
Journal of Reliability and Statistical Studies; ISSN (Print): 0974-8024, (Online):2229-5666 

Vol. 5, Issue 2 (2012): 85-103 

A TWO NON-IDENTICAL UNIT STANDBY SYSTEM 

MODEL WITH REPAIR, INSPECTION AND POST-REPAIR 

UNDER CLASSICAL AND BAYESIAN VIEWPOINTS 

Ram Kishan* and Divya Jain 
 Department of statistics, D.A.V. (P.G.) College, Muzaffarnagar-251001, India 

E Mail: rkishan05@rediffmail.com, divyajain2787@gmail.com 

 

(Received October 08, 2012) 

 

Abstract 
In this paper some important measures of reliability characteristics of a two non-

identical unit standby system model with repair, inspection and post repair are obtained using 

regenerative point technique. All time random variables are assumed to be independent and 

follow Weibull distribution. Monte Carlo simulation study is also carried out to illustrate the 

results for considered system model from Classical and Bayesian viewpoints. 

Key Words: Mean time to system failure (MTSF), Fisher Information matrix and Non-

Regenerative point. 

1. Introduction 
          In order to improve the reliability or raise the availability and hence reduce the 

loss, a two-component redundant system is often employed. A two- component cold 

standby system with one repairman has been one of the classical models in the 

reliability theory. Under the condition that the operating time and the repair time of 

each component in the system both have exponentially distributed. Several studies 

including Dhillon and Yang (1992), Goel and Srivastava (1991), Mogha and Gupta 

(2002), Nakagawa and Osaki (1975), Singh and Mishra (1994) analyzed system models 

by using the concepts of warm standby with common cause failure and human error, 

correlated failures and repairs, two priority unit warm standby with preparation for 

repair, two unit priority standby with repair, two unit cold standby with two operating 

modes. 

      All the above studies assumed that each failed component after repair is “as 

good as new”. However, In real existing situations we observe that there are many 

sophisticated, costly equipments/units where it becomes necessary to inspect a repaired 

unit/equipment to check whether the repair done is satisfactory or not. The equipment 

may be sent for post-repair if repair is found unsatisfactory during inspection. Besides, 

these studies were mainly concerned to obtain reliability characteristics and not to 

estimate the parameters involved in the lifetime/repair time distributions of unit/system. 

Gupta and Pankaj (2012) analyzed two dissimilar unit cold standby system with 

Weibull failure and repair laws without estimating the parameter(s) involved in the life 

time/repair time distribution of system/ unit. 

         Keeping above idea in view, we, in the present paper analyze a two non-

identical unit standby system model in which the first unit goes for repair, inspection 

and post repair whereas the second unit becomes as good as new after repair. Here the 

priority in operation is given to the first unit as it is highly sophisticated, costly unit 
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which provides high quality product at low running cost. The second unit is ordinary 

unit which has high running cost. Priority in repair is given to second unit as repair of 

second unit is less time consuming and cheaper as compared to first unit. The purpose 

of the present paper is to analyze a two non-identical unit standby system model with 

repair, inspection and post repair by using Weibull distribution for both failure and 

repair times with different scale parameters and common shape parameter under 

classical and Bayesian setups. For a more concrete study the system model, a 

simulation study is also carried out. 

The probability density function (p.d.f) of Weibull distribution is given by 

f (t)=θpt
p-1 

exp(-θt
p
) ; t≥ 0 and θ, p > 0 

The reliability/survival function and hazard (failure /repair) rate for Weibull distribution 

are respectively given by 

                      R(t) =exp (-θt
p
); t≥ 0 and θ, p > 0 

and 

                      H(t) = θpt
p-1

; t≥ 0 and θ, p > 0 

        It is important to note that p and θ are the shape and scale parameters 

respectively. If we put p=1 in the above p.d.f of Weibull distribution, it reduces to 

exponential distribution and for p=2, it reduces to Rayleigh distribution. 

        We evaluate the following reliability characteristics of interest to system 

designers as well as operating managers by using regenerative point technique. 

(i) Steady-state transition probabilities and mean sojourn times in various states. 

(ii) Pointwise availability of the system at time t and the steady state availability. 

(iii) Reliability of the system and Mean time to system failure (MTSF). 

(iv) Expected up time of the system and expected busy period of the repairman 

during   (0, t). 

(v) Expected profit incurred by the system in (0, t) and in the steady state.  

 

          Further, since life testing experiments are time consuming and as such the 

parameters representing the reliability characteristics of the system/unit are assumed to 

be random variables. Therefore, a simulation study is conducted for analyzing the 

considered system model both in classical and Bayesian set ups. The Monte Carlo 

simulation technique has been used in conducting the numerical study. In classical 

setup, the maximum likelihood (ML) estimates of the parameters involved in the model 

and reliability characteristics along with their standard errors (SE) and width of 

confidence intervals are obtained. In Bayesian setup, Bayes estimates of the parameters 

and reliability characteristics along with their posterior standard errors (PSE) and width 

of highest posterior density (HPD) intervals are computed. In the end, the comparative 

conclusions are drawn to judge the performances of the ML and Bayes estimates. 
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       The rest of the paper is organized as follows: Section 2 deals with the system 

model description and assumptions. In Section 3, notations and states of the system 

model are given. In Section 4, transition probabilities and mean sojourn times in 

various states are considered. Section 5 deals with the analysis of various characteristics 

such as reliability, MTSF, Availability, Busy period and Profit function. In Section 6, 

Maximum likelihood estimation (MLE) and Bayes estimation of scale parameters, 

MTSF and Profit function are considered. Section 7 deals with the simulation study to 

examine the behavior of the estimates of parameters and reliability characteristics and 

finally in Section 8, concluding remarks are given on the basis of Tables 1-6 obtained 

under Section 7 and Figures 2-7. 

 

2.  System Model Description and Assumptions 

(i) The system consists of two non-identical units (unit-1 and unit-2). Initially, system 

starts its operation from state S0 in which unit-1 is operative and unit-2 is kept in 

cold standby. Upon failure of an operative unit the cold standby unit becomes 

operative instantaneously. 

(ii) Each unit has two modes- Normal (N) and total failure (F). After the repair of unit-

1, it goes for inspection to decide whether the repair is perfect or not. If the repair 

of a unit is found to be perfect then the repaired unit becomes operational, 

otherwise it is sent for post repair. The probability of having a perfect repair is 

fixed. Unit-2 becomes as good as new after repair. 

(iii) Upon failure of unit-1, unit-2 becomes operative instantaneously with a perfect 

switching device. 

(iv) The second unit gets the priority in repair over the repair, inspection and post repair 

of    unit-1. 

(v) The failure and repair time distributions of each unit are taken to be independent 

having the Weibull density with common shape parameter ‘p’ but different scale 

parameters α and β as follows: 

        
( )

( )

p 1 p
i i i i

p 1 p
i i i i

 t 0 and ,p  0 ,i 1,2 

 , t 0 and ,p  0 , i 1,2 

          f t pt exp( t ),         

 and         

           g t pt exp( t )

−

−

≥ > =

≥ > =

=α −α α

=β −β β

 

(vi) The inspection and post repair time distributions of unit-1 are taken to be 

independent having the Weibull density with common shape parameter ‘p’ but 

different scale parameters µ and λ as follows: 

        
( )

( )

p 1 p

p 1 p

J  t 0 and , p  0  

 , t 0  and , p  0

      t pt exp( t ),         

 and          

     h t pt exp( t )

−

−

µ ≥ µ >

≥ λ >

=µ −

=λ −λ

 

(vii) The switching device is perfect and instantaneous. 
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(viii) A single repair facility is used to repair of both units and inspection and post 

repair of unit-2. 

(ix) A repaired unit works as good as new. 

 

3. Notations and States of the System 

 

Notations 
E           : Set of regenerative states = {So, S1, S2, S3, S4, S5. S6} 

αi / βi           : Scale parameter of  failure/repair time distribution for i
th

 ( i=1,2) unit. 

µ/λ             : Scale parameter of inspection/post repair time distribution first unit. 

p           : Shape parameter of failure/repair time distribution of each unit. 

hi(t)                 : failure rate of i
th

  (i=1, 2) unit when both the units are operative  

                          = αipt
p-1

   , αi, p ,t > 0 

Ki(t)                :  repair rate of  i
th 

 (i=1,2) unit 

                          = βipt
p-1

 , βi, p,t > 0 

m(t)          : inspection rate of first unit having the form 

                          = µpt
p-1

;   µ, p, t > 0 

e(t)          : post repair rate of first unit having the form 

                          = λpt
p-1

; λ, p, t > 0 

a/b          : Probabilities that the repair of unit-1 is perfect or imperfect (a+b=1) 

����∙�, ����∙�    :p.d.f and cdf of one step or direct transition time from 	�
� to 	�
�. 

���           : Steady state transition probability from state	�to 	�such that 

                          =lim
�→∞

������. 

)(k

ijp              : Steady state transition probability from state 	�to 	� via 	�such that 

            
)(k

ijp =lim
�→∞

���
������. 

ψ�           : Mean sojourn time in regenerative state 	� i.e. 

                           =� �[�� > �]��
∞

�
 

�����          : Reliability of the system at time t when system starts from	�. 

�����          : Probability that the system will be operative in state 	� 	at epoch t. 

 ����						         : Probability that the repairman will be busy in state 	�		at epoch t. 

µ!"�t�         : Expected up time of the system during interval (0, t)  i.e. 

                         =� ���$��$
�

�
. 

µ%�t�									     : Expected busy period of repairman during interval (0, t) i.e. 

                        =�  ��$��$
�

�
. 
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����										: Profit incurred by the system during interval (0, t). 

∗																: Symbol for Laplace Transform of a function i.e. 

																							q��
∗ =� ()*���+�����

∞

�
. 

∙              : Regenerative point. 

×														: Non regenerative point. 

 

Symbols for the States of the System 

N10    : Unit-1 is in normal (N) mode and operative. 

N20, N2s                  : Unit-2 is in N-mode and operative /cold standby. 

F1r, F1I, F1pr            : Unit-1 is in F-mode and under repair/under inspection after  

                                 repair/and post repair. 

F2r                 : Unit-2 is in F-mode and under repair. 

F1wr, F1wI, F1wpr      : First Unit is in F-mode and waiting for  repair, inspection and post                                       

                                repair respectively. 

Considering the above symbols, we have the following states of the system. 

            Up States:                 Failed States: 

S0 ≡ (N10, N2s) S2 ≡ (F1wr, F2r)
 

S1 ≡ (F1r, N20)
 

S4 ≡ (F1wI, F2r)
 

S3 ≡ (F1I, N20)
 

S6 ≡ (F1wpr, F2r)
 

S5 ≡ (F1pr, N20)
 

 

  

Here all states are regenerative. The possible transitions between the states together 

with transition rates are shown in Fig.1. 
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4. Transition Probabilities and Sojourn Times 

The non -zero elements 
 

of transition probability matrix (t.p.m) for the system 

model are as follows: 

 

The steady state transition probabilities can be obtained by using the results, 

  

p
p 1

101
t

ptp 1e dt− 1−αα= =∫  

Similarly,              

ijp

ij ij
t

p = lim  Q (t)
→∞
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2
12

1 1 2 2 2 2

2

2 2

1 2
13 30 34 35

50 56 65

a b
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p ;p ;p 1

p 1

p 1;

p
2

β αµ µ

λ
λ λ

α
=

=

=
α +β β +α µ +α µ +α µ +α

α
+α +α

= = = =

= = =

 
It can be easily verified that

 

 

     
                                         (1-7) 

The limits of integration are 0 to ∞ whenever not mentioned. 
 

Mean Sojourn Times 

 

If  is the sojourn time in state , then mean sojourn time in state   is given by, 

 
Therefore, the mean sojourn times for various states are as follows: 

 

ppp
2

1/p

( ) ttt
1

1

p
t  e dt

)

(1

 e e d

)
1 21 − β + α

1 2

− α−β = =
(β + α

Γ
ψ =

+
∫∫  

p
2

1/p
2

t
2

1

p
t

)

(1

 e d

)
−β =

(β

Γ
ψ =

+
∫  

iT iS iS

0 iP(T t)dtψ = >∫

p

1/p

t
0

1

p
t

)

(1

 e d

)
1

1

−α =
(α

Γ
ψ =

+
∫

01

12 13
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43

p p 1
50 56
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p 1

p p 1

p 1

p p p 1

p 1

1
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+ =

=

+ + =

=
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p
2

p p
2

1/p

( ) tt t
3

1

p
t  e dt

)

(1

 e e d

)
− α + µ

2

−α −µ = =
(α + µ

Γ
ψ =

+
∫∫  

p
2

1/p

t
4

1

p
t  

)

(1

 e d

)

2

−β =
(β

Γ
ψ =

+
∫  

p
2

pp

1/p

( ) t

2

tt
5

1

p
t  e dt

)

(1

 e e d

)
2 − α + η−−α λ

λ
= =

(α +

Γ
ψ =

+
∫∫  

p
2

1/p
2

t
6

1

p
t

)

(1

 e d

)
−β =

(β

Γ
ψ =

+
∫      

                             (8-14) 

5. Analysis of Characteristics 

 

5.1 Reliability and Mean Time to System Failure (MTSF) 
          Let  be the probability that the system is operative during (0,t) given that 

at t=0, it starts from state .Using the regenerative point technique, reliability of 

the system when it starts from state S0 ,in terms of its  Laplace transform (i.e. the value 

of  ) is given by 

1

1

* * * * * * *
* 50 01 1 13 3 35
0 * * * * *

01 13 30 35 50

N (s)

D (s)

Z q [Z q (Z q Z )]
R (s)

1 q [q (q q q )]
=

+ + +
=

− +
  

       (15)    
Where  

and are the Laplace transforms of  

and , given by 

p
t

0 0Z (0) e dt1∗ −α= = ψ∫  

Similarly, 

  1 1 3 3 5 5Z (0) , Z (0) , Z (0)∗ ∗ ∗= ψ = ψ = ψ  

         Taking the inverse Laplace transform (ILT) of eq. (15), one can get the 

reliability of the system when it starts from state S0. 

 

            The mean time to system failure (MTSF) can be obtained by using the well 

known formula- 

iR (t)

iS E∈

0R (t)

* * *
0 1 3Z (s),Z (s),Z (s) *

5Z (s) 0 1 3Z (t),Z (t),Z (t)

5Z (t)
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MTSF= 
1 1 1

0 0
s 0

1 1 1

N (s) N (0) N
E(T ) lim R (s)

D (s) D (0) D

∗

→
= = = =              (16) 

Now using the results  and Zi*(0) = , we get 

 

 

 

5.2 Availability Analysis 

          Let us define (t) as the probability that the system is up at time t when 

initially it starts from state . Using the technique of Laplace transform, one can 

obtain the value of  in terms of its L.T; i.e. .Now the steady state 

availability (probability that in the long run the system will be operative) of the system 

when it starts from state  is given by 

0 0
t

A   lim  A ( t )
→ ∞

=
 

       2

0
s 0

2

N
lim  s A (s)  

D
 ∗

→
==        (17) 

Where,

2 0 13 1 50 34 3 50 35 5 13

1/p 1/p

1/p 1/p
2

1 2 2 2

2 2 1 2

1

1

N [ p ]p (1 p ) [ p p ]p

b
[ * ] (1 )

b
[ ]

1 1

p p

) )

1 1

p p

) )

(1 (1

(1 (1

) )

) )

1 1 2

2

= ψ + ψ − + ψ + ψ

β µ
= + − +

λ

βµ
+

λ

(α (β + α

(α + µ (α + λ

Γ Γ

β +α +α µ +α

Γ Γ

+α µ +α β +α

+ +
λ

+ +
λ

� �

� � �

 

     

 

*
ij ijq (0) p= iψ

iA

iS E∈
(t)0A

*
0A (s)

0S

1 0 1 13 3 35 5 1/p 1/p 1/p 1/p
21 2 2

1

1 1 1 1
b

N p ( p ) ( * )

1 1 1 1

p p p p

) ) ) )

( ( ( () ) ) )

1 1 2 2

=
β µ

=ψ +ψ + ψ + ψ + + +
(α (β +α (α +µ (α +λ

Γ Γ Γ Γ

β +α µ +α

+ + + +

1 13 30 35 50

1 2 2 2 2

1 a b
D 1 p (p p p ) 1 ( . )

β µ µ λ
= − + = − +

λβ +α µ +α µ +α +α
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( ) ( ) ( )2 13 34 0 50 34 1 12 34 50 2

13 50 3 13 34 50 4 13 35 5 13 35 56 6

1/p 1/p

1/p
2

1 2 2 2 2

2

1 2 2 1 2

1 2 2

2 1

D p 1 p p 1 p p 1 p p

p p p p p p p p p p

1 1

(1 ) (1 )

1

(1 )

1 1

p p

) )

1

p

)

( (

(

) )

)

1 1 2

2

= − ψ + − ψ + − ψ

+ ψ + ψ + ψ + ψ

β α αλ
= − + − +

λ

α βλ λ
− +

λ λ

(α (β + α

α
(β

Γ Γ

β +α µ +α +α µ +α

Γ

α +β µ +α +α β +α

+ +

+

� � � �
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1/p

1/p 1/p

1/p

2

2

2

1 2 2 2 1 2 2

2

1 2 2 2

1 2 1

1

1

*

1 1
b

1
b

1

p

)

1 1

p p

) )

1

p

)

(

( (

(

)

) )

)

2

2

+

β α βλ µ
+ +

λ

β µ
λ

(α + µ

(β (α + λ

(β

Γ

+α

Γ Γ

β +α +α µ +α β +α µ +α

Γ
α

β +α µ +α +α

+

+ +

+

� � � � �

� � �

 

The expected up time of the system during (0, t) is given by  

up(t)µ = ( )
t

0

0

A u du∫     So that,  
*

* 0
up

A (s)
(s)

s
µ =      (18) 

5.3   Busy Period Analysis 

            Let us define , and  as the probabilities that the repairman 

is busy in repair, inspection after repair of unit-1, post repair after the inspection of 

repaired unit-1 at epoch t when the system starts from state .Using the 

probabilistic arguments one can obtain the values of ,  and  in terms 

of their Laplace transforms i.e. , and . 

In the long run, the probabilities that the repairman will be busy in repair, inspection 

after repair of unit-1 and post repair of unit-1and replacement of failed unit respectively 

are given by 

r 3
0

2

N
B =

D     

I 4
0

2

N
B =

D      

  

p r 4
0

2

N
B =

D                                                                       

  (19-21) 

r
iB (t) I

iB (t) pr
iB (t)

iS E∈
r
0B (t) I

0B (t)
pr
0B (t)

r*
0B (s)

I*
0B (s) pr*

0B (s)
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Where, 

)

3 34 43 1 12 2 50 13 6

1/p 1/p 1/p
2 2

2

2 1 2 1 2

2 1

N (1 p p )[( p )p p ]

(1     [(     )   ]

1 1 1

p p p

) ) )

(1 (1 (1) ) )

1 2 2

= − ψ + ψ + ψ

α β
= − + +

λ
α

(β +α (β (β

Γ Γ Γ

µ +α α +β +α β +α

+ + +
λ

� � � �

 

          

 

5 13 35 5

1/p
21 2 2

1

N p p

b

1

p

)

(1 )

= ψ

β µ
=

(α +λ

Γ

β +α µ +α

+
� �

 

         
and D2 is same as given in availability analysis. 

 

The expected busy periods of the repairman in repair, inspection & post repair during 

(0, t) respectively are given by 

r
b (t)µ =

t
r
0

0

B (u)du∫ , 
I
b (t)µ =

t
I
0

0

B (u)du∫ pr
band  (t)µ =

t
pr
0

0

B (u)du∫ , 

So that, 

r*
r* 0
b

B (s)
(s)

s
µ =  ,

I*
I* 0
b

B (s)
(s)

s
µ =

  

pr*
pr* 0
b

B (s)
and  (s)

s
µ =           (22-24) 

5.4   Profit Function Analysis 
Let us define 

 C1 = revenue per-unit up time (in Rs.) of the system. 

 C2 = cost per unit time (in Rs.) when the repairman is busy in repairing of   

                       either failed unit. 

 C3 = cost per unit time (in Rs.) for which the repairman is busy in the   

                         Inspection of  first repaired unit. 

 C4 = cost per unit time (in Rs.) for which the repairman is busy in the post  

                         Repair of  first unit after the inspection. 

Then, expected total profit incurred in time interval (0, t) is 

P(t) = Expected total revenue in (0, t) – Expected cost of repair in (0, t) –  

             Expected cost of Inspection in (0, t) – Expected cost of post repair in (0, t) 

        =    (25) r I pr
1 up 2 b 3 b 4 bC (t) C (t) C (t) C (t)µ − µ − µ − µ

4 56 13 3

1/p
2

2 1 2

1

N (1 p )p

(1   ) 

1

p

)

(1 )

2

= − ψ

β
= −

(α +µ

Γ
α

λ+α β +α

+
� �
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The expected total cost per-unit time in steady state is given by 

    = r I pr
1 0 2 0 3 0 4 0C A  C B  C B  C B− − −                   (26) 

Where 
 
have been already defined. 

6. Estimation of Parameters, MTSF and Profit Function 

 

6.1 Classical Estimation 

Suppose the shape parameter p is known and the scale parameters  

involved in the distributions are assumed to be unknown and follow the following 

(prior) distributions: 

1 1 1

2 2 2

1 3 3

2 4 4

5 5

6 6

Gamma (a ,b )

Gamma (a ,b )

Gamma (a ,b )

Gamma (a ,b )

Gamma (a ,b )

Gamma (a ,b )

α

α

β

λ

β
µ

�

�

�

�

�

�

                  (27-32) 

Here, ai and bi (i = 1, 2, 3, 4, 5, 6) respectively denote the scale and shape parameters. 

6.1.1 ML Estimation 
The failure, repair, inspection and post repair times of units of system are assumed 

to be independently Weibull distributed random variables with failure rates  h1(.), h2(.), 

repair rates K1(.), K2(.), inspection rate m(.) and post repair rate e(.) respectively. 

Where 

         hi(t)  = αipt
p-1

 ,  Ki(t) = βipt
p-1

, t 0 and αi, βi, p > 0 and i=1, 2   

       m(t)  = µpt
p-1

;   µ, p, t > 0 

        e(t)  = λpt
p-1

;  λ, p, t > 0 

Here αi, βi, µ, λ are scale parameters and p is the shape parameter. 

Let 

1 2 3 4

5 6

1 11 12 1n 2 21 22 2n 3 31 32 3n 4 41 42 4n

5 5n51 52 6 61 62 6n

X (x ,x ,.......,x ),X (x ,x ,.......,x ), X (x ,x ,.......,x ),X (x ,x ,.......,x ),

X (x ,x ,.......,x ),X (x ,x ,.......,x )

= = = =

= =
% % % %

% %
 

be six independent random samples of size  ni (i=1,2,3,4,5,6) drawn from Weibull 

distribution  with failure rates  h1 (.), h2 (.), repair rates k1 (.), k2 (.),inspection rate m(.) 

and post repair rate e(.) respectively. 

The likelihood function of the combined sample is 

r I pr
0 0 0 0A , B , B and B

1 2 1 2, , , , ,α λα β β µ

≥
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          Now, using the invariance property of ML estimates, the estimates of the MTSF 

and profit function, say, can be obtained. The asymptotic sampling 
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and non diagonal 

elements are all zero. 

Also, the asymptotic distribution of  and 

 , where 

( )
51 1 2 2 1 3 2 4 6

51 2 3 4 6

53 5 6 1 2 3 4 61 2 4
51 2 3 4 6 1 2 1 2

( W W W W W W )

n n n n n n n nn n n n
1 2 1 2

Z Z Z Z Z Z

pL X ,X ,X ,X ,X ,X , , , , ,

e

+ + + + +

− α +α +β +β +µ +λ

µ λα βα α β β µλ =α β
% % % % % %

1 2 1 2
ˆˆ ,ˆ ˆˆ ˆ, , , ,α λα β β µ 1 2 1 2, , , , ,α λα β β µ

ˆ ˆM and P

( ) ( )6
1M̂ M N 0,A I A−′− �

( ) ( )6
1P̂ P N 0,B I B−− ′�

1 1 1

2 2 2

1 3 3

2 4 4

5 5

6 6

ˆ

ˆ

ˆ

ˆ

ˆ

n /W

n /W

n /W

n /W

ˆ n /W

n /W

α

α

β

β

λ

=
=

=

=
µ=

=



98                                  Journal of Reliability and Statistical Studies, December 2012, Vol. 5 (2) 

 

1 2 1 2

M M M M M M
A , , , , ,

 
 
 

∂ ∂ ∂ ∂ ∂ ∂′=
∂α ∂α ∂β ∂β ∂µ ∂λ

,

1 2 1 2

pP P P P P
B , , , , ,

 
 
 

∂∂ ∂ ∂ ∂ ∂′=
∂α ∂α ∂β ∂β ∂µ ∂λ  

 
6.1.2 Bayesian Estimation 

      Using the likelihood function in  (33) and prior distribution of 

 in (27-32) the posterior distributions of these parameters are 

obtained as follows: 

 

1 1 1 1 1 1
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1 3 3 3 3 3
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                           (34-39) 

      For obtaining Bayes estimates and width of HPD intervals of the parameters, 

we generated observations from the above posteriors distributions. For obtaining 

Bayesian estimation and width of HPD intervals of MTSF and Profit function, we 

substituted the above draws directly in the equations (16) and (25). Assuming square 

error loss function, the sample means of the respective draws are taken as the Bayes 

estimates of the parameter and reliability characteristics. For obtaining width of HPD 

intervals, ‘boa’ package of R-software has been used. 

 

7. Simulation Study 
      A simulation study is carried out to examine the behavior of the estimates of 

parameters and reliability characteristics. . For comparing the performances of MLE 

and Bayes estimates, the Standard Error (SE)/Posterior Standard Error (PSE) and width 

of Confidence/HPD intervals are computed and are given in Tables 1-6. 

     Samples of sizes  have been drawn from 

the six considered distributions by assuming various values of the parameters as given 

in Tables 1-6. The number of repetitions used is 10000. All calculations are performed 

on R.2.14.2. 

     For a more concrete study of the system behavior, we also plot curves for 

MTSF and Profit function w.r.t. failure rate  for different values of repair rate 

 while the other parameters are kept fixed as 

 C1=2500; C2=800; C3=100; C4=50; a=.5; b=.5, p=1.0. 

 

8.  Concluding Remarks 

• From Figs 2-4, it is observed that MTSF decreases as failure rate  

increases while it increases as repair rate increases. Same trends for 

profit function are also observed from Figs 5-7. 

1 21 2, , , , ,α µ λα β β

1 2 3 4 5 6n = n = n = n = n n = 180=

1α

1 0.4,0.5,0.6,β =
.2,  .6,  .2,  .5,

2 2 1
β = α = µ = λ=

1α

1β
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• From Tables 1-6, it is also observed that for fixed and varying , 

Bayes estimates of MTSF and profit function perform well as compared to 

their MLEs as they have lesser PSE than that of MLEs. Also width of 

HPD intervals is more conservative as compared to the width of 

confidence intervals. 

• Hence, from the above discussion we conclude that Bayes approach is 

better than Classical approach for estimating the MTSF and profit 

function for the considered model.  
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α1 True. MTSF ML.MTSF SE C.I. Gamma-Bayes. 

MTSF 

PSE HPD 

Interval 

0.1 12.451 12.994 0.836 3.277 12.135 0.823 3.193 

0.2 7.059 7.314 0.438 1.717 6.659 0.42 1.643 

0.3 5.261 5.42 0.311 1.219 4.834 0.288 1.13 

0.4 4.363 4.473 0.25 0.98 3.922 0.223 0.875 

0.5 3.824 3.905 0.216 0.847 3.375 0.185 0.723 

0.6 3.464 3.526 0.194 0.76 3.01 0.161 0.623 

0.7 3.207 3.256 0.18 0.706 2.75 0.143 0.556 

0.8 3.015 3.053 0.169 0.662 2.555 0.131 0.508 

0.9 2.865 2.895 0.162 0.635 2.404 0.122 0.473 

1.0 2.745 2.769 0.156 0.612 2.282 0.115 0.445 

 

 Table-1: The values of MTSF for fixed β1=.4 and varying α1 

 

 

 

α1 True.MTSF ML.MTSF SE C.I. Gamma-Bayes. 

MTSF 

PSE HPD 

Interval 

0.1 12.568 13.114 0.848 3.324 12.245 0.833 3.234 

0.2 7.117 7.374 0.445 1.744 6.714 0.426 1.665 

0.3 5.3 5.46 0.315 1.235 4.871 0.292 1.144 

0.4 4.392 4.503 .254 0.996 3.95 0.226 0.885 

0.5 3.847 3.929 0.219 0.858 3.397 0.188 0.732 

0.6 3.483 3.547 0.197 0.772 3.029 0.163 0.63 

0.7 3.224 3.273 0.182 0.713 2.766 0.145 0.563 

0.8 3.029 3.068 0.171 0.67 2.569 0.133 0.515 

0.9 2.878 2.909 0.164 0.643 2.416 0.123 0.478 

1.0 2.757 2.781 0.158 0.619 2.294 0.116 0.449 

 

Table-2: The values of MTSF for fixed β1=.5 and varying α1 
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α1 True.MTSF ML.MTSF SE C.I. Gamma-

Bayes.MTSF 

PSE HPD 

Interval 

0.1 12.667 13.216 0.858 3.363 12.326 0.841 3.261 

0.2 7.167 7.425 0.45 1.764 6.755 0.43 1.68 

0.3 5.333 5.494 0.319 1.25 4.898 0.294 1.155 

0.4 4.417 4.529 0.257 1.007 3.97 0.228 0.893 

0.5 3.867 3.95 0.221 0.866 3.413 0.189 0.739 

0.6 3.5 3.564 0.199 0.78 3.042 0.164 0.635 

0.7 3.238 3.288 0.184 0.721 2.778 0.146 0.568 

0.8 3.042 3.081 0.173 0.678 2.579 0.134 0.519 

0.9 2.889 2.92 0.165 0.647 2.425 0.124 0.482 

1.0 2.767 2.792 0.159 0.623 2.302 0.117 0.453 

 

Table-3: The values of MTSF for fixed β1=.6 and varying α1 

 

 

 

α1 True.profit ML.profit SE C.I. Gamma-

Bayes.profit 

PSE HPD 

Interval 

0.1 3709.091 3774.547 495.887 1943.877 3221.868 353.727 1374.642 

0.2   3034.091 3067.671 431.279 1690.614 2519.426 278.771 1083.3 

0.3 2737.879 2752.986 442.687 1735.333 2255.966 272.225 1068.162 

0.4 2536.364 2536.348 479.407 1879.275 2102.285 285.922 1116.85 

0.5 2372.727 2358.929 529.199 2074.46 1992.555 309.3 1207.349 

0.6 2228.03 2201.119 586.816 2300.319 1904.842 338.216 1321.369 

0.7 2094.156 2054.515 649.476 2545.946 1829.754 370.584 1447.523 

0.8 1967.045 1914.914 715.546 2804.94 1762.601 405.213 1582.455 

0.9 1844.444 1779.983 784.013 3073.331 1700.783 441.375 1724.584 

1.0 1725 1648.319 854.221 3348.546 1642.747 478.597 1865.923 

 

 Table-4: The values of profit for fixed β1=.4 and varying α1 

 

 

 

 

 

 

 

 



102                                  Journal of Reliability and Statistical Studies, December 2012, Vol. 5 (2) 

 

α1 True. profit ML. profit SE C.I. Gamma-Bayes. 

profit 

PSE HPD 

Interval 

0.1 4077.479 4157.894 515.518  2020.831 3490.756 368.171 1432.266 

0.2 3397.727 3442.821 438.089 1717.309 2756.128 283.413 1104.044 

0.3 3148.416 3173.883 442.154 1733.244 2509.932 272.443 1070.05 

0.4 3006.715 3016.48 472.354 1851.628 2385.845 282.789 1105.518 

0.5 2908.058 2903.69 515.904 2022.344 2310.604 303.193 1185.388 

0.6 2830.923 2813.207 567.476 2224.506 2259.787 329.332 1287.157 

0.7 2766.086 2735.47 624.256 2447.084 2222.929 359.05 1401.413 

0.8 2708.936 2665.7 684.586 2683.577 2194.798 391.123 1526.627 

0.9 2656.91 2601.242 747.43 2929.926 2172.487 424.798 1655.543 

1.0 2608.471 2540.501 812.109 3183.467 2154.252 459.589 1793.682 

 

Table-5: The values of profit for fixed β1=.5 and varying α1 

  

 

 

α1 True. Profit ML. profit SE C.I. Gamma-Bayes. 

profit 

PSE HPD 

Interval 

0.1 4372.348 4465.725 530.408 2079.199 3680.086 378.007 1474.73 

0.2 3676.515 3731.572 443.598 1738.904 2917.265 286.654 1116.244 

0.3 3454.167 3488.595 442.934 1736.301 2678.602 272.963 1070.515 

0.4 3350.189 3368.411 469.195 1839.244 2570.96 281.406 1103.539 

0.5 3293.561 3297.346 509.064 1995.531 2515.705 300.196 1173.141 

0.6 3260.606 3250.839 557.104 2183.848  2486.622 324.862 1270.968 

0.7 3241.18 3218.366 610.466 2393.027 2472.471 353.194 1378.175 

0.8 3230.208 3194.664 667.47 2616.482 2467.63 383.937 1499.417 

0.9 3224.874 3176.809 727.063 2850.087 2458.97 416.326 1621.464 

1.0 3223.485 3163.048 788.55 3091.116 2430.614 449.863 1753.025 

 

 Table-6: The values of profit for fixed β1=.6 and varying α1  
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