# A TWO NON-IDENTICAL UNIT STANDBY SYSTEM MODEL WITH REPAIR, INSPECTION AND POST-REPAIR UNDER CLASSICAL AND BAYESIAN VIEWPOINTS

# Ram Kishan\* and Divya Jain

Department of statistics, D.A.V. (P.G.) College, Muzaffarnagar-251001, India E Mail: rkishan05@rediffmail.com, divyajain2787@gmail.com

#### (Received October 08, 2012)

## Abstract

In this paper some important measures of reliability characteristics of a two nonidentical unit standby system model with repair, inspection and post repair are obtained using regenerative point technique. All time random variables are assumed to be independent and follow Weibull distribution. Monte Carlo simulation study is also carried out to illustrate the results for considered system model from Classical and Bayesian viewpoints.

**Key Words**: Mean time to system failure (MTSF), Fisher Information matrix and Non-Regenerative point.

#### **1. Introduction**

In order to improve the reliability or raise the availability and hence reduce the loss, a two-component redundant system is often employed. A two- component cold standby system with one repairman has been one of the classical models in the reliability theory. Under the condition that the operating time and the repair time of each component in the system both have exponentially distributed. Several studies including Dhillon and Yang (1992), Goel and Srivastava (1991), Mogha and Gupta (2002), Nakagawa and Osaki (1975), Singh and Mishra (1994) analyzed system models by using the concepts of warm standby with common cause failure and human error, correlated failures and repairs, two priority unit warm standby with preparation for repair, two unit priority standby with repair, two unit cold standby with two operating modes.

All the above studies assumed that each failed component after repair is "as good as new". However, In real existing situations we observe that there are many sophisticated, costly equipments/units where it becomes necessary to inspect a repaired unit/equipment to check whether the repair done is satisfactory or not. The equipment may be sent for post-repair if repair is found unsatisfactory during inspection. Besides, these studies were mainly concerned to obtain reliability characteristics and not to estimate the parameters involved in the lifetime/repair time distributions of unit/system. Gupta and Pankaj (2012) analyzed two dissimilar unit cold standby system with Weibull failure and repair laws without estimating the parameter(s) involved in the life time/repair time distribution of system/ unit.

Keeping above idea in view, we, in the present paper analyze a two nonidentical unit standby system model in which the first unit goes for repair, inspection and post repair whereas the second unit becomes as good as new after repair. Here the priority in operation is given to the first unit as it is highly sophisticated, costly unit which provides high quality product at low running cost. The second unit is ordinary unit which has high running cost. Priority in repair is given to second unit as repair of second unit is less time consuming and cheaper as compared to first unit. The purpose of the present paper is to analyze a two non-identical unit standby system model with repair, inspection and post repair by using Weibull distribution for both failure and repair times with different scale parameters and common shape parameter under classical and Bayesian setups. For a more concrete study the system model, a simulation study is also carried out.

The probability density function (p.d.f) of Weibull distribution is given by

 $f(t) = \theta p t^{p-1} \exp(-\theta t^p)$ ;  $t \ge 0$  and  $\theta$ , p > 0

The reliability/survival function and hazard (failure /repair) rate for Weibull distribution are respectively given by

$$R(t) = \exp(-\theta t^p); t \ge 0 \text{ and } \theta, p > 0$$

and

$$H(t) = \theta p t^{p-1}$$
;  $t \ge 0$  and  $\theta$ ,  $p > 0$ 

It is important to note that p and  $\theta$  are the shape and scale parameters respectively. If we put p=1 in the above p.d.f of Weibull distribution, it reduces to exponential distribution and for p=2, it reduces to Rayleigh distribution.

We evaluate the following reliability characteristics of interest to system designers as well as operating managers by using regenerative point technique.

- (i) Steady-state transition probabilities and mean sojourn times in various states.
- (ii) Pointwise availability of the system at time t and the steady state availability.
- (iii) Reliability of the system and Mean time to system failure (MTSF).
- (iv) Expected up time of the system and expected busy period of the repairman during (0, t).
- (v) Expected profit incurred by the system in (0, t) and in the steady state.

Further, since life testing experiments are time consuming and as such the parameters representing the reliability characteristics of the system/unit are assumed to be random variables. Therefore, a simulation study is conducted for analyzing the considered system model both in classical and Bayesian set ups. The Monte Carlo simulation technique has been used in conducting the numerical study. In classical setup, the maximum likelihood (ML) estimates of the parameters involved in the model and reliability characteristics along with their standard errors (SE) and width of confidence intervals are obtained. In Bayesian setup, Bayes estimates of the parameters and reliability characteristics along with their posterior standard errors (PSE) and width of highest posterior density (HPD) intervals are computed. In the end, the comparative conclusions are drawn to judge the performances of the ML and Bayes estimates.

The rest of the paper is organized as follows: Section 2 deals with the system model description and assumptions. In Section 3, notations and states of the system model are given. In Section 4, transition probabilities and mean sojourn times in various states are considered. Section 5 deals with the analysis of various characteristics such as reliability, MTSF, Availability, Busy period and Profit function. In Section 6, Maximum likelihood estimation (MLE) and Bayes estimation of scale parameters, MTSF and Profit function are considered. Section 7 deals with the simulation study to examine the behavior of the estimates of parameters and reliability characteristics and finally in Section 8, concluding remarks are given on the basis of Tables 1-6 obtained under Section 7 and Figures 2-7.

#### 2. System Model Description and Assumptions

- (i) The system consists of two non-identical units (unit-1 and unit-2). Initially, system starts its operation from state S0 in which unit-1 is operative and unit-2 is kept in cold standby. Upon failure of an operative unit the cold standby unit becomes operative instantaneously.
- (ii) Each unit has two modes- Normal (N) and total failure (F). After the repair of unit-1, it goes for inspection to decide whether the repair is perfect or not. If the repair of a unit is found to be perfect then the repaired unit becomes operational, otherwise it is sent for post repair. The probability of having a perfect repair is fixed. Unit-2 becomes as good as new after repair.
- (iii) Upon failure of unit-1, unit-2 becomes operative instantaneously with a perfect switching device.
- (iv) The second unit gets the priority in repair over the repair, inspection and post repair of unit-1.
- (v) The failure and repair time distributions of each unit are taken to be independent having the Weibull density with common shape parameter 'p' but different scale parameters  $\alpha$  and  $\beta$  as follows:

$$f_i(t) = \alpha_i p t^{p-i} exp(-\alpha_i t^p), t \ge 0 \text{ and } \alpha_i, p > 0, i=1, 2$$

and

$$g_i(t) = \beta_i p t^{p-l} exp(-\beta_i t^p)$$
, t  $\geq 0$  and  $\beta_i, p > 0$ , i=1,2

(vi) The inspection and post repair time distributions of unit-1 are taken to be independent having the Weibull density with common shape parameter 'p' but different scale parameters  $\mu$  and  $\lambda$  as follows:

$$J(t)=\mu pt^{p-1}exp(-\mu t^{p}), t\geq 0 \text{ and } \mu, p > 0$$
  
and  
$$h(t)=\lambda pt^{p-1}exp(-\lambda t^{p}), t\geq 0 \text{ and } \lambda, p > 0$$

(vii) The switching device is perfect and instantaneous.

(viii) A single repair facility is used to repair of both units and inspection and post repair of unit-2.

(ix) A repaired unit works as good as new.

# 3. Notations and States of the System

# Notations

| 1 (otations                    |                                                                                        |
|--------------------------------|----------------------------------------------------------------------------------------|
| E                              | : Set of regenerative states = $\{S_0, S_1, S_2, S_3, S_4, S_5, S_6\}$                 |
| $\alpha_i / \beta_i$           | : Scale parameter of failure/repair time distribution for $1^{(n)}(1=1,2)$ unit.       |
| $\mu/\lambda$                  | : Shape parameter of failure/repair time distribution of each unit                     |
| p<br>hi(t)                     | : failure rate of $i^{th}$ (i=1, 2) unit when both the units are operative             |
| iii(t)                         | $= \alpha_{i} pt^{p-1}, \alpha_{i}, p, t > 0$                                          |
| $K_{i}(t)$                     | : repair rate of $i^{\text{th}}$ (i=1.2) unit                                          |
| 1()                            | $=\beta_{i}pt^{p-1}, \beta_{i}, p,t > 0$                                               |
| m(t)                           | : inspection rate of first unit having the form                                        |
|                                | $= \mu p t^{p-1};  \mu, p, t > 0$                                                      |
| e(t)                           | : post repair rate of first unit having the form                                       |
|                                | $= \lambda p t^{p-1}; \lambda, p, t > 0$                                               |
| a/b                            | : Probabilities that the repair of unit-1 is perfect or imperfect (a+b=1)              |
| $q_{ii}(\cdot), Q_{ii}(\cdot)$ | :p.d.f and cdf of one step or direct transition time from $S_i \in E$ to $S_i \in E$ . |
|                                |                                                                                        |
| $p_{ij}$                       | : Steady state transition probability from state $S_i$ to $S_j$ such that              |
|                                | $-\lim_{t \to \infty} O_{t}(t)$                                                        |
|                                | $-\lim_{t\to\infty}Q_{ij}(t).$                                                         |
| ( <i>k</i> )                   |                                                                                        |
| $p_{ij}$                       | : Steady state transition probability from state $S_i$ to $S_j$ via $S_k$ such that    |
|                                | (k) $(k)$                                                                              |
|                                | $p_{ij}^{(\kappa)} = \lim_{t \to \infty} Q_{ij}^{(\kappa)}(t).$                        |
|                                |                                                                                        |
| $\Psi_i$                       | : Mean sojourn time in regenerative state $S_i$ i.e.                                   |
|                                | $=\int_{0}^{\infty} P[T, > t] dt$                                                      |
|                                |                                                                                        |
| $R_i(t)$                       | : Reliability of the system at time t when system starts from $S_i$ .                  |
| $A_i(t)$                       | : Probability that the system will be operative in state $S_i$ at epoch t.             |
| $B_i(t)$                       | : Probability that the repairman will be busy in state $S_i$ at epoch t.               |
| $\mu_{un}(t)$                  | : Expected up time of the system during interval (0, t) i.e.                           |
| r'                             | +                                                                                      |
|                                | $=\int_0^{\iota}A_0(u)du.$                                                             |
| u (t)                          | : Expected busy period of repairman during interval $(0, t)$ is                        |
| mb(i)                          | . Expected busy period of repartman during interval (0, 1) i.e.                        |
|                                | $=\int_0^t B_0(u)du.$                                                                  |
|                                |                                                                                        |

- P(t) : Profit incurred by the system during interval (0, t).
- \* : Symbol for Laplace Transform of a function i.e.

$$\mathbf{q}_{ij}^* = \int_0^\infty e^{-st} q_{ij}(t) dt.$$

: Regenerative point.

.

× : Non regenerative point.

# Symbols for the States of the System

| N <sub>10</sub>                                         | : Unit-1 is in normal (N) mode and operative.                         |
|---------------------------------------------------------|-----------------------------------------------------------------------|
| N <sub>20</sub> , N <sub>2s</sub>                       | : Unit-2 is in N-mode and operative /cold standby.                    |
| F <sub>1r</sub> , F <sub>1I</sub> , F <sub>1pr</sub>    | : Unit-1 is in F-mode and under repair/under inspection after         |
| •                                                       | repair/and post repair.                                               |
| F <sub>2r</sub>                                         | : Unit-2 is in F-mode and under repair.                               |
| F <sub>1wr</sub> , F <sub>1wI</sub> , F <sub>1wpr</sub> | : First Unit is in F-mode and waiting for repair, inspection and post |
|                                                         | repair respectively.                                                  |

# Considering the above symbols, we have the following states of the system.

| Up States:                     | Failed States:                                                                |
|--------------------------------|-------------------------------------------------------------------------------|
| $S_0 \equiv (N_{10}, N_{2s})$  | $\mathbf{S}_2 \equiv (\mathbf{F}_{1 \mathrm{wr}}, \mathbf{F}_{2 \mathrm{r}})$ |
| $S_1 \equiv (F_{1r}, N_{20})$  | $S_4 \equiv (F_{1wI}, F_{2r})$                                                |
| $S_3 \equiv (F_{1I}, N_{20})$  | $S_6 \equiv (F_{1wpr}, F_{2r})$                                               |
| $S_5 \equiv (F_{1pr}, N_{20})$ |                                                                               |

Here all states are regenerative. The possible transitions between the states together with transition rates are shown in Fig.1.



# 4. Transition Probabilities and Sojourn Times

The non-zero elements  $p_{ij}$  of transition probability matrix (t.p.m) for the system model are as follows:

The steady state transition probabilities can be obtained by using the results,

$$p_{ij} = \lim_{t \to \infty} Q_{ij}(t)$$
$$p_{01} = \int \alpha_1 p t^{p-1} e^{-\alpha_1 t^p} dt = 1$$

Similarly,

$$p_{12} = \frac{\alpha_2}{\alpha_2 + \beta_1}; p_{13} = \frac{\beta_1}{\beta_1 + \alpha_2}; p_{21} = 1; p_{30} = \frac{a\mu}{\mu + \alpha_2}; p_{34} = \frac{\alpha_2}{\mu + \alpha_2}; p_{35} = \frac{b\mu}{\mu + \alpha_2}$$
$$p_{43} = 1; p_{50} = \frac{\lambda}{\lambda + \alpha_2}; p_{56} = \frac{\alpha_2}{\lambda + \alpha_2}; p_{65} = 1$$

It can be easily verified that  

$$p_{01} = 1$$
  
 $p_{12} + p_{13} = 1$   
 $p_{21} = 1$   
 $p_{30} + p_{34} + p_{35} = 1$   
 $p_{43} = 1$   
 $p_{50} + p_{56} = 1$   
 $p_{65} = 1$   
(1-7)

The limits of integration are 0 to  $\infty$  whenever not mentioned.

# **Mean Sojourn Times**

If  $T_i$  is the sojourn time in state  $S_i$ , then mean sojourn time in state  $S_i$  is given by,  $\psi_0 = \int P(T_i > t) dt$ 

Therefore, the mean sojourn times for various states are as follows: 1

$$\psi_{0} = \int e^{-\alpha_{1}t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\alpha_{1})^{1/p}}$$
  

$$\psi_{1} = \int e^{-\beta_{1}t^{p}} e^{-\alpha_{2}t^{p}} dt = \int e^{-(\beta_{1}+\alpha_{2})t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\beta_{1}+\alpha_{2})^{1/p}}$$
  

$$\psi_{2} = \int e^{-\beta_{2}t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\beta_{2})^{1/p}}$$

$$\begin{split} \psi_{3} &= \int e^{-\alpha_{2}t^{p}} e^{-\mu t^{p}} dt = \int e^{-(\alpha_{2}+\mu_{-})t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\alpha_{2}+\mu_{-})^{1/p}} \\ \psi_{4} &= \int e^{-\beta_{2}t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\beta_{2})^{1/p}} \\ \psi_{5} &= \int e^{-\alpha_{2}t^{p}} e^{-\lambda_{-}t^{p}} dt = \int e^{-(\alpha_{2}+\eta_{-})t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\alpha_{2}+\lambda_{-})^{1/p}} \\ \psi_{6} &= \int e^{-\beta_{2}t^{p}} dt = \frac{\Gamma(1+\frac{1}{p})}{(\beta_{2})^{1/p}} \end{split}$$
(8-14)

## 5. Analysis of Characteristics

## 5.1 Reliability and Mean Time to System Failure (MTSF)

Let  $R_i(t)$  be the probability that the system is operative during (0,t) given that at t=0, it starts from state  $S_i \in E$ . Using the regenerative point technique, reliability of the system when it starts from state  $S_0$ , in terms of its Laplace transform (i.e. the value of  $R_0(t)$ ) is given by

$$R_{0}^{*}(s) = \frac{N_{1}(s)}{D_{1}(s)} = \frac{Z_{0}^{*} + q_{01}^{*}[Z_{1}^{*} + q_{13}^{*}(Z_{3}^{*} + q_{35}^{*}Z_{5}^{*})]}{1 - q_{01}^{*}[q_{13}^{*}(q_{30}^{*} + q_{35}^{*}q_{50}^{*})]}$$
(15)

Where

 $Z_0^*(s), Z_1^*(s), Z_3^*(s)$  and  $Z_5^*(s)$  are the Laplace transforms of  $Z_0(t), Z_1(t), Z_3(t)$  and  $Z_5(t)$ , given by

$$Z_0^*(0) = \int e^{-\alpha_1 t^p} dt = \psi_0$$

Similarly,

$$Z_1^*(0) = \psi_1, \ Z_3^*(0) = \psi_3, \ Z_5^*(0) = \psi_5$$

Taking the inverse Laplace transform (ILT) of eq. (15), one can get the reliability of the system when it starts from state  $S_0$ .

The mean time to system failure (MTSF) can be obtained by using the well known formula-

A Two Non-Identical Unit Standby ...

MTSF= 
$$E(T_0) = \lim_{s \to 0} R_0^*(s) = \frac{N_1(s)}{D_1(s)} = \frac{N_1(0)}{D_1(0)} = \frac{N_1}{D_1}$$
 (16)

Now using the results  $q_{ij}^{*}(0) = p_{ij}$  and  $Z_{i}^{*}(0) = \psi_{i}$ , we get

$$N_{1} = \psi_{0} + \psi_{1} + p_{13}(\psi_{3} + p_{35}\psi_{5}) = \frac{\Gamma(H-\frac{1}{p})}{(\alpha_{1})^{\nu_{p}}} + \frac{\Gamma(H-\frac{1}{p})}{(\beta_{1} + \alpha_{2})^{\nu_{p}}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} (\frac{\Gamma(H-\frac{1}{p})}{(\alpha_{2} + \mu)^{\nu_{p}}} + \frac{b\mu}{\mu + \alpha_{2}} * \frac{\Gamma(H-\frac{1}{p})}{(\alpha_{2} + \lambda)^{\nu_{p}}})$$
$$D_{1} = 1 - p_{13}(p_{30} + p_{35}p_{50}) = 1 - \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} (\frac{a\mu}{\mu + \alpha_{2}} + \frac{b\mu}{\mu + \alpha_{2}} \cdot \frac{\lambda}{\lambda + \alpha_{2}})$$

#### 5.2 Availability Analysis

Let us define  $A_i(t)$  as the probability that the system is up at time t when initially it starts from state  $S_i \in E$ . Using the technique of Laplace transform, one can obtain the value of  $A_0(t)$  in terms of its L.T; i.e.  $A_0^*(s)$ . Now the steady state availability (probability that in the long run the system will be operative) of the system when it starts from state  $S_0$  is given by

$$A_{0} = \lim_{t \to \infty} A_{0}(t)$$
$$= \lim_{s \to 0} s A_{0}^{*}(s) = \frac{N_{2}}{D_{2}}$$
(17)

Where,

$$\begin{split} N_{2} &= \left[\psi_{0}p_{13} + \psi_{1}\right]p_{50}(1 - p_{34}) + \left[\psi_{3}p_{50} + p_{35}\psi_{5}\right]p_{13} \\ &= \left[\frac{\Gamma\left(1 + \frac{1}{p}\right)}{(\alpha_{1})^{1/p}} * \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} + \frac{\Gamma\left(1 + \frac{1}{p}\right)}{(\beta_{1} + \alpha_{2})^{1/p}}\right] \Box \frac{\lambda}{\lambda + \alpha_{2}} \Box \left(1 - \frac{b\mu}{\mu + \alpha_{2}}\right) + \\ &\left[\frac{\Gamma\left(1 + \frac{1}{p}\right)}{(\alpha_{2} + \mu)^{1/p}} \Box \frac{\lambda}{\lambda + \alpha_{2}} + \frac{b\mu}{\mu + \alpha_{2}} \Box \frac{\Gamma\left(1 + \frac{1}{p}\right)}{(\alpha_{2} + \lambda)^{1/p}}\right] \Box \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \end{split}$$

$$D_{2} = p_{13} (1 - p_{34}) \psi_{0} + p_{50} (1 - p_{34}) \psi_{1} + p_{12} (1 - p_{34}) p_{50} \psi_{2} + p_{13} p_{50} \psi_{3} + p_{13} p_{34} p_{50} \psi_{4} + p_{13} p_{35} \psi_{5} + p_{13} p_{35} p_{56} \psi_{6} = \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box (1 - \frac{\alpha_{2}}{\mu + \alpha_{2}}) \Box \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{1})^{1/p}} + \frac{\lambda}{\lambda + \alpha_{2}} \Box (1 - \frac{\alpha_{2}}{\mu + \alpha_{2}}) \Box \frac{\Gamma(1 + \frac{1}{p})}{(\beta_{1} + \alpha_{2})^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\lambda}{\lambda + \alpha_{2}} * \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \mu)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\lambda}{\lambda + \alpha_{2}} * \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \mu)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\lambda}{\lambda + \alpha_{2}} * \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \mu)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\lambda}{\lambda + \alpha_{2}} * \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\mu}{\lambda + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\beta_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\mu}{\lambda + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\beta_{2} + \lambda)^{1/p}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\mu}{\mu + \alpha_{2}} \Box \frac{\mu}{\lambda + \alpha_{2}} \Box \frac{\mu}{\lambda + \alpha_{2}} \Box \frac{\mu}{\beta_{2} + \alpha_{2}} \Box \frac{\mu}{\beta_{$$

The expected up time of the system during (0, t) is given by

$$\mu_{up}(t) = \int_{0}^{t} A_{0}(u) du \quad \text{So that, } \mu_{up}^{*}(s) = \frac{A_{0}^{*}(s)}{s}$$
(18)

## 5.3 Busy Period Analysis

Let us define  $B_i^r(t)$ ,  $B_i^1(t)$  and  $B_i^{pr}(t)$  as the probabilities that the repairman is busy in repair, inspection after repair of unit-1, post repair after the inspection of repaired unit-1 at epoch t when the system starts from state  $S_i \in E$ . Using the probabilistic arguments one can obtain the values of  $B_0^r(t)$ ,  $B_0^1(t)$  and  $B_0^{pr}(t)$  in terms of their Laplace transforms i.e.  $B_0^{r^*}(s)$ ,  $B_0^{l^*}(s)$  and  $B_0^{pr^*}(s)$ .

In the long run, the probabilities that the repairman will be busy in repair, inspection after repair of unit-1 and post repair of unit-1 and replacement of failed unit respectively are given by

$$B_{0}^{r} = \frac{N_{3}}{D_{2}}$$

$$B_{0}^{I} = \frac{N_{4}}{D_{2}}$$

$$B_{0}^{pr} = \frac{N_{4}}{D_{2}}$$
(19-21)

Where,

$$N_{3} = (1 - p_{34}p_{43})[(\psi_{1} + p_{12}\psi_{2})p_{50} + p_{13}\psi_{6}]$$
  
=  $(1 - \frac{\alpha_{2}}{\mu + \alpha_{2}})\Box[(\frac{\Gamma(1 + \frac{1}{p})}{(\beta_{1} + \alpha_{2})^{1/p}} + \frac{\alpha_{2}}{\alpha_{2} + \beta_{1}}\Box\frac{\Gamma(1 + \frac{1}{p})}{(\beta_{2})^{1/p}})\Box\frac{\lambda}{\lambda + \alpha_{2}} + \frac{\beta_{1}}{\beta_{1} + \alpha_{2}}\Box\frac{\Gamma(1 + \frac{1}{p})}{(\beta_{2})^{1/p}}]$ 

$$\begin{split} \mathbf{N}_{4} &= (1 - p_{56})p_{13}\psi_{3} \\ &= (1 - \frac{\alpha_{2}}{\lambda + \alpha_{2}})\Box \frac{\beta_{1}}{\beta_{1} + \alpha_{2}} \Box \frac{\Gamma(1 + \frac{1}{p})}{(\alpha_{2} + \mu)^{1/p}} \end{split}$$

 $N_5 = p_{13}p_{35}\psi_5$ 

$$=\frac{\beta_1}{\beta_1+\alpha_2}\Box\frac{b\mu}{\mu+\alpha_2}\Box\frac{\Gamma(1+\frac{1}{p})}{(\alpha_2+\lambda)^{1/p}}$$

and D<sub>2</sub> is same as given in availability analysis.

The expected busy periods of the repairman in repair, inspection & post repair during (0, t) respectively are given by

$$\mu_{b}^{r}(t) = \int_{0}^{t} B_{0}^{r}(u) du, \ \mu_{b}^{I}(t) = \int_{0}^{t} B_{0}^{I}(u) du \text{ and } \mu_{b}^{pr}(t) = \int_{0}^{t} B_{0}^{pr}(u) du,$$

So that,

$$\mu_b^{r^*}(s) = \frac{B_0^{r^*}(s)}{s} , \mu_b^{I^*}(s) = \frac{B_0^{I^*}(s)}{s} \text{ and } \mu_b^{pr^*}(s) = \frac{B_0^{pr^*}(s)}{s}$$
(22-24)

# 5.4 Profit Function Analysis

Let us define

- $C_1$  = revenue per-unit up time (in Rs.) of the system.
- $C_2 = cost per unit time (in Rs.)$  when the repairman is busy in repairing of either failed unit.
- $C_3 = cost per unit time (in Rs.)$  for which the repairman is busy in the Inspection of first repaired unit.
- $C_4 = cost per unit time (in Rs.)$  for which the repairman is busy in the post Repair of first unit after the inspection.

Then, expected total profit incurred in time interval (0, t) is

P(t) = Expected total revenue in (0, t) – Expected cost of repair in (0, t) – Expected cost of Inspection in (0, t) – Expected cost of post repair in (0, t)

$$= C_1 \mu_{up}(t) - C_2 \mu_b^r(t) - C_3 \mu_b^I(t) - C_4 \mu_b^{pr}(t)$$
(25)

The expected total cost per-unit time in steady state is given by

$$= C_1 A_0 - C_2 B_0^r - C_3 B_0^I - C_4 B_0^{pr}$$
<sup>(26)</sup>

Where  $A_0$ ,  $B_0^r$ ,  $B_0^I$  and  $B_0^{pr}$  have been already defined.

## 6. Estimation of Parameters, MTSF and Profit Function

#### **6.1 Classical Estimation**

Suppose the shape parameter p is known and the scale parameters  $\alpha_1, \alpha_2, \beta_1, \beta_2, \mu, \lambda$  involved in the distributions are assumed to be unknown and follow the following (prior) distributions:

 $\begin{array}{l} \alpha_1 \square \text{ Gamma}(a_1, b_1) \\ \alpha_2 \square \text{ Gamma}(a_2, b_2) \\ \beta_1 \square \text{ Gamma}(a_3, b_3) \\ \beta_2 \square \text{ Gamma}(a_4, b_4) \\ \mu \square \text{ Gamma}(a_5, b_5) \\ \lambda \square \text{ Gamma}(a_6, b_6) \end{array}$  (27-32)

Here,  $a_i$  and  $b_i$  (i = 1, 2, 3, 4, 5, 6) respectively denote the scale and shape parameters.

## 6.1.1 ML Estimation

The failure, repair, inspection and post repair times of units of system are assumed to be independently Weibull distributed random variables with failure rates  $h_1(.)$ ,  $h_2(.)$ , repair rates  $K_1(.)$ ,  $K_2(.)$ , inspection rate m(.) and post repair rate e(.) respectively.

Where

$$\begin{split} h_i(t) &= \alpha_i p t^{p-1} , \ K_i(t) = \beta_i p t^{p-1}, \ t \geq 0 \ \text{and} \ \alpha_i, \ \beta_i, \ p > 0 \ \text{and} \ i=1, \ 2 \\ m(t) &= \mu p t^{p-1}; \ \ \mu, \ p, \ t > 0 \\ e(t) &= \lambda p t^{p-1}; \ \ \lambda, \ p, \ t > 0 \end{split}$$

Here  $\alpha_i$ ,  $\beta_i$ ,  $\mu$ ,  $\lambda$  are scale parameters and p is the shape parameter.

Let

$$\begin{split} & \underbrace{X_1 = (x_{11}, x_{12}, \dots, x_{1n_1}), \underbrace{X_2 = (x_{21}, x_{22}, \dots, x_{2n_2}), \underbrace{X_3 = (x_{31}, x_{32}, \dots, x_{3n_3}), \underbrace{X_4 = (x_{41}, x_{42}, \dots, x_{4n_4}),}_{X_5 = (x_{51}, x_{52}, \dots, x_{5n_5}), \underbrace{X_6 = (x_{61}, x_{62}, \dots, x_{6n_6})} \end{split}$$

be six independent random samples of size  $n_i$  (i=1,2,3,4,5,6) drawn from Weibull distribution with failure rates  $h_1$  (.),  $h_2$  (.), repair rates  $k_1$  (.),  $k_2$  (.), inspection rate m(.) and post repair rate e(.) respectively.

The likelihood function of the combined sample is

$$L(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} | \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \mu, \lambda) = \alpha_{1}^{n_{1}} \alpha_{2}^{n_{2}} \beta_{1}^{n_{3}} \beta_{2}^{n_{4}} \mu^{n_{5}} \lambda^{n_{6}} p^{n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}} Z_{1} Z_{2} Z_{3} Z_{4} Z_{5} Z_{6} e^{-(\alpha_{1}W_{1}+\alpha_{2}W_{2}+\beta_{1}W_{3}+\beta_{2}W_{4}+\mu W_{5}+\lambda W_{6})}$$

$$(33)$$

Where

$$W_i = \sum_{j=1}^{n_i} x_{ij}^p$$
 and  $Z_i = \prod_{j=1}^{n_i} x_{ij}^{p-1}$ ; i=1,2,3,4,5,6

By using usual maximization likelihood approach, the M.L. estimates say(  $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\beta}_1, \hat{\beta}_2, \hat{\mu}, \hat{\lambda}$ ) of the parameters (  $\alpha_1, \alpha_2, \beta_1, \beta_2, \mu, \lambda$ ) are

$$\hat{\alpha}_1 = n_1 / W_1$$

$$\hat{\alpha}_2 = n_2 / W_2$$

$$\hat{\beta}_1 = n_3 / W_3$$

$$\hat{\beta}_2 = n_4 / W_4$$

$$\hat{\mu} = n_5 / W_5$$

$$\hat{\lambda} = n_6 / W_6$$

Now, using the invariance property of ML estimates, the estimates of the MTSF and profit function, say,  $\hat{M}$  and  $\hat{P}$  can be obtained. The asymptotic sampling distribution of

$$\begin{pmatrix} \hat{\alpha}_1 - \alpha_1 \\ \hat{\alpha}_2 - \alpha_2 \\ \hat{\beta}_1 - \beta_1 \\ \hat{\beta}_2 - \beta_2 \\ \hat{\mu} - \mu \\ \hat{\lambda} - \lambda \end{pmatrix} \square \mathbf{N}_6(0, \mathbf{I}^{-1}) ,$$

where I denotes the Fisher information matrix with diagonal elements

 $I_{11} = \frac{n_1}{\alpha_1^2}, I_{22} = \frac{n_2}{\alpha_2^2}, I_{33} = \frac{n_3}{\beta_1^2}, I_{44} = \frac{n_4}{\beta_2^2}, I_{55} = \frac{n_5}{\mu^2}, I_{66} = \frac{n_6}{\lambda^2}$  and non diagonal elements are all zero.

Also, the asymptotic distribution of  $(\hat{M}-M)\Box N_6(0,A'I^{-1}A)$  and  $(\hat{P}-P)\Box N_6(0,B'I^{-1}B)$ , where

$$A' = \left(\frac{\partial M}{\partial \alpha_1}, \frac{\partial M}{\partial \alpha_2}, \frac{\partial M}{\partial \beta_1}, \frac{\partial M}{\partial \beta_2}, \frac{\partial M}{\partial \mu}, \frac{\partial M}{\partial \lambda}\right), B' = \left(\frac{\partial P}{\partial \alpha_1}, \frac{\partial P}{\partial \alpha_2}, \frac{\partial P}{\partial \beta_1}, \frac{\partial P}{\partial \beta_2}, \frac{\partial P}{\partial \mu}, \frac{\partial P}{\partial \lambda}\right)$$

#### 6.1.2 Bayesian Estimation

Using the likelihood function in (33) and prior distribution of  $\alpha_1, \alpha_2, \beta_1, \beta_2, \mu, \lambda$  in (27-32) the posterior distributions of these parameters are obtained as follows:

$$\begin{array}{l} \alpha_{1} \left| \underbrace{X}_{1} \Box \operatorname{Gamma}(n_{1}+a_{1},b_{1}+W_{1}) \right. \\ \alpha_{2} \left| \underbrace{X}_{2} \Box \operatorname{Gamma}(n_{2}+a_{2},b_{2}+W_{2}) \right. \\ \beta_{1} \left| \underbrace{X}_{3} \Box \operatorname{Gamma}(n_{3}+a_{3},b_{3}+W_{3}) \right. \\ \beta_{2} \left| \underbrace{X}_{4} \Box \operatorname{Gamma}(n_{4}+a_{4},b_{4}+W_{4}) \right. \\ \mu \left| \underbrace{X}_{5} \Box \operatorname{Gamma}(n_{5}+a_{5},b_{5}+W_{5}) \right. \\ \lambda \left| \underbrace{X}_{6} \Box \operatorname{Gamma}(n_{6}+a_{6},b_{6}+W_{6}) \right. \end{array}$$

$$(34-39)$$

For obtaining Bayes estimates and width of HPD intervals of the parameters, we generated observations from the above posteriors distributions. For obtaining Bayesian estimation and width of HPD intervals of MTSF and Profit function, we substituted the above draws directly in the equations (16) and (25). Assuming square error loss function, the sample means of the respective draws are taken as the Bayes estimates of the parameter and reliability characteristics. For obtaining width of HPD intervals, 'boa' package of R-software has been used.

#### 7. Simulation Study

A simulation study is carried out to examine the behavior of the estimates of parameters and reliability characteristics. For comparing the performances of MLE and Bayes estimates, the Standard Error (SE)/Posterior Standard Error (PSE) and width of Confidence/HPD intervals are computed and are given in Tables 1-6.

Samples of sizes  $n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = 180$  have been drawn from the six considered distributions by assuming various values of the parameters as given in Tables 1-6. The number of repetitions used is 10000. All calculations are performed on R.2.14.2.

For a more concrete study of the system behavior, we also plot curves for MTSF and Profit function w.r.t. failure rate  $\alpha_1$  for different values of repair rate  $\beta_1=0.4, 0.5, 0.6$ , while the other parameters are kept fixed as  $\beta_2=2$ ,  $\alpha_2=6$ ,  $\mu_1=2$ ,  $\lambda=5$ ,  $C_1=2500$ ;  $C_2=800$ ;  $C_3=100$ ;  $C_4=50$ ; a=.5; b=.5, p=1.0.

#### 8. Concluding Remarks

From Figs 2-4, it is observed that MTSF decreases as failure rate α<sub>1</sub> increases while it increases as repair rate β<sub>1</sub> increases. Same trends for profit function are also observed from Figs 5-7.

- From Tables 1-6, it is also observed that for fixed  $\beta_1$  and varying  $\alpha_1$ , Bayes estimates of MTSF and profit function perform well as compared to their MLEs as they have lesser PSE than that of MLEs. Also width of HPD intervals is more conservative as compared to the width of
- confidence intervals.
  Hence, from the above discussion we conclude that Bayes approach is better than Classical approach for estimating the MTSF and profit function for the considered model.

#### 9. References

- 1. Barlow, R.E and Proschan, F. (1965). Mathematical theory of Reliability, New York, John Wiley.
- Dhillon, B.S. and Yang N. (1992). Reliability and availability analysis of warm standby with common cause failure and human error. Microelectron Reliability, 32, p. 561-576
- 3. Goel, L.R. and Srivastava P. (1991). A two unit cold standby system with three modes and correlated failures and repairs. Microelectron Reliability, 31, p. 835-840.
- Gupta, R. and Kumar, P. (2012). Cost benefit analysis of a two dissimilar unit cold standby system with weibull failure and repar laws. Int. J. Syst. Assur. Eng. Manag DOI 10.1007/s13198-012-0091-z.
- Mogha, A.K. and Gupta A.K. (2002). A two priority unit warm standby model with preparation for repair, Aligarh Journal of Statistics, 22, p. 73-90.
- Nakagawa, T. and Osaki S. (1975). Stochastic behavior of two unit priority standby redundant system with repair. Microelectron Reliability, 14, p. 309-313.
- 7. Seo. J. H, Jang, J.S. and Bai, D. S. (2003). Life time and reliability estimation of repairable redundant system subject to periodic, RESS, 80, p. 197-204.
- Singh, S.K and Mishra, A.K. (1994).Profit evaluating of a two unit cold standby redundant system with two operating systems. Microelectron Reliability, 34(4), p. 747-750.
- 9. Sinha, S.K. (1986). Reliability and life testing, Wiley Eastern Limited, India.
- 10. Sinha, S.K. (1998). Bayesian Estimation, New Age International (P) Limited, New Delhi.
- 11. Yadavalli V.S.S., A.S. Bekker, J. Paun (2005), Bayesian study of a twocomponent System with common cause shock failures, Asia pacific Journal of operation research, 21(1), p.105-119.

| α1  | True. MTSF | ML.MTSF | SE    | C.I.  | Gamma-Bayes.<br>MTSF | PSE   | HPD<br>Interval |
|-----|------------|---------|-------|-------|----------------------|-------|-----------------|
| 0.1 | 12.451     | 12.994  | 0.836 | 3.277 | 12.135               | 0.823 | 3.193           |
| 0.2 | 7.059      | 7.314   | 0.438 | 1.717 | 6.659                | 0.42  | 1.643           |
| 0.3 | 5.261      | 5.42    | 0.311 | 1.219 | 4.834                | 0.288 | 1.13            |
| 0.4 | 4.363      | 4.473   | 0.25  | 0.98  | 3.922                | 0.223 | 0.875           |
| 0.5 | 3.824      | 3.905   | 0.216 | 0.847 | 3.375                | 0.185 | 0.723           |
| 0.6 | 3.464      | 3.526   | 0.194 | 0.76  | 3.01                 | 0.161 | 0.623           |
| 0.7 | 3.207      | 3.256   | 0.18  | 0.706 | 2.75                 | 0.143 | 0.556           |
| 0.8 | 3.015      | 3.053   | 0.169 | 0.662 | 2.555                | 0.131 | 0.508           |
| 0.9 | 2.865      | 2.895   | 0.162 | 0.635 | 2.404                | 0.122 | 0.473           |
| 1.0 | 2.745      | 2.769   | 0.156 | 0.612 | 2.282                | 0.115 | 0.445           |

Table-1: The values of MTSF for fixed  $\beta_1$ =.4 and varying  $\alpha_1$ 

| α1  | True.MTSF | ML.MTSF | SE    | C.I.  | Gamma-Bayes.<br>MTSF | PSE   | HPD<br>Interval |
|-----|-----------|---------|-------|-------|----------------------|-------|-----------------|
| 0.1 | 12.568    | 13.114  | 0.848 | 3.324 | 12.245               | 0.833 | 3.234           |
| 0.2 | 7.117     | 7.374   | 0.445 | 1.744 | 6.714                | 0.426 | 1.665           |
| 0.3 | 5.3       | 5.46    | 0.315 | 1.235 | 4.871                | 0.292 | 1.144           |
| 0.4 | 4.392     | 4.503   | .254  | 0.996 | 3.95                 | 0.226 | 0.885           |
| 0.5 | 3.847     | 3.929   | 0.219 | 0.858 | 3.397                | 0.188 | 0.732           |
| 0.6 | 3.483     | 3.547   | 0.197 | 0.772 | 3.029                | 0.163 | 0.63            |
| 0.7 | 3.224     | 3.273   | 0.182 | 0.713 | 2.766                | 0.145 | 0.563           |
| 0.8 | 3.029     | 3.068   | 0.171 | 0.67  | 2.569                | 0.133 | 0.515           |
| 0.9 | 2.878     | 2.909   | 0.164 | 0.643 | 2.416                | 0.123 | 0.478           |
| 1.0 | 2.757     | 2.781   | 0.158 | 0.619 | 2.294                | 0.116 | 0.449           |

Table-2: The values of MTSF for fixed  $\beta_1 {=}.5$  and varying  $\alpha_1$ 

A Two Non-Identical Unit Standby ...

| α1  | True.MTSF | ML.MTSF | SE    | C.I.  | Gamma-<br>Bayes.MTSF | PSE   | HPD<br>Interval |
|-----|-----------|---------|-------|-------|----------------------|-------|-----------------|
| 0.1 | 12.667    | 13.216  | 0.858 | 3.363 | 12.326               | 0.841 | 3.261           |
| 0.2 | 7.167     | 7.425   | 0.45  | 1.764 | 6.755                | 0.43  | 1.68            |
| 0.3 | 5.333     | 5.494   | 0.319 | 1.25  | 4.898                | 0.294 | 1.155           |
| 0.4 | 4.417     | 4.529   | 0.257 | 1.007 | 3.97                 | 0.228 | 0.893           |
| 0.5 | 3.867     | 3.95    | 0.221 | 0.866 | 3.413                | 0.189 | 0.739           |
| 0.6 | 3.5       | 3.564   | 0.199 | 0.78  | 3.042                | 0.164 | 0.635           |
| 0.7 | 3.238     | 3.288   | 0.184 | 0.721 | 2.778                | 0.146 | 0.568           |
| 0.8 | 3.042     | 3.081   | 0.173 | 0.678 | 2.579                | 0.134 | 0.519           |
| 0.9 | 2.889     | 2.92    | 0.165 | 0.647 | 2.425                | 0.124 | 0.482           |
| 1.0 | 2.767     | 2.792   | 0.159 | 0.623 | 2.302                | 0.117 | 0.453           |

Table-3: The values of MTSF for fixed  $\beta_1$ =.6 and varying  $\alpha_1$ 

| α1  | True.profit | ML.profit | SE      | C.I.     | Gamma-<br>Bayes.profit | PSE     | HPD<br>Interval |
|-----|-------------|-----------|---------|----------|------------------------|---------|-----------------|
| 0.1 | 3709.091    | 3774.547  | 495.887 | 1943.877 | 3221.868               | 353.727 | 1374.642        |
| 0.2 | 3034.091    | 3067.671  | 431.279 | 1690.614 | 2519.426               | 278.771 | 1083.3          |
| 0.3 | 2737.879    | 2752.986  | 442.687 | 1735.333 | 2255.966               | 272.225 | 1068.162        |
| 0.4 | 2536.364    | 2536.348  | 479.407 | 1879.275 | 2102.285               | 285.922 | 1116.85         |
| 0.5 | 2372.727    | 2358.929  | 529.199 | 2074.46  | 1992.555               | 309.3   | 1207.349        |
| 0.6 | 2228.03     | 2201.119  | 586.816 | 2300.319 | 1904.842               | 338.216 | 1321.369        |
| 0.7 | 2094.156    | 2054.515  | 649.476 | 2545.946 | 1829.754               | 370.584 | 1447.523        |
| 0.8 | 1967.045    | 1914.914  | 715.546 | 2804.94  | 1762.601               | 405.213 | 1582.455        |
| 0.9 | 1844.444    | 1779.983  | 784.013 | 3073.331 | 1700.783               | 441.375 | 1724.584        |
| 1.0 | 1725        | 1648.319  | 854.221 | 3348.546 | 1642.747               | 478.597 | 1865.923        |

Table-4: The values of profit for fixed  $\beta_1$ =.4 and varying  $\alpha_1$ 

| α1  | True. profit | ML. profit | SE      | C.I.     | Gamma-Bayes.<br>profit | PSE     | HPD<br>Interval |
|-----|--------------|------------|---------|----------|------------------------|---------|-----------------|
| 0.1 | 4077.479     | 4157.894   | 515.518 | 2020.831 | 3490.756               | 368.171 | 1432.266        |
| 0.2 | 3397.727     | 3442.821   | 438.089 | 1717.309 | 2756.128               | 283.413 | 1104.044        |
| 0.3 | 3148.416     | 3173.883   | 442.154 | 1733.244 | 2509.932               | 272.443 | 1070.05         |
| 0.4 | 3006.715     | 3016.48    | 472.354 | 1851.628 | 2385.845               | 282.789 | 1105.518        |
| 0.5 | 2908.058     | 2903.69    | 515.904 | 2022.344 | 2310.604               | 303.193 | 1185.388        |
| 0.6 | 2830.923     | 2813.207   | 567.476 | 2224.506 | 2259.787               | 329.332 | 1287.157        |
| 0.7 | 2766.086     | 2735.47    | 624.256 | 2447.084 | 2222.929               | 359.05  | 1401.413        |
| 0.8 | 2708.936     | 2665.7     | 684.586 | 2683.577 | 2194.798               | 391.123 | 1526.627        |
| 0.9 | 2656.91      | 2601.242   | 747.43  | 2929.926 | 2172.487               | 424.798 | 1655.543        |
| 1.0 | 2608.471     | 2540.501   | 812.109 | 3183.467 | 2154.252               | 459.589 | 1793.682        |

Table-5: The values of profit for fixed  $\beta_1$ =.5 and varying  $\alpha_1$ 

| α1  | True. Profit | ML. profit | SE      | C.I.     | Gamma-Bayes.<br>profit | PSE     | HPD<br>Interval |
|-----|--------------|------------|---------|----------|------------------------|---------|-----------------|
| 0.1 | 4372.348     | 4465.725   | 530.408 | 2079.199 | 3680.086               | 378.007 | 1474.73         |
| 0.2 | 3676.515     | 3731.572   | 443.598 | 1738.904 | 2917.265               | 286.654 | 1116.244        |
| 0.3 | 3454.167     | 3488.595   | 442.934 | 1736.301 | 2678.602               | 272.963 | 1070.515        |
| 0.4 | 3350.189     | 3368.411   | 469.195 | 1839.244 | 2570.96                | 281.406 | 1103.539        |
| 0.5 | 3293.561     | 3297.346   | 509.064 | 1995.531 | 2515.705               | 300.196 | 1173.141        |
| 0.6 | 3260.606     | 3250.839   | 557.104 | 2183.848 | 2486.622               | 324.862 | 1270.968        |
| 0.7 | 3241.18      | 3218.366   | 610.466 | 2393.027 | 2472.471               | 353.194 | 1378.175        |
| 0.8 | 3230.208     | 3194.664   | 667.47  | 2616.482 | 2467.63                | 383.937 | 1499.417        |
| 0.9 | 3224.874     | 3176.809   | 727.063 | 2850.087 | 2458.97                | 416.326 | 1621.464        |
| 1.0 | 3223.485     | 3163.048   | 788.55  | 3091.116 | 2430.614               | 449.863 | 1753.025        |

Table-6: The values of profit for fixed  $\beta_1$ =.6 and varying  $\alpha_1$ 

