

0

( ) ( ) ( ; )θ θ θ
∞

= ∫p y p f y d

 
here Y  is the random variable of the model with unknown parameter θ . 

1( ; ) ,θθ θ −=f y y   0 1,< <y 0 .θ< < ∞                       (4.1)    

              

4.2  Prior Predictive Distribution Using Gamma Prior      
The prior predictive distribution or in other words the marginal distribution of 

an unobserved data value is the product of the prior for θ  and the single variable p.d.f., 

integrating out this parameter. This makes intuitive sense as uncertainty in θ  is 

averaged out to reveal a distribution for the data point. 

The prior predictive distribution using gamma prior for a random variable Y 

combining equation (3.1) and (4.1) is: 

1 1
( )

( ln )− +
=

+

a

a

ab
p y

y b y
,  0 1.< <y

                               (4.2) 

The equation of prior predictive distribution is used for the elicitation of the 

hyperparameters. 

The two confidence levels for the prior predictive distribution may be elicited 

as 0.05 and 0.05 associated with the equation (4.2) of prior predictive distribution over 

the intervals 155 130( to )− −e e  and 30 5( to )− −e e .
 

(-130)

(-155)

e a

-1 ( 1)

e

a b
0.05

y (b+ln y )
+

= ∫ a

dy
 

(-5)

(-30)

e a

-1 ( 1)

e

a b
0.05 .

y (b+ln y )
+

= ∫ a

dy
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These two equations are solved simultaneously by applying ‘PROC SYSLIN’ 

in the SAS package for eliciting the hyperparameters ‘a’ and ‘b’. In this way, we found 

that the values of the hyperparameters ‘a’ and ‘b’ are to be 2.4941 and 0.0936 

respectively. 

Now the posterior distribution of parameter θ  using equation (3.2) is the 

gamma distribution with parameters 22.4941α =  and 5096.0936β = .      
 

 

4.3  Prior Predictive Distribution Using Rayleigh Prior
 

Further the prior predictive distribution using Rayleigh prior for a random 

variable Y combining equation (3.3) and (4.1) is: 

   
1

2
( ln )

2 2
2

0

1
( ) , 0 1

θ
θ

θ θ
−∞

− +
= < <∫

y
cp y e d y

y c
                (4.3)

 
 

This prior predictive distribution has not a closed form and it is used 

numerically for the elicitation of hyperparameter ‘c’. 

The confidence level for the prior predictive distribution may be elicited as 

0.05 associated with the equation (4.3) of prior predictive distribution over the interval 
8(0 to )−e  considering the data set. 

18
2

( ln )20 2 2

2

0 0

1
0.05

θ
θ

θ
θ

−− − +

= ∫ ∫
ye

ce
d dy

yc
  

 

We solve this equation by applying ‘PROC SYSLIN’ in the SAS package for 

eliciting the hyperparameter ‘c’. In this way, we find that the value of the 

hyperparameter ‘a’ is to be 0.2291. 

Using the sample information and the elicited hyperparameter, the posterior 

distribution of parameter θ  using equation (3.4)  is: 

2

2

( 5096)
21 2(0.2291)

( 5096)
21 2(0.2291)

0

( ) , 0 .x

θ
θ

θ
θ

θ
θ θ

θ θ

− +

∞ − +
= < < ∞

∫

e
p

e d

 

The posterior distribution of parameter θ  using equation (2.3) the Jeffreys 

prior is gamma distribution with parameters 20α =
J

 and 5096β =
J

. 

The posterior distribution of parameter θ  using equation (2.5) uniform prior is 

also gamma distribution with parameters 21α =
U

 and 5096β =
U

. 

 

5. Bayes Estimators Under Different Loss Functions 
This section focuses on the Bayes estimators and Bayes posterior risks under 

different loss functions and compares their results for the informative priors and non-

informative priors. Loss function is a real valued function that explicitly provides a loss 

(penalty) for decision θ∗  given θ  is the true parameter value. 

 

We use four loss functions. The derivations of Bayes estimates and Bayes 

posterior risk are given in appendix. Note that Bayes posterior risk ( )θ ∗ρD  using 
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absolute loss function is numerically solved. The values of the Bayes estimates under 

the mentioned loss functions are given in Table 5.0. 

 

 

Loss 

Function 

 

( , )θ θ ∗L  

Bayes 

Estimator 

θ∗
 

Bayes Posterior 

Risk 

( )ρ θ ∗  

Prior 

Distribution 
Bayes Estimtor 

AL  
1

2

( )

( )

θ

θ

−

−

E

E
 

( )2
1

2

( )
( ) 1

( )

θ
ρ θ

θ

−

∗

−
= −

A

E

E
 

 

 

IP 

Gamma 
0.00402 

(0.04652) 

Rayleigh 
0.00392 

(0.04762) 

NIP 

Jeffreys 
0.00353 

(0.05632) 

Uniform 
0.00373 

(0.05000) 

BL  
1

1

( )θ −
E

 

 

1

1
( ) ( )

( )
θ θ

θ
∗

Β −
ρ = −E

E

 

 

 

IP 

Gamma 
0.00422 

(0.00020) 

Rayleigh 
0.00412 

(0.00020) 

 

NIP 

Jeffreys 
0.00373 

(0.00020) 

Uniform 
0.00392 

(0.00020) 

CL  ( )θE
 

2 2
( ) ( ) ( ( ))θ θ θ∗ρ = −C E E

 

 

 

IP 

Gamma 
        0.00441 

(8.661× 710− )       

Rayleigh 
0.00432 

(8.471× 710− ) 

 

NIP 

Jeffreys 
0.00392 

(7.701× 710− ) 

Uniform 
0.00412 

(8.086× 710− ) 

DL  Median 

 

( )θ ∗ρ =D

Numerically 

Solved 

 

 

IP 

Gamma 
0.00435 

(0.00074) 

Rayleigh 
0.00425 

(0.00073) 

NIP 

Jeffreys 
0.00386 

(0.00070) 

Uniform 
 0.00405 

 (0.00071) 

 

* IP stands for informative prior * NIP stands for non-informative prior 

Table 5.0: Bayes Estimates Under Different Loss Functions 

 

The Bayes estimators under loss functions ( , , and )A B C DL L L L  have 

minimum value for non-informative (Jeffreys) prior than the informative and non-

informative (uniform) prior. The Bayes estimators under the loss function AL  have 

overall minimum value than the loss functions ( , and )B C DL L L .  
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The values of Bayes posterior risk are given in the brackets. From Table 5.1  

we conclude that the Bayes posterior risk ( )θ ∗ρC  has overall smaller value than  

D( ) ( ) and ( ))θ θ θ∗ ∗ ∗
Α Β(ρ , ρ ρ  under the informative and non-informative priors. 

 

5.1 Comparison of Posterior Variances 
The posterior variances are given in Table 5.2: 

 

Parameter 
Posterior Variance 

I P N I P 

θ  
Gamma Rayleigh Jeffreys Uniform 

 8.6615 × 710−  8.4710 × 710−   7.7011× 710−  8.0862 × 710−  

 

Table 5.1: Comparison of different Priors with respect to Posterior Variances 
 

From table 5.1, it is observed that  

Var (Jeffreys) < Var (Uniform) < Var (Rayleigh) < Var (Gamma) 

From table 5.1 we infer that posterior variance using non-informative 

(Jeffreys) prior is less than the posterior variance of informative (gamma and Rayleigh) 

and non-informative (uniform) prior. So we conclude that the Jeffreys prior is more 

efficient prior among these four prior which we have used. 

 

5.2  Credible Interval  
Here we are interested in finding out the credible interval estimates. If a 

random variable X follows the power distribution then
 
Meniconi and Barry (1996) 

mentioned that the credible interval for θ  is given as:     

2 2

( , 2 ) (1 , 2 )

1 1

2 log 2 log

1
α α

χ χ
θ α−

= =

≤ ≤

− −

 
 

= − 
 
 

∑ ∑

n n

n n

i i

i i

x x

p

 

Prior Distributions 95%  Credible Interval 99% Credible Interval 

 

I P 

Gamma (0.00341, 0.00662) (0.00291, 0.00747) 

Rayleigh (0.00273, 0.00591) (0.00198, 0.00666) 

 

N I P 

Jeffreys (0.00260, 0.00547) (0.00217, 0.00625) 

Uniform (0.00341, 0.00662) (0.00292, 0.00747) 

 

Table 5.2: Credible Intervals 

  

 

The Table 5.2 compares credible intervals, we find out that 95% credible 

interval are narrow than 99% interval for informative and non-informative priors. 

Furthermore, we conclude that 99% credible interval for informative (Rayleigh) is 

greater than informative (gamma) prior. We observe that for non-informative priors, 

99% credible interval considering Jeffreys prior is narrower than uniform prior. By 

examining 95% credible interval for informative (Rayleigh) is narrower than 

informative (gamma) prior and for non-informative, uniform prior is wider than 

Jeffreys prior. 
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5.3 Coefficient of Skewness and Coefficient of Kurtosis  

As the posterior distribution is skewed so we calculate the coefficients of 

skewness and kurtosis of the posterior distributions and given in Table 5.3. 

 

 

* C.O.S stands for Coefficient of Skewness, * C.O.K stands for Coefficient of Kurtosis 

Table 5.3: Coefficients of Skewness and Kurtosis 

 

The Table 5.3 shows that the coefficients of skewness for both informative and 

non-informative priors are greater than zero, so the posterior distributions for all these 

priors are positively skewed. As the coefficient of kurtosis is greater than 3 for both the 

informative and non-informative priors then they are leptokurtic distribution having a 

more acute peak around the mean.  

 

5.4 Bayes Factor for Bayesian Hypotheses Testing 
Bayesian hypothesis testing describes as the evidence of the quality of one 

model specification over another. This section contains the testing of parameter θ  

considering different null and alternative hypotheses using informative and non-

informative priors. The arbitrary decision thresholds for these hypotheses are based on 

Jeffreys (1961) typology for comparing model 0H  and 1H . 

  

Null 

Hypotheses 

Alternative 

Hypotheses    Prior Distribution 
Posterior Probability 

Bayes  

Factor 

0H  
1H  

0( )P H  
1( )P H  B 

0.0035θ ≤
 

0.0035θ >
 

I P 
Gamma 0.16163 0.83837 0.19279 

Rayleigh 0.18142 0.81858 0.22163 

N I P 
Jeffreys 0.33461 0.66539 0.50287 

Uniform 0.25631 0.74369 0.34465 

0.0040θ ≤  0.0040θ >  

I P 
Gamma 0.34878 0.65122 0.53558 

Rayleigh 0.37816 0.62184 0.60813 

N I P 
Jeffreys 0.56349 0.43651 1.29090 

Uniform 0.47498 0.52502 0.90468 

0.0045θ ≤  0.0045θ >  
I P 

Gamma 0.56437 0.43563 1.29553 

Rayleigh 0.59505 0.40495 1.46944 

N I P Jeffreys 0.75798 0.24202 3.13189 

 

 

Prior Distribution 

 

 

 

Moments about Mean C.O.S C.O.K 

 

 

1µ

 

 

2µ  

 

3µ  

 

4µ  

 

1γ  

 

2γ  

 

I P 

Gamma 0 8.6615×10-7 3.3993×10-10 2.4508×10-12 0.42169 3.26674 

Rayleigh 0 8.4711×10-7 3.2916×10-10 2.3795×10-12 0.42162 3.26668 

 

N I P 

Jeffreys 0 7.7014×10-6 3.0225×10-10 1.9573×10-12 0.44721 3.30000 

Uniform 0 8.0865×10-6 3.1737×10-10 2.1486×10-12 0.43644 3.28571 
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Uniform 0.68496 0.31504 2.17420 

0.0050θ ≤  0.0050θ >  

I P 
Gamma 0.74965 0.25035 2.99441 

Rayleigh 0.77393 0.22607 3.42341 

N I P 
Jeffreys 0.88524 0.11476 7.71383 

Uniform 0.83824 0.16176 5.18199 

 

Table 5.4 Posterior Probabilities and Bayes Factor for Differen t Hypotheses 

 

In Table 5.4 we calculate Bayes Factor (B), central notion is that prior and 

posterior information should be combined in a ratio that provides evidence of one 

model specification over another. From table 5.4 we observed that for hypothesis 

0 1: 0.0035 Vs : 0.0035θ θ≤ >H H  we have substantial evidence against 0H  for 

informative priors and have minimal evidence against 0H  for non-informative priors. 

Considering 0 1: 0.0040 Vs : 0.0040θ θ≤ >H H  we have minimal evidence against 0H  

for informative and non-informative (uniform) priors and supported 0H
 

for non-

informative (Jeffreys) prior. Similarly for hypotheses 

0 1: 0.0045 Vs : 0.0045θ θ≤ >H H  and 0 1: 0.0050 Vs : 0.0050θ θ≤ >H H  we have 

supported 0H  for both informative and non-informative priors. 

 

6. Conclusion 
By carrying out this study we enlighten the Bayesian analysis of the power 

model using informative (gamma and Rayleigh) and non-informative (Jeffreys and 

uniform) priors. From Table 5.0, we observe that the posterior risk is smaller for non-

informative than the informative priors. The result of the Table 5.2 shows that 95% 

credible interval are narrow than 99% interval for informative and non-informative 

priors. The variance of  Jeffreys prior is more efficient among all the priors given in 

Table 5.1. The posterior mean is greater than posterior median, so we conclude that our 

posterior distributions are skewed for informative and non-informative priors. 

Coefficients of skewness in Table 5.3 are positive, so the posterior distributions using 

all these priors are positively skewed. Coefficients of kurtosis using informative and 

non-informative priors are greater than 3, and then they are leptokurtic distributions 

having a more acute peak around the mean. The testing of parameter ,θ in Table 5.4 

considering different null and alternative hypotheses using informative and non-

informative priors, when the Bayes factor B > 1 in  such a case we have supported 0H . 

The Bayes estimators under the different loss functions have minimum value for non-

informative (Jeffreys) prior than the informative and non-informative (uniform) priors. 
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Appendix 
We have used four loss functions for estimation. The derivations of the Bayes 

estimators are given in this appendix. 

 

1. Quadratic Loss Function 

The quadratic loss function is given as: 
2

( , ) 1
θ

θ θ
θ

∗
∗= = −

 
 
 

A AL L

 
The posterior risk function is: 

2

( ) 1
θ

θ
θ

∗
∗

Αρ = −
 
 
 

E  

1 2 2
( ) 1 2 ( ) ( )θ θ θ θ θ∗ ∗ − ∗ −

Αρ = − +E E                                    (A) 

Differentiating equation (A) w.r.t θ ∗  we get 

1 2( )
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θ θ θ
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For minimizing,
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nd
 derivative is positive. 
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θ
θ
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−
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−
=

E
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                                                                       (B) 

which is Bayes estimator under quadratic loss function. 

 

2. Weighted Loss Function 

The weighted loss function is given as: 
2

( )
( , )

θ θ
θ θ

θ

∗
∗ −

= =B BL L  

The Bayes estimator θ ∗  is derived by the rule of calculus as applied in 

quadratic loss function. So the Bayes estimator is: 

    1

1

( )
θ

θ

∗

−
=

E
 

Squared Error Loss Function 

The squared error loss function is given as: 

    2
( , ) ( )θ θ θ θ∗ ∗= = −C CL L  

The Bayes estimator using above loss function is: 

( )θ θ∗ = E
 

which is the posterior mean. 

 

3.  Absolute Loss Function  

The absolute loss function is given as: 

   
( , )θ θ θ θ∗ ∗= = −D DL L

 

 
The posterior risk is: 
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( ) ( , )x xθ θρ θ θ θ θ θ∗ ∗ ∗= = −D DE L E  
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Differentiating  w.r.t θ ∗  we get 

 

For minimizing
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2
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According to definition of median in terms of distribution function; xθ |  is a 

posterior median which is Bayes estimator under absolute loss function.  

 

 

Bayes Posterior Risk
 

This section contains the derivation of Bayes posterior risk using different loss 

function. 

 

1. The Bayes posterior risk using quadratic loss function is: 

( , )
xθρ θ θ ∗=

A A
E L  

Using equation (A) and put the value of equation (B) we get 
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2. The Bayes posterior risk using weighted loss function is: 

1

1
( ) ( ) .

( )
θ θ

θ
∗

Β −
ρ = −E

E  
The Bayes posterior risk using squared error loss function is: 



58                          Journal of Reliability and Statistical Studies, December 2012, Vol. 5 (2) 
 

 

{ }22
( ) ( ) ( ) .θ θ θ∗ρ = −C E E

 
which is the posterior variance of parameter θ and it is the Bayes 

posterior risk under the SLF. 

 

3. The Bayes posterior risk ( )θ ∗ρD  using absolute loss function is numerically 

solved. 

As Medianθ ∗ =  put in equation (C) to find the Bayes posterior risk :  

( ) ( ) ( ) ) ( )x x

θ

θ

ρ θ θ θ θ θ θ θ θ θ

∗

∗

∞
∗ ∗ ∗

−∞

= − − + −∫ ∫D p d p d

 
This equation  is numerically solved. 

 


